| H. J.M. Al-Alkawi <sup>®</sup><br>Electromechanical Eng.<br>Dept, University of<br>Technology, Baghdad, Iraq.     | Mechanical Properties of 7075 Aluminum Alloy<br>Matrix/Al <sub>2</sub> O <sub>3</sub> Particles Reinforced Composites                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alalkawi2012@yahoo.com<br>A.A. Al- Rasiaq<br>Mechanical Eng. Dept,<br>University of Technology,<br>Baghdad, Iraq. | <b>Abstract-</b> 7075 Aluminum alloy metal matrix composites (MMC <sub>s</sub> ) with different wt % of $Al_2O_3$ . (0.2, 0.4, 0.6, 0.8, and 1), the size of reinforced particles is 10 Nano meter , were fabricated using stir casting technique. The influence of adding $Al_2O_3$ particles content on the mechanical properties of the MMC <sub>s</sub> . It was observed that the nanomaterial reinforcement led to high improvement in BHN hardness ultimate strength ( $\sigma_u$ ), yield stress ( $\sigma_y$ ) and ductility. The improvements |
| <b>M.A.A. Al- Jaafari</b><br>Mechanical Eng. Dept,<br>University of Al-<br>Mustansiriva, Baghdad, Iraq.           | were due to regular distribution of $Al_2O_3$ and refinement of aluminum 7075 grains. The maximum improvement in BHN hardness, $\sigma_u$ and $\sigma_y$ was observed at 0.2 wt %. $Al_2O_3$ . While the minimum value of $\epsilon$ % was obtained at 0.2 wt % $Al_2O_3$ .                                                                                                                                                                                                                                                                             |
|                                                                                                                   | <b>Keywords-</b> 7075 Al. matrix, $Al_2O_3$ nanomaterial, stir casting method $MMC_s$ , mechanical properties ( $MMC_s$ ).                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Received on: 6/10/2016<br>Accepted on: 29/12/2016                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

How to cite this article: H.J.M. Al-Alkawi, A.A. Al-Rasiaq, and M.A.A. Al-Jaafari, "Mechanical Properties of 7075 Aluminum Alloy Matrix/Al<sub>2</sub>O<sub>3</sub> Particles Reinforced Composites," Engineering and Technology Journal, Vol. 35, Part A, No. 3, pp. 239-245, 2017.

## 1. Introduction

Aluminum alloys is one of the most important industrial alloys, and due to toughness, ductility and strength. Aluminum matrix composite is being advance-engineering materials. The aluminum alloys is very low density, which can be used in many applications by strengthened with nanoparticles like Al<sub>2</sub>O<sub>3</sub>, SiC etc. This alloys replaced Bronze and Cast iron to it high resistance of wear. In addition, these alloys are widely used in aircraft like (7075) [1].

By using Aluminum alloys, the mass can be lowered by 50%, which makes it, increased the speed or the load carrying capacity and enhances the stability, Aluminum alloys are acceptable for plastic working and wieldable, The Aluminum -Zn-Mg alloys like (7075) is higher strength property e comparative. With Aluminum-Mg alloys [2]. Depending on tensile test for applications of selection material, material specifications and quality ensures, developing new material can be compare to others different materials, the tensile test usually used to predicts the material beavers more than other permit analysis [3].

Akbari et al. [4] used A356 reinforced by nano Alumina particles added into Aluminum molted used stirring speed 450 r.p.m.and 850 c for casting and stirring time period. Cast iron mold for composite, the heat treatment is 8 hour at 495 c and at 520 c is 2 hours, water quenching and artificiality aged, the tensile and hardness increased.

Ezatpour et al. [5] used Al6061 and Al<sub>2</sub>O<sub>3</sub> by stir casting, the Nano material is heated tell 550 c, using planter machine weight ratio (8:1) and steel balls of (8-10mm) Argon gas used to melt when injections composite powder and hydraulic press, heat treatment is 550 quenching in water and aged time 2 hours and 3 hours .the increased in Nano increased the porosity and decreased the porosity of extrusion.

Sajjde et al. [6] investigated the properties of Aluminum reinforced by micro or Nano Alumina used 20un and 50um heated to 1100 c injected with Argon gas in 200r, 300 and 450 rpm speed of stir, find that the porosity increased by increased Al<sub>2</sub>O<sub>3</sub> ratio, and the stirring speed increased porosity in nano more than micro particles composite. Anasry et al [7] investigated Aluminum alloys composite with MgO by stir casting A356 with different ratio of nanoparticles at 800, 850 and 950 c, hardness is increased by increased the ratio of nanoparticles and temperature of stirring cast.

Bharath et al. [8] tested 6061 Al-alloy-Al<sub>2</sub>O<sub>3</sub> composites with two different wt% of Al<sub>2</sub>O<sub>3</sub> i.e. (6% and 9%) and they found that the mechanical properties of the composite increased with

https://doi.org/10.30684/etj.35.3A.8

2412-0758/University of Technology-Iraq, Baghdad, Iraq

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

increasing the wt % Al<sub>2</sub>O<sub>3</sub> nanomaterial while the ductility was less compared to the Al. matrix. Maazahery et al. [9] studied the A356 Al-Al<sub>2</sub>O<sub>3</sub> composites using (0.75, 1.5, 2.5, 3.5 and 5 vol%) of Al<sub>2</sub>O<sub>3</sub> particles at 800 °c, 850 °c and 950 °c. the concluded remarks were , the hardness (BHN), the ultimate tensile strength and ductility of composites improved with increasing the vol% of Al<sub>2</sub>O<sub>3</sub> and the maximum (BHN) occurred in 2.5 vol% of  $Al_2O_3$  composites at 800 °c. Therefore the main purpose of this work is to study the influence of adding fire wt% of Al<sub>2</sub>O<sub>3</sub> size to 707 Al. alloy for of 10 Nanometer fabricating the MMCs composites , on the mechanical properties of the composites i.e. hardness, ultimate tensile strength, yield strength and ductility. In addition, comparison between the present results with other workers is made.

### 2. Experimental Method

The stir casting method was adopted to fabricate the 7075 Al/Al<sub>2</sub>O<sub>3</sub> composites (MMC<sub>8</sub>). Before introducing the  $Al_2O_3$  material with 10 Nanometer dimension, into the melt they were preheated to 200°C. Five wt% of Al<sub>2</sub>O<sub>3</sub> were used i.e. (0.2, 0.4, 0.6. 0.8 and 1). The stirring speed was 450 rpm and the casting temperature was 850 °C using the metal die casting [4]. The above procedure was done by nanocomposites manifesting device shown in Figure 1. The procedure of the manufacturing described by the following steps:

• Aluminum alloys are cutting into cubes [1-2] cm<sup>3</sup>, it is washed parts resulting from the cutting process with alcohol and distilled water several times (3-5 times).

• Dry the parts washed steam of hot air to temperature of 100°C.

• Dried parts are heated 200°C by an electric heater.

• The oven lids lifted and loaded parts resulting from the heating process from the top and close the lid tightly. Air is withdrawn from the oven by vacuum.

• Alarcon gas is pumped into the oven and heat the oven to 800°C.

• The addition of nanomaterial's to the molten Aluminum Alloy with gas pump.

• After rotate for several minutes is poured molten metal in the mold to obtain the final product.

### 3. Material Used

The matrix metal for current work is 7075 Al alloy the chemical composition of the matrix is shown in Table 1 the specimens is analyses was

down in company for Inspection and Engineering Rehab ration (CIER).

The nanomaterial used in this study is  $Al_2O_3$  which has good thermal stability, high hardness and wear resistance and this reinforcement was chosen because, up to now,  $Al_2O_3$  particles is the most commonly used with Al matrix to generate the metal matrix composition MMC<sub>8</sub>.

The specimen surface were grinded by 200, 300, 500, 800, 1000, and 1200 grit paper and then polished by 2  $\mu$ m diamond paste in order to measure the surface roughness. The chemical composition of Al<sub>2</sub>O<sub>3</sub> in wt% are shown in Table 2. The roughness measurements were listed in Table 3. To study the mechanical properties characterizations of the matrix and composite the tensile tests were performed using three tests were done for each wt% of Al<sub>2</sub>O<sub>3</sub>. The average reading was adapted. Note that, the above results are for one group of tensile specimens while the other two groups are not mentioned.

#### 4. Experimental Results and Discussion

#### I. Hardness test results

Figure 2 shows the experimental results of Brinell hardness against the weight percentage of  $Al_2O_3$  particles. It is clear that a significant increase in hardness of the MMCs when adding the  $Al_2O_3$  particles.

The above figure revealed that the hardness of the MMCs specimens increased with increasing the weight percentage of the reinforcement material except the value of 0.6 wt. % which shows reduced in BHN and the reason may be the MMCs has high porosity and the Al<sub>2</sub>O<sub>3</sub> particles haven't uniform distribution leading to weak BHN compared to others value of Al<sub>2</sub>O<sub>3</sub>. Bharath et al [8] concluded that increasing of Al<sub>2</sub>O<sub>3</sub> wt. % resulting in increase of VHN hardness of 6061 Aluminum based composite.



Figure 1: X Manifesting device for manfuracting the MMC<sub>s</sub> composites

Mohson et al [10] tested MMCs composite of the Al-Si Aluminum alloy as a matrix .They found that the BHN hardness increased with increasing the vol. %  $Al_2O_3$ but the hardness was absented at 3% volume  $Al_2O_3$ .

The high BHN is found at  $0.2 \text{ wt. } \% \text{ Al}_2\text{O}_3$ and the high hardness may be coming from the high hardness of nanoparticles itself which attributed positively to hardness of composites [8].

Comparison has been made for four studies used  $Al_2O_3$  nanomaterial as given in Table 4. It is clear that the Nano material structures have the ability to create new features and improved the mechanical properties. The improvement may due to their good properties of  $Al_2O_3$ , e.g. high hardness, good stability, high optical sensitivity and high mechanical properties [11].

Table 1: Chemical composition of Al 7075, wt%

| Components | Element Wt% |
|------------|-------------|
| Zinc       | 5.5         |
| Magan      | 2.4         |
| Silicon    | 0.2         |
| Copper     | 1.4         |
| Iron       | 0.3         |
| Titanium   | 0.1         |
| Manganese  | 0.2         |
| Chromium   | 0.21        |
| Zirconium  | -           |
| Tungsten   | -           |
| Aluminum   | Balance     |

Table 2: The chemical composition of Al<sub>2</sub>O<sub>3</sub> in wt% [10]

| Element          | Wt%  |
|------------------|------|
| CaO              | 1.1  |
| TiO <sub>3</sub> | 1.8  |
| $Fe_2O_3$        | 0.8  |
| α-aluminum       | 93   |
| Other            | 0.02 |

Table 3: Average Roughness results of tensile specimens

| Specimen No. | Ra (µm) | Rt (µm) |
|--------------|---------|---------|
| 1            | 0.7     | 2.1     |
| 2            | 0.9     | 2.4     |
| 3            | 0.55    | 1.8     |
| 4            | 0.8     | 1.9     |
| 5            | 0.61    | 1.55    |
| 6            | 0.45    | 1.21    |



Figure 2: Hardness (BHN) against Al<sub>2</sub>O<sub>3</sub> wt%, average of three attempt testing

| Workers  | matrix    | Zero%    | 0.2%       | 0.4%  | 0.6% | 0.8%          | 1.0% | Reinforcement                  |
|----------|-----------|----------|------------|-------|------|---------------|------|--------------------------------|
|          |           | wt       | wt         | wt    | wt   | wt            | wt   |                                |
| Present  | 7075Al    | 56       | 73         | 71    | 65   | 69            | 65   | $Al_2O_3$                      |
| work     | alloy     | BHN      | BHN        | BHN   | BHN  | BHN           | BHN  |                                |
| Bharath  | 6061Al    | Zero % v | vt         | 6% wt | ţ    | 9 % w         | t    | Al <sub>2</sub> O <sub>3</sub> |
| [8]      | [8] alloy |          | HN 104.7VH |       | HN   | IN 145.67 VHN |      |                                |
|          |           | Zero %   | 1%         | 2%    | 3%   | 4%            | 5%   | Al <sub>2</sub> O <sub>3</sub> |
|          |           |          | vol.       | vol.  | vol. | vol.          | vol. |                                |
| Mohsen   | Al–SiAl   | 52       | 62         | 70    | 75   | 73            | 72.2 | _                              |
| [10]     | alloy     | BHN      | BHN        | BHN   | BHN  | BHN           | BHN  |                                |
|          |           | Zero%    | 0.3%       | 0.5%  | 0.7% | -             | -    | Al <sub>2</sub> O <sub>3</sub> |
|          |           |          | wt         | wt    | wt   |               |      |                                |
| Alalkawi | 2017Al    | 136      | 144        | 132   | 140  | -             | -    | _                              |
| [12]     | alloy     | VHN      | VHN        | VHN   | VHN  |               |      |                                |

Table 4: Comparison between the hardness of the present work with three previous workers

### II. Tensile strength

Table (5) gives the tensile strength results with different wt% of the reinforced material. it is clear that the tensile strength values of MMCs for all the amount of wt%  $Al_2O_3$  is larger than the matrix compared to the as cast 7075 Al. alloy excepted the value of 0.6%. The results of Eu in comparison with other workers are also made as given in Table 5.

The tensile strength results obtained from the experimental work observed that the tensile strength of the MMCs increase with increasing the amount of  $Al_2O_3$ . The higher tensile strength of the MMCs could be attributed to the fact that  $Al_2O_3$  particle act as obstacles to the

movement of dislocation [2]. Kok reported that the introducing  $Al_2O_3$  into the aluminum matrix resulted in raising the mechanical properties. The compression of the results tableted above shows some MMCs in the recent work and Reference [11] exhibit slightly reduced in ultimate stress and yield stress and the reason may be coming from the following;

1. The distribution of Al<sub>2</sub>O<sub>3</sub> in metal matrix is not completely uniform.

2. The porosity of MMCs is relatively high compared to others MMCs.

| Recent work |       | Reference | Reference [8] |                                   | Reference [10] |           | Reference [11] |  |
|-------------|-------|-----------|---------------|-----------------------------------|----------------|-----------|----------------|--|
| Wt% of      | Би    | Wt% of    | Би            | Vol.%                             | Би             | Wt% of    | Би             |  |
| $AI_2O_3$   | (MPa) | $AI_2O_3$ | (MPa)         | of Al <sub>2</sub> o <sub>3</sub> | (MPa)          | $Al_2o_3$ | (MPa)          |  |
| 0.0         | 228   | 2.0       | 140.76        | 0.0                               | 125            | 0.0       | 450            |  |
| 0.2         | 245   | 5.0       | 149.76        | 0.75                              | 165            | 0.3       | 472            |  |
| 0.4         | 236   | ( )       | 167.02        | 1.5                               | 184            | 0.5       | 400            |  |
| 0.6         | 165   | 0.0       | 107.93        | 2.5                               | 175            | 0.7       | 462            |  |
| 0.8         | 238   | 0.0       | 172 (1        | 3.5                               | 162            | -         | -              |  |
| 1.0         | 216   | 9.0       | 1/3.01        | 5.0                               | 160            | -         | -              |  |

Table 5: Ultimate strength results in comparison with three previous researches



Figure 3: Variation of Ultimate tensile strength against Al<sub>2</sub>O<sub>3</sub> wt %

For the present work and Ref [8], Ref [10], it is reported that the ultimate tensile strength of nano composites is enhanced with an increasing in the  $Al_2O_3$  wt.% or vol.% .The experimental analysis of the current research showed that the highest ultimate tensile strength occurred with 0.2 wt.% of Nano particles  $Al_2O_3$  .while Mohsen et al [10] found that the highest ultimate tensile strength with 1.5 volume %  $Al_2O_3$ . Bharath et al [8]. obtained the best ultimate strength of  $Al_2O_3$ with 9 wt.% of  $Al_2O_3$ . Al-alkawi et al [12] concluded that the higher ultimate strength was obtained with 0.3 wt.%  $Al_2O_3$ .

### III. Yield strength

Yield strength (By) shows an increasing trend compared to as cast 7075 Al Yield strength is extracted from the stress-strain curves and are plotted in Figure 4.



Figure 4: Yield strength of MMCs composite against wt% of Al<sub>2</sub>O<sub>3</sub> in 7075 Al

https://doi.org/10.30684/etj.35.3A.8

2412-0758/University of Technology-Iraq, Baghdad, Iraq

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

Bharath et al [8] found that the yield strength of nanocomposite increased when the wf% of Al<sub>2</sub>O<sub>3</sub> increased. The best improved was occurred at 9wt % of Al<sub>2</sub>O<sub>3</sub> showed highest value of yield strength .Al-alkawi et al [12] found that the 0.3 wt% realved best valve of yield strength. The increasing in the mechanical properties may be due to increasing of dislocations density of the matrix leading to increasing the strength of composite [13]. In addition, the mechanical properties increment can also be attributed to reduce the microstructure grain diameter. While at 0.6% the mechanical, the lower mechanical properties may be due to the high porosity levels of composite and should be kept to minimum. Porosity arises due to gas entrapment during mixing [13]. Al-Alkawi et al [12] noted that the

ductility of MMCs almost remain constant with increasing the wt % of  $Al_2O_3$ .

Properties are reduced and the reason may be due to weak bonding between Al<sub>2</sub>O<sub>3</sub> and matrix with high porosity.

# 5. Ductility

The ductility was calculated from the failed specimens after fracture and Table 6 illustrates the comparison between the present results with Reference [8]. The ductility at 0.6 wt. % Al<sub>2</sub>O<sub>3</sub> may be due to irregulation distribution of Al<sub>2</sub>O<sub>3</sub> in the metal matrix and the high porosity compare to the others metal matrix composite [13].

 Table 6: A comparison of present work with Ref [8]

| Present work ,7075 Al matrix |             |                   | Reference [8], 6061Al matrix |           |           |  |
|------------------------------|-------------|-------------------|------------------------------|-----------|-----------|--|
| Wt % of                      | Ductility % | Method            | Wt % of                      | Ductility | Method    |  |
| $Al_2O_3$                    |             |                   | $Al_2O_3$                    |           |           |  |
| 0.0                          | 18          |                   | 0                            | 15.16     |           |  |
| 0.2                          | 12          | -<br>             |                              |           |           |  |
| 0.4                          | 14          | - Stir<br>Casting | 6                            | 10.69     | —<br>Stir |  |
| 0.6                          | 17.5        | _ Custing         |                              |           | Casting   |  |
| 0.8                          | 13          | -                 | 9                            | 8.34      |           |  |
| 1.0                          | 15          |                   |                              |           |           |  |



Figure 5: Variation of Ductility against Al<sub>2</sub>O<sub>3</sub> wt. %

# 6. Conclusions

From the experimental analysis, it can be concluded that;

1. Tensile strength of 7075Al nanoparticles composite was higher than to as cast 7075Al, the highest value of Tensile strength was observed at 0.2 wt% of Al<sub>2</sub>O<sub>3</sub>.

2. It was obtained that the BHN hardness of composite specimens was higher compared to the 7075Al without nanoparticles. The best BHN was reviled at 0.2 wt% of Al<sub>2</sub>O<sub>3</sub>.

3. Yield strength of 0.2 wt%  $Al_2O_3$  showed great value of yield strength compared to 7075 Al.

4. Ductility was observed to be improved when adding the nanoparticles  $Al_2O_3$ .the lowest ductility was obtained at 0.2 wt% of nanoparticles.

## References

[1] D.L. Mc Donels, "Analysis of Stress–Strain, Fracture, and Ductility Behavior of Aluminum Matrix Composites Containing Discontinuous Silicon Carbide Reinforcement," *Metall. Trans.* A 16, 1105, 1985.

[2] B. Ralph, H. C. Yuen, W. B. Lee, "The process," J. Material Proc. Technol. 63, 339, 1997.

[3] B. Vijaya Ramnath, C. Elanchezhian, RM. Annamalai, S. Aravind, T. Sri Ananda Atreya, V. Vignesh, C. Subramanian, "Aluminum Metal Matrix Composites–A Review," *Rev. Adv. Mater Sci*, 38, 55-60, 2014.

[4] M.K Akbari, O. Mirazace, H.R. Baharvandi, "Fabuaction Styding one Mechanical Properties and Flunce Behavior of Nano Metnic Refuied A356 Compish," *Material and Design*, 46, 199-205, 2013.

[5] H.R. Ezatpour, S.A Sajjadi, and M.H Sabzero Yiznon Huang, "Investigation of Micro Structure and Mechanical Properties of AL6061 Nano Composit Fibnating by Strug Casting," *Mechanical and Design*, 85, 921-928, 2014. [6] S.A. Sajjde, H.R Ezapetoum, H Beygi "Microstudy and Mechanical Properties Nanoforced Fibenal by Stir Casting," *Material Secim and Engineering*, A528, 2011.

[7] K.A. Anasry. M. Morhzan H. abdlizalad and H.R Balaruil, "Microstructure and Mechanical Properties of Aluminum Alloy Matrix Reinforced with Nano Particles MgO," *Journal of Alloys and composition*, 484, 400-404, 2009.

[8] V. Bharath, N. Mahader, and V. Auradi, "Preparation, Characterization of Mechanical Properties of AL<sub>2</sub>O<sub>3</sub> Reinforced 6061 AL. Partticles MMCS," *International J of Eng. Research and Technology (IJERT)*, Vol. 1, Issue 6, 2012.

[9] A. Mazahery, H .Abdizadeth, and H.R Baharvandi, "Hardness and Tensile Strength Study on 356 Alloys Matrix / Nano AL<sub>2</sub>O<sub>3</sub> Particles Reinforced Composite," Master Sci. Eng, to be Published, 2016.

[10] S.O. Mohsen, and A. Mazahery "Aluminum– Matrix Nano Composites Swarm – Intelligence Optimization of the Microstructure and Mechanical Properties," *MTAEC9*, 46, 6, 613, 2012.

[11] K.K. Dinesh K.K, A. Geeta, and P. Rajesh, "Properties and Characterization of AL- AL<sub>2</sub>O<sub>3</sub> Composites Processed by Casting and Powder Metallurgy Routes (Review)," *IJLTET*, Vol. 2, Issue 4, 2013.

[12] H.J. Alakawi, F.A. Shereen, F.A. Haneen, "An Experimental Investigation for Some Mechanical Properties of Aluminum Matrix Composites Reinforced by AL<sub>2</sub>O<sub>3</sub> Nano-Particles," *Journal of Eng. And Technology*, accepted for publication, 2016.

[13] M. Vykuntarao, S. Chira Jeeva Rao, Ch. Vinod Babuc, and M. V. Sekhar Babu, "Influence of Reinforced Particles on Mechanical Properties of Aluminum Based Metal Matrix Composite," *A Review of Chemical Science Review and Letters*, 4(13), 335-341, 2015.