

 AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES 17 (2024) 390–399

 Contents lists available at http://qu.edu.iq

Al-Qadisiyah Journal for Engineering Sciences

Journal homepage: https://qjes.qu.edu.iq

* Corresponding author.

E-mail address: omar.21enp5@student.uomosul.edu.iq (Omar Anwer Nafea)

https://doi.org/10.30772/qjes.2024.146104.1089

2411-7773/© 2024 University of Al-Qadisiyah. All rights reserved. This work is licensed under a Creative Commons Attribution 4.0 International License.

An improved throttling algorithm for fog computing networks with an

additional management layer

Omar Anwer Nafea* and Turkan Ahmed Khaleel

Department of Computer Engineering, College of Engineering, Mosul University, Mosul, Iraq Iraq

A R T I C L E I N F O

Article history:

Received 17 January 2024

Received in revised form 24 March 2024

Accepted 26 November 2024

Keywords

Fog Computing

Load balancing

OMNIT++

Response time

Throttled algorithm

A B S T R A C T

An emerging networking technique called fog computing extends cloud computing capabilities to the edge

network's borders. It is employed to get around the limitations of cloud computing, like latency and

bandwidth problems. Fog computing is suitable for IoT systems and applications that require real-time

processing, reliable network access, low latency, and strong security. In this work, the objective is to design

and implement a fog computing environment to simulate the behavior of a multi-user healthcare application,

which represents the monitoring of elderly care homes in Mosul city. Several algorithms were employed to

examine the effects of load balancing inside fog computing networks. These algorithms are Random,

Round-Robin, and the modified Throttled algorithm, which is modified by adding an extra management

layer to be more suitable for fog computing networks. The response time results obtained from

implementing this modified method were superior to those of the random algorithm and closely resembled

the response time results of the round-robin algorithm. In case QoS1 with 25 clients, the result was

(0.246037794) second without the load balancing algorithm, (0.124323358) second in the Random

algorithm, (0.115641477) second in the Round-Robin algorithm, and (0.114981575) second for the

modified throttled algorithm. thus, making it applicable for fog computing networks and cloud computing

networks.

© 2024 University of Al-Qadisiyah. All rights reserved.

1. Introduction

For the majority of people, "fogging" or "fog computing" is a relatively

new idea that Cisco introduced in 2014. A relationship exists between fog

and cloud computing; just as fog is typically found in areas closer to the

ground than clouds, so too is this the case in technology. It is possible to

bring cloud capabilities down to the ground level using fog computing

because it is closer to end users [1]. The term "fog computing" refers to a

distributed computing paradigm that places computation and data storage

closer to end users and devices. The concept of cloud computing is

extended to the edge of the network by fog computing. Processing and

analyzing data closer to where it is created and eliminating the need for data

to be transported to centralized data centers are two key tenets of fog

computing, which promises to address the issues of latency, bandwidth,

security, and privacy that emerge with traditional cloud computing. In fog

computing, several distributed, decentralized, and heterogonous devices are

placed closer to end devices, sensors, and actuators at the edge of the

network. These edge devices are interconnected and communicate through

the fog layer, which is responsible for providing services such as

processing, data caching, and analysis. Computing in the fog provides real-

time and context-aware decision-making and effective use of network

resources.

http://qu.edu.iq/
https://qjes.qu.edu.iq/
https://doi.org/10.30772/qjes.2024.146104.1089
https://doi.org/10.30772/qjes.2024.146104.1089
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4047-8100

 OMAR NAFEA AND TURKAN KHALEEL /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES 17 (2024) 390–399 391

The Internet of Things (IoT) is greatly aided by fog computing, which

offers high-quality services with fast response times and a scalable, flexible

platform for managing the enormous volumes of data produced by IoT

devices. It is a crucial technology for edge computing as well, which

processes data locally on edge devices like robots, drones, and smartphones

[2][3]. The fog computing architecture is a hierarchy of computing

resources arranged into layers, each performing specific functions. This fog

computing architecture is designed to solve the limitations of cloud

computing, like latency, bandwidth and security issue. By bringing

computing resources closer to the edge of network, fog computing can

improve the performance, reliability, and security of edge devices and

applications and enable new use cases in areas such as smart cities,

healthcare, and industrial IoT. Figure 1 shows the fog computing

architecture, which is usually composed of three layers: the Cloud

Computing layer at the top, the Fog Computing layer in the center, and the

End Device layer at the bottom [4][5] [6].

Figure 1. Fog Computing Architecture [6].

Cloud layer: This layer provides additional resources and services, such as

data storage, compute power and advanced analytics. It can be used to store

data that is not immediately needed or perform complex analytics requiring

large amounts of computing power [7].

Fog layer: The layer situated just above the layer intended for end devices

is known as the Fog Computing layer. Any device that is capable of storing,

processing, and connecting to a network is referred to as a Fog Computing

device which includes the Fog nodes that are located closer to the network's

edge than cloud data centers and are responsible for providing services such

as data analytics, storage, and communication. These Fog nodes can be

deployed in various locations, including on-premises, in public spaces, or

in vehicles, providing a range of services to end-users in real-time [8].

End Devices, or Data producer layer: This layer is the closest to the end

devices, such as sensors, actuators, and mobile devices. It consists of edge

devices that collect and transmit data to the fog layer [7].

An extension of cloud computing's services is offered to the Internet of

Things (IoT) layer by the fog computing layer. An overview of the most

significant of these services will be given in this section, as they are

classified into three main categories: compute, storage, and network

services [9]

• Storage: The sensor has the capacity to produce large volumes of data.

Given the rate at which data is generated with increasing of using IoT

technology, the storage capacity of IoT gadgets at the IoT layer is often

insufficient to accommodate all the data. Therefore, not all data needs to

be moved to the cloud immediately, especially if some of it is redundant

or unnecessary. It is advised to perform filtering in such circumstances

or store the data in the fog computing layer [10].

• Computing: the limited computing power of IoT-layer devices has led

directly to the development of distant processing methods. Enhancing

system requirements, ensuring energy efficiency, enabling local

processing, and achieving a faster response time are the motivation

behind fog layer treatment. As a result, processing tasks can be moved

from the cloud computing to the fog computing layer [11].

• Communication: wireless nodes play a crucial role in facilitating

communication inside the Internet of Things (IoT), due to the limited

resources in the IoT layer, the wireless protocols are specifically

designed to operate with minimal energy use, limited bandwidth

transmission, and extended coverage [12].

The paper's contribution is adding a network management layer, which will

help researchers in the future by adding several other parameters and

injecting their own load balancing algorithms.

2. Review of literature

This section entails a comprehensive examination of the most recent and

advanced studies and related works in the field. This review is structured

into two sections. The first section focuses on simulators and frameworks

for fog computing, fog computing's applications in healthcare is covered in

the second section, which also looks at load balancing techniques in this

field.

2.1. Fog computing simulator and frameworks

Nowadays, fog computing is a modern environment where many fog

computing technologies are used to support and construct applications in a

wide range of fields, including healthcare, smart grids, smart homes, smart

buildings, intelligent transportation systems, etc. [13]. These applications

and technologies frequently profoundly effect on people's lives. Still,

further consideration is needed because not all of these applications have

quite reached a satisfactory degree of maturity. Therefore, the use of

simulators was mandated. There are various fog computing environment

simulation tools with varying characteristics and modes of operation. We

Nomenclature:

FogNetSim Fog Network Simulator Msg Message

Ini initialization file MTH Modified Throttled Algorithm

IOT Internet of Thing N Number of Client

LB Load Balance NML Network Management Layer

LC Least Connection PPP Point to Point

LPCF Least Processing Cost First QoS Quality of Service

MIPS Million Instruction Per sconed ToS Type of Service

MQTT Message Queuing Telemetry Transport WRR Weighted Round Robin

392 OMAR NAFEA AND TURKAN KHALEEL /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES 17 (2024) 390–399

will examine a few of these simulators in this paragraph: An Edge-Fog

cloud simulator was developed by (N. Mohan, et al., 2016). It is built of

two layers: the edge device layer and the fog device layer. The simulator is

implemented in Python. The Least Processing Cost First (LPCF) method,

which assigns jobs to potential nodes, was then developed and incorporated

by the authors. Reducing computing time and network expenses is the aim

of the assignment [14]. (A. Brogi, et al., 2017) develop a fog computing

paradigm comprising qualified deployments, fog infrastructures, IoT

applications, and QoS profiles. FogTorch is a simulator tool written in Java

that lets developers adjust the fog infrastructure. Developers can specify

QoS settings pertaining to latency and bandwidth and inform the simulator

of the requirements of their applications. There is no fee model offered by

FogTorch [15]. (H. Gupta, et al., 2017) suggested a simulator called

iFogSim built on JAVA and is used to model fog networks in IoT

environments and assess the effects of resource management strategies on

latency, network congestion, energy consumption, and cost, the authors

present two case studies that represent an IoT environment and compare

different approaches to managing resources. In addition, the simulation

toolkit's scalability in terms of RAM usage and running time is validated in

a variety of settings. However, iFogSim is not perfect; in particular, it puts

too much emphasis on resource management while neglecting other critical

areas of fog computing such as infrastructure and mobility [15]. (T.

Qayyum, et al., 2018) proposed the FogNetSim++ simulation framework,

that gives users a wide range options for setting up a Fog network

simulation. It is built on OMNeT++ [17], which is an open-source

component-based C++ simulation library and framework that is frequently

used in academic settings. Mobility models, handover models, energy

models, and Fog node scheduling algorithms can all be executed via

FogNetSim++ [18]. The authors (Lera, et al., 2019) presented YAFS, a

Python-based simulator designed for fog computing, enabling the

simulation of cloud and fog environments. The YAFS architecture enables

the incorporation of structural measures into dynamic and customizable

strategies, such as workload location, application module placement,

service scheduling, and path routing. This is achieved by utilizing complex

network theory to model the relationships between applications,

infrastructure elements, and network connections. Following that, the

authors performed a comparative investigation to investigate the

convergence and efficiency of results between the highly acknowledged

simulator, iFogSim, and the YAFS simulator [19]. (A. W. Malik, et al.,

2021) proposed xFogSim, a framework for an enhanced fog simulator

(FogNetSim++) constructed with OMNET++. In order to balance cost,

availability, and performance within the fog federation, xFogSim provides

multi-objective optimization assistance for latency-sensitive fog layer

applications. In order to meet service and energy needs under high load,

nearby fog sites can lend resources thanks to location-aware distributed

broker node management. The outcomes demonstrate how adaptable,

scalable, lightweight, and capable the framework is by handling a large

number of user requests through the fog federation's dynamic resource

provisioning [20]. Table 1, represents a summary of the most important

simulators and frameworks mentioned in the above-related work.

2.2. Fog computing application

Global improvements in healthcare, public health, medical research, and

technology, as well as increased awareness of personal hygiene, the

environment, and nutrition, are all responsible for the notable rise in life

expectancy that has been seen in recent decades. Due to rising life

expectancies and the high costs of providing healthcare and other well-

being services for the elderly, there is an increasing number of older people,

which is dangerous for the socioeconomic systems of many nations (S.

Majumder, et al.,2017) [21]. Monitoring the health and well-being of the

elderly in care homes (smart homes) can be achieved at a low cost through

continuous remote surveillance. Smart homes are equipped with

environmental and wearable medical sensors, advanced communication

technologies, and actuators. This integrated system leverages cutting-edge

technology, including powerful processors and wireless communication

platforms, to provide healthcare, safety, and well-being services directly to

residents. Operating on the principles of the Internet of Things, the smart

home connects all sensors and devices within the residence, enabling

remote monitoring of occupants' health, environmental conditions, and

overall safety and security [21].

In 2019 by (O. Debauche, et al.), A novel architecture for patient and

geriatric monitoring based on fog IoT was introduced by Olivier Debauchee

et al. The significant growth in the senior population and their desire to live

independently, while having age-related medical conditions, calls for the

creation of new technologies to guarantee the best possible standard of

living for this group. Preventive medical surveillance may also be

advantageous for another group of patients, those with life-threatening

conditions. By using physiological and environmental signals, they

demonstrated a cloud-based health monitoring system for the fog IoT that

can provide contextual data for activities of daily living. With the help of

this device, healthcare professionals may monitor the health and behavioral

changes of elderly or alone patients. Additionally, this technology allows

for the tracking of patients' rehabilitation and recovery processes [22]. In

2022 (P. Singh et al.), the authors offer a thorough analysis of several job-

scheduling techniques used in fog computing. It examines and contrasts

several task-scheduling techniques created for a fog-computing

environment to highlight their benefits and drawbacks. Finally, it offers

potential study options for other scientists working in the fog-computing

environment [23]. Beraldi et al. (2020) provide an extensive compilation of

potential research endeavors in the field of fog computing. These studies

encompass a range of areas, including heterogeneity, security, diversity,

energy consumption, response time, execution time, and load balancing.

The authors point out that many researchers in the field have largely ignored

these aspects. Hence, it is possible to enhance the effectiveness of

scheduling algorithms in the fog-computing setting by integrating different

techniques and tang into account crucial performance aspects. The study's

findings indicate that basing scheduling decisions on state information that

arrives even slightly after the service time greatly reduces the effectiveness

of load balancing. An investigation is being conducted on a threshold

probe-based technique with little fanfare to address this impact. This

technique is more desirable than the current alternative, especially in a

geographically accurate situation characterized by a greater degree of

unpredictability in the incoming load [24].

According to (V. Kashyap, et al., 2022), numerous algorithms have been

proposed that utilize LB to address the issue of unreasonable data in

network congestion. Response time, execution time, security, latency, and

bandwidth are criteria on which writers have focused in LB. The authors

state that more attention needs to be paid to a few parameters in the field of

fog computing. Security is the most crucial factor because when a server is

under heavy demand, the processor's limited capacity makes it difficult for

it to respond appropriately, which might result in system failure and the loss

of user databases [25].

 OMAR NAFEA AND TURKAN KHALEEL /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES 17 (2024) 390–399 393

In 2022 by (N. R. O. Al-Rubaie et, al.) introduces an Internet of Things

(IoT)-based fog computing paradigm that combines IoT and fog computing

(FC). The quality checks were performed using the FogNetSim++ add-on

and OMNeT++. According to the study, the scenario with FC is especially

useful since it controls data exchange rates, delay time, and channel

availability through the use of data exchange rates. Furthermore, learning

automata are utilized to incorporate packets from similar directions into the

base fog node manager of the network. According to the study, the proposed

FC scenario is particularly useful as it applies learning automata to add

packets originating from similar directions to the primary fog node manager

of the network. It also uses data exchange rates to control channel

allocation, delay time, and throughput [26]. (D. B. Abdullah et, al., 2022)

employed a fog simulation framework with a smart agent layer established

between the end-user device and a fog layer. Rather than using a single

queue at the Ethernet layer, the framework suggests using multiple queues.

A weighted round-robin algorithm is used to schedule these queues,

allocating jobs to them based on the assigned value of the ToS (Type of

Service) bits, which are located in the IP header's second byte. The

researchers have arrived at the following four conclusions: Primarily, fog

computing frameworks facilitate the technological work process and enable

developers to experiment with their ideas prior to their implementation in

real-world scenarios. Additionally, the use of multiple queues significantly

lowers the latency that fog nodes and users experience, which in turn

reduces error rates and packet drop rates. Furthermore, as compared to the

first-come, first-served scheduling strategy, the weighted round robin

yielded greater results than regular round robin. Ultimately, accounting for

every aspect will result in a framework that produces results that are as

genuine or nearly real as those found in the real world [27]. (A.S. Kadhim

et, al., 2022), the authors suggested an IoT-based fog-to-server architecture

that uses distributed environments and hybrid load balancing to address the

issue of packet loss in fog and servers. The suggested approach uses a

combination of weighted round-robin and hybrid load balancing with the

least connection in fog nodes to distribute requests to the active servers

based on load and time. The first case study does not include a load

balancer; the second case study uses the least connection (LC) algorithm as

the load balancer; the third case study uses weighted Round Robin (WRR)

as the load balancing algorithm; and the fourth case study uses a hybrid

approach that combines LC and WRR implemented in each fog node. These

case studies serve as the foundation for the proposed system. The load

balancing mechanism in the proposed multilayer architecture is effective

and allows access control to be adjusted. The findings demonstrate that the

suggested solution enhanced network performance by guaranteeing the

effective processing of IoT requests originating from the IoT layer by

utilizing distributed fog computing services in conjunction with a hybrid

load-balancing technique [28].

3. Scheduling and execution of tasks

The processing of client-generated tasks starts by determining the amount

of the load to be processed and querying the load balancing function to

compute an optimal processing location (fog node or broker). so, that the

task is scheduled to the designated broker using a new publish message that

Table 1. Different Fog Simulation and Framework Comparison

Simulator Year Build on
Network

Configuration
GUI License Infrastructure Work on

Edge-Fog cloud 2016 Python × × GNU Edge, fog layer

Establishes a resource

network, assigns tasks, and

sets configuration

parameters.

Fog Torch 2017 Java × × MIT
Cloud, fog nodes,

and things

QoS-aware deployment of

IoT applications

iFogSim 2017 Java × × N/A

Fog devices,

actuators, sensors,

and data centers

Comparison of import

topologies, resource

management strategies, and

cost

FogNetSim++ 2018

C++,

based on

OMNeT++

 GNU

Base stations,

sensors, fog nodes,

broker nodes, and

mobile devices

Enables the use of

communication protocols and

applications and includes

pre-installed modules like

sensors, mobile devices, fog

nodes, and brokers.

YAFS 2019 Python MIT

Cloud, fog,

sensors, and

actuators

Network design, billing

management, and resource

allocation analysis

xFogSim 2021

C++,

based on

OMNeT++

 GNU

Base stations,

sensors, fog nodes,

broker nodes, and

mobile devices

Enables the use of

communication protocols and

applications and includes

pre-installed modules like

sensors, mobile devices, fog

nodes, and brokers.

394 OMAR NAFEA AND TURKAN KHALEEL /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES 17 (2024) 390–399

informs the designated broker about the new task, various data is kept at the

scheduling broker to be able later to combine with the data returning after

task execution and generate the proper publish message that inform

subscribers about the updated topic. This work implemented a functional

mechanism that allows for easy selection of one of multiple algorithms to

be used via configuration file (“.ini”) to compute a suitable fog node or

broker using one of the following algorithms random, round robin, and

throttled.

3.1. Random algorithm

This is a static algorithm relying on a list of available fog brokers and

generating a number between 0 and (list size -1) and using that number as

an index to select the suitable fog broker for task execution.

3.2. Round robin algorithm

Round robin is also a static algorithm that relies on a list of available fog

brokers, it uses a counter to determine the suitable fog broker for task

execution incrementing the counter afterward, if the counter value exceeds

the list size the counter is reset.

3.3. Throttled algorithm

The throttled algorithm distinguishes itself from the above-mentioned

algorithms by being a dynamic algorithm that uses runtime-obtained data

to decide on the best suitable fog broker for task execution. it does that by

requesting the status of all known fog brokers generating a list of returned

statuses and using the first available fog broker for task execution. The

scanning mechanism provided with the traditional implementation of the

throttled algorithm does not suit the distributed nature of the fog computing

environment, for this reason, an alternative mechanism for collecting the

status of broker nodes on the network is used. The alternative mechanism

depends on the broker nodes publishing their status periodically via a

dedicated message over the network while listening for status messages

incoming from the remote broker node. This alternative mechanism will be

referred to within the scope of this work as the Network Management

Layer.

4. Network management layer

The traditional implementation of the throttled algorithm divides the

executing devices into two groups, that is, available or busy devices,

respectively, where the available segment contains nodes that can be used

to execute an incoming task while the busy segment contains nodes that are

excluded from task assignment due to overload. the traditional

implementation scans the network machines, classifies them into the

available and free segments, and then selects the first available machine for

task execution. balancing means that it makes the less loaded node take

additional loads and makes the highly loaded node free from taking or

accepting additional loads. An incoming task must be scheduled for

execution even if all executing broker nodes are overloaded. this is worse

case event that incurs the most delay. As mentioned at the end of the

section, each broker listens to broker status messages as shown in Figure 2,

that are periodically published by broker nodes in the fog network. these

status messages contain information about the broker's maximum load

capacity [MIPS], current load [LOAD], and time of status generation [TS].

The status message as captured by the Wireshark network analysis tool

shown in Figure 3. Furthermore, these messages help the receiving node

determine the delay along the path connecting the sending and receiving

brokers. The status messages are published using the MQTT protocol and

have the "NML_" + broker node name prefix, for example,

"NML_Broker_loc10" is a Network Management Layer message published

by the "Broker_loc10" node to other broker nodes to inform them about its

current load status. The information obtained from the status message as

shown above was used by the other receiving broker nodes to compile and

generate a list of broker nodes that is sorted, depending on the goal of the

simulation, from most suitable to least suitable broker nodes for task

execution. The sorting of the broker nodes list is implemented as an

extendable function to allow for finer simulation control. for this work, the

[sort_by_least_delay] is used. other possible sorting criteria are possible,

for example [sort_by_least_load], [sort_by_max_capacity], or a user-

defined sorting function. As the sorting logic is implemented in C++ code,

modifying the sorting function and/or its parameters requires recompiling

and linking the simulation application. As with the traditional

implementation of the throttled algorithm, querying the target machine's

status, the Network Management Layer incurs a slight overhead on the

network transport medium to disseminate the broker node status over the

network. The publishing of Network Management Layer messages can be

turned on or off in the scenario configuration file (“.ini” file) via the

configuration parameter [enableNML]. for the scope of this work, the

Network Management Layer messages are published using MQTT QoS 0

mode, the overhead the Network Management Layer message incurs can be

determined using the following equation 1:

N messages = number of broker nodes * number of messages sent per

second (1)

The number of VM status request messages sent by the traditional

implementation can be determined by equation 2 (this is known as

overhead):

N messages = number of nodes * number of requests (2)

After deciding on the best candidate broker to handle an incoming task

(which might very well be the scheduling broker node itself), the task is

forwarded to the chosen handling broker. in case the chosen handling

broker is the same host, the task is simply queued for execution. if the

chosen handling broker is a remote broker node the scheduling broker node

uses a dedicated MQTT connection to forward the task to the remote broker

node. The Network Management layer fulfills two key roles: the first is a

storage for the collected/received status of broker nodes on the network and

the second alleviates the coding effort needed to generate broker node's

status requests and process incoming responses, the implementation of

Network Management layer depends on OMNET++ scheduling API to

provide timing events and INET framework API to create data storage

structure. in reality, the overhead of scheduling a task to the broker node is

nonzero, but for simplicity, the current implementation of the network

management layer assumes it to be zero, as it is an order of magnitude

smaller than the delays incurred by the network and task queuing. Figure 4

illustrates the modified throttled algorithm used in this work.

5. Network Management Layer (NML) Data Flow

NML messages are sent to known broker nodes directly over an MQTT

TCP connection, this completely avoids the need for intermediate

processing by other fog Brokers in the network hierarchy, at the cost of a

slight increase in load on links, switches, routers, the traffic generated by

 OMAR NAFEA AND TURKAN KHALEEL /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES 17 (2024) 390–399 395

the NML is periodic and capturing the status of each node at generation

time.

6. Network Management Layer (NML) Data Flow

NML messages are sent to known broker nodes directly over an MQTT

TCP connection, this completely avoids the need for intermediate

processing by other fog Brokers in the network hierarchy, at the cost of a

slight increase in load on links, switches, routers, the traffic generated by

the NML is periodic and capturing the status of each node at generation

time. The traffic is dynamic in the sense it changes according to the status

of the broker node, once a request is received, the broker first determines

which handling broker in the fog network is available and better suited for

handling the request and then forwards the request to that broker.

Figure 2. Broker Status Message.

Figure 3. Capture of Broker Status Message.

396 OMAR NAFEA AND TURKAN KHALEEL /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES 17 (2024) 390–399

Figure 4. Modified Throttled Algorithm

Code

Figure 5 System Model

 OMAR NAFEA AND TURKAN KHALEEL /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES 17 (2024) 390–399 397

7. System Model Components

Numerous components were employed in the construction of the network

in the proposed system, as shown in figure 5 which represents the fog

computing environment of Mosul City's elderly care homes healthcare

system. These components include:

a. IoT devices layer components consist of two main components:

• Publisher nodes: which are responsible for generating medical sensor

data and have the following static sensors: Blood Sugar, Blood

Pressure, Temperature, Oxygen, and heart rate. The publisher symbol

can be defined as a single patient or multiple patients configured by the

[numusr] parameter.

• Subscriber nodes: which act as the destination for sensor data.

b. Fog network layer which consists of two sublayers:

• Local Fog nodes: responsible for receiving, combining, and scheduling

data processing from end devices.

• Aggregation Fog Broker: responsible for managing fog nodes,

processing scheduled tasks, and distributing aggregated data messages

from local fog nodes to other local nodes and the cloud data center.

c. The cloud layer is responsible for distributing published messages to

aggregate fog brokers if they have a subscription for the data and can

also process scheduled tasks.

d. An access point is a versatile access point that supports various wireless

radios. It is provided by the INET framework and offers base station

capabilities through the "Ieee80211MgmtAp" model. Configured to

operate at 54 Mbps.

e. The router is an IPv4 router that is capable of supporting Ethernet and

PPP interfaces. It is specifically setup to utilize static routing. The router

is linked to local nodes by an ethernet interface and to faraway routers

through PPP interfaces.

f. Radio Medium Model: The radio medium model is a component of the

IEEE 802.11 physical layer model. It is necessary to utilize it together

with the Ieee80211Radio model or any models that are developed from

it. This model offers practical and reasonable preset values for the radio

medium parameters that are utilized in IEEE 802.11 simulations.

g. Ipv4 Network Configurator: This module is responsible for allocating

IPv4 addresses and configuring static routing for an IPv4 network. The

system assigns IP addresses on a per-interface basis, prioritizes subnet

considerations, and optimizes routing tables by consolidating routing

entries.

h. Network Interface in INET simulations, network interface modules are

the primary means of communication between network nodes. Network

interfaces can be further categorized as wired and wireless; they conform

to the IWiredInterface and IWirelessInterface NED types, respectively,

which are subtypes of INetworkInterface. Wired network interfaces are

compound modules that implement the IWiredInterface interface. INET

has many wired network interfaces such as Ethernet and PPP:

• PPP: this module is responsible for encapsulating network datagrams

into PPP frames and decapsulating incoming PPP frames. It has the

option to establish a direct connection with the network layer or can be

set up to retrieve outgoing messages from an output queue. The module

collected data on the transmitted and discarded packages. Wireless

network interfaces are complex modules that support the

IWirelessInterface interface, such as IEEE 802.11 and IEEE 802.15.4.

8. Task execution response time

The time required for scheduling and executing a task within the fog

network until the response is sent back to the scheduling fog node. This

response time can be calculated according to equation 3. Response Time

= (response arrival time - msg scheduling time) (3) [29]

9. Results and discussion

Three scenarios (25, 50, and 100 clients) are applied for QoS 1 of the

MQTT protocol (Which have three levels of Quality of Services QoS0,

QoS1, and QoS2) . The comparisons depend on two factors: the number of

clients (publishers), each of whom has five sensors, and the resource

specification (MIPS). The results are obtained for one broker only and

calculated for the maximum load when the subscriber completes the

subscription process for all the publishers (clients), below the three

scenarios with their results.

- First Scenario when the number of clients (n) = 25:

In this scenario, two cases according to the MIPS are presented, the first

one implemented using 3000 MIPS and the second one implemented using

6000 MIPS. Tables 2 and 3 include the results for these two cases. Each

one of these two cases is presented in four sub-cases, using three algorithms

(Random, Round Robin, and Modified Throttled (MTH)) and the no-load

balance sub-case, as seen in two tables. Each one of these two tables

includes many statistical results (mean, standard deviation (StdDev),

minimum (Min), and maximum (Max) of the values).

Table 2. Response time of the scheduling algorithms, n = 25 with 3000

MIPS in QoS1.

Algorithms Mean StdDev Min Max

No load balance 0.2460377 0.1298361 0.003333 0.562399

Random 0.1243233 0.0493304 0.023573 0.363461

Round-Robin 0.1156414 0.0397468 0.023575 0.227693

MTH 0.1149815 0.0435132 0.023573 0.446891

Table 3. Response time of the scheduling algorithms, n = 25 with 6000

MIPS in QoS1

Algorithms Mean StdDev Min Max

No load balance 0.115886 0.061419 0.001666 0.2834

Random 0.085915 0.027781 0.021906 0.1937

Round-Robin 0.080996 0.024197 0.021924 0.1518

MTH 0.082441 0.026611 0.021906 0.2383

The Round-Robin and the Random algorithms are usually used in cloud and

fog computing, while the throttled algorithm is used in cloud computing

(usually obtained accepted results). In this work, a modified throttled

(MTH) algorithm is proposed to be dependent on an active broker status

collection algorithm within the fog computing environment, the essential

algorithm (throttled) is enhanced, improved, and developed for further use,

finally, the modified algorithm (MTH) is tested beside the other algorithms

(Round-Robin and Random). The MTH algorithm has given better results

when compared with the Random algorithm, and is very adjacent to the

Round-Robin algorithm results (tables 2, and 3).

398 OMAR NAFEA AND TURKAN KHALEEL /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES 17 (2024) 390–399

-Second Scenario when the number of clients (n) = 50:

The same as that of the first scenario, steps same steps are applied for 50 of

clients instead of 25, also the modified algorithm (MTH) was better than

the Random algorithm and very adjacent to Round-Robin as shown in

tables (4, and 5), each one of these two tables includes many statistical

results (mean, standard deviation (StdDev), minimum (Min), and maximum

(Max) of the values).

Table 4. Response time of the scheduling algorithms, n = 50 with 3000

MIPS in QoS1.

Algorithms Mean StdDev Min Max

No load balance 0.4676908 0.2602113 0.003666 1.081894

Random 0.1736960 0.0784785 0.023568 0.529553

Round-Robin 0.1673693 0.0681790 0.023575 0.373850

MTH 0.1668997 0.0736710 0.023572 0.993809

Table 5. Response time of the scheduling algorithms, n = 50 with 6000

MIPS in QoS1.

Algorithms Mean StdDev Min Max

No load balance 0.2291594 0.1288844 0.001666 0.53376

Random 0.1100991 0.0400511 0.021906 0.27325

Round-Robin 0.10497932 0.03612002 0.0219068 0.22615

MTH 0.10752787 0.0379681 0.021906 0.50719

-Third Scenario when the number of clients (n) = 100:

Again, the same steps that were used in both the first and the second

scenario are applied for this scenario with 100 clients, the modified MTH

algorithm was doing well when tested beside the other algorithms (better

than the Random algorithm, and very adjacent to the Round-Robin

algorithm). Tables 6, 7 then figures 6, and 7 include the obtained results in

this scenario.

Table 6. Response time of the scheduling algorithms, n = 100 with 3000

MIPS in QoS1

Algorithms Mean StdDev Min Max

No load balance 10.133673 5.8587900 0.0001776 24.907923

Random 0.2853683 0.1416781 0.0008949 0.8218739

Round-Robin 0.2757815 0.1278717 0.0001091 0.6173702

MTH 0.2739725 0.1294588 0.0002059 1.3480387

Table 7. Response time of the scheduling algorithms, n = 100 with 6000

MIPS in QoS1

Algorithms Mean StdDev Min Max

No load balance 0.452677 0.255464 0.001666 0.99328

Random 0.158580 0.066647 4.79E-05 0.41677

Round-Robin 0.154271 0.059658 6.8E-06 0.33125

MTH 0.155760 0.066747 5.59E-05 0.92558

Figure 6. Response Time with 3000 MIPS

Figure 7. Response Time with 6000 MIPS

10. Conclusions

In this work, the evaluation and use of various load-balancing algorithms

lead to a smooth distribution of computational tasks across the network.

The appropriate load balancing algorithm will improve the effectiveness of

the fog system due to better resource utilization; this effect was clear when

the response time was reduced by using load balancing algorithms

(Random, Round-Robin, and Modified Throttled) compared to the response

time without the load balancing mechanism. Adding extra management

layers to the traditional Throttled algorithm, made it more suitable to be

employed in fog computing as the other dependent algorithms (Round-

Robin, Random), according to the given response time results of the

scheduling algorithm. The integration of cloud computing and fog

computing adds new flexibility to network resources and traffic

management. Some of the suggested future works and open problems are

outlined below:

• Green fog computing to expand the breadth of the analysis to include the

study of power and energy consumption analysis and find ways to

optimize and reduce the overall consumption footprint and reduce

harmful impacts on the surrounding environment.

• Develop advanced dynamic resource allocation algorithms to aid in the

exploration and evaluation of many strategies for optimal resource

allocation and sharing in a fog computing environment.

• Extending the management layer (NML) implementation to consider the

response time delay.

Authors’ contribution

All authors contributed equally to the preparation of this article.

0

0.1

0.2

0.3

n= 25 n= 50 n= 100

R
e

sp
o

n
se

 T
im

e
(s

e
c)

Rundom Round-Robin MTH

0

0.05

0.1

0.15

0.2

n= 25 n= 50 n= 100
R

e
sp

o
n

se
 T

im
e

 (
se

c)

Rundom Round-Robin MTH

 OMAR NAFEA AND TURKAN KHALEEL /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES 17 (2024) 390–399 399

Declaration of competing interest

The authors declare no conflicts of interest.

Funding source

This study didn’t receive any specific funds.

Data availability

The data that support the findings of this study are available from the

corresponding author upon reasonable request.

Acknowledgments

The authors express their gratitude to the University of Mosul, College of

Engineering, Computer Engineering Department, for their priceless help in

enhancing the efficacy of this research.

REFERENCES

[1] A. M. and M. G. Rabeea Basir, Saad Qaisar, Mudassar Ali, Monther

Aldwairi, Muhammad Ikram Ashraf, “Fog Computing Enabling Industrial

Internet of Things: State-of-the-Art and Research Challenges,” Sensors,

Vol. 19, No. 21, p. 4807, Nov. 2019. https://doi.org/10.3390/s19214807

[2] V. N. H. Sabireen, “A Review on Fog Computing: Architecture, Fog with

IoT, Algorithms and Research Challenges,” ICT Express, Vol. 7, No. 2,

pp. 162–176, Jun. 2021. https://doi.org/10.1016/j.icte.2021.05.004

[3] A. Varfolomeev and L. Al-Farhani, “Blockchain Fog-based scheme for

identity authentication in smart building,” Al-Qadisiyah J. Eng. Sci., Vol.

16, No. 3, pp. 218–227, Oct. 2023

 https://doi.org/10.30772/qjes.1999.180617

[4] R. Neware and U. Shrawankar, “Fog Computing Architecture,

Applications and Security Issues,” Int. J. Fog Comput., Vol. 3, No. 1, pp.

75–105, Jan. 2020. https://doi.org/10.4018/IJFC.2020010105

[5] M. Rahimi, M. Songhorabadi, and M. H. Kashani, “Fog-Based Smart

Homes: A Systematic Review,” J. Netw. Comput. Appl., Vol. 153, No. C,

p. 102531, Mar.2020. https://doi.org/10.1016/j.jnca.2020.102531

[6] O. Alani, T. Khaleel, and O. Al-Abdulqader, “A Review on Fog

Computing: Research Challenges and Future Directions,” Al-Rafidain

Eng. J., Vol. 28, No. 1, pp. 341–350, Mar. 2023.

 https://doi.org/10.33899/rengj.2022.136642.1211

[7] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on Fog Computing:

Architecture, Key Technologies, Applications, and Open Issues,” J. Netw.

Comput. Appl., Vol. 98, No. C, pp. 27–42, Nov. 2017.

https://doi.org/10.1016/j.jnca.2017.09.002.

[8] R. K. Naha, S. Garg, and A. Chan, “Fog Computing Architecture: Survey

and Challenges,” in Big Data-Enabled Internet of Things, Institution of

Engineering and Technology, 2019, pp. 199–223.

 https://doi.org/10.48550/arXiv.1811.09047

[9] B. Negash, A. M. Rahmani, P. Liljeberg, and A. Jantsch, “Fog Computing

Fundamentals in the Internet-of-Things,” in Fog Computing in the Internet

of Things, Cham: Springer International Publishing, 2018, pp. 3–13.

https://doi.org/10.1007/978-3-319-57639-8_1

[10] A. M. Rahmani et al., “Exploiting Smart e-Health Gateways at The Edge

of Healthcare Internet-of-Things: A Fog Computing Approach,” Futur.

Gener. Comput. Syst., Vol. 78, pp. 641–658, Jan. 2018.

https://doi.org/10.1016/j.future.2017.02.014

[11] P. Hu, H. Ning, T. Qiu, Y. Zhang, and X. Luo, “Fog Computing Based

Face Identification and Resolution Scheme in Internet of Things,” IEEE

Trans. Ind. Informatics, Vol. 13, No. 4, pp. 1910–1920, Aug. 2017.

https://doi.org/10.1109/TII.2016.2607178

[12] Z. Sheng, S. Yang, Y. Yu, A. Vasilakos, J. Mccann, and K. Leung, “A

survey on the ietf protocol suite for the internet of things: standards,

challenges, and opportunities,” IEEE Wirel. Commun., Vol. 20, No. 6, pp.

91–98, Dec. 2013. https://doi.org/10.1109/MWC.2013.6704479

[13] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, “Fog

Computing for the Internet of Things: A Survey,” ACM Trans. Internet

Technol., Vol. 19, No. 2, pp. 1–41, May 2019.

 https://doi.org/10.1145/3301443

[14] N. Mohan and J. Kangasharju, “Edge-Fog Cloud: A Distributed Cloud for

Internet of Things Computations,” in International Conference on

Cloudification of the Internet of Things, IEEE, 2016, pp. 1–6.

https://doi.org/10.1109/CIOT.2016.7872914.

[15] A. Brogi and S. Forti, “QoS-Aware Deployment of IoT Applications

Through the Fog,” IEEE Internet Things J., Vol. 4, No. 5, pp. 1185–1192,

Oct. 2017. https://doi.org/10.1109/JIOT.2017.2701408

[16] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A

Toolkit for Modeling and Simulation of Resource Management

Techniques in Internet of Things, Edge and Fog Computing

Environments,” Softw. Pract. Exp., Vol. 47, No. 9, pp. 1275–1296, Sep.

2017. https://doi.org/10.1002/spe.2509

[17] T. Qayyum, A. W. Malik, M. A. Khan Khattak, O. Khalid, and S. U. Khan,

“FogNetSim++: A Toolkit for Modeling and Simulation of Distributed

Fog Environment,” IEEE Access, Vol. 6, pp. 63570–63583, 2018.

https://doi.org/10.1109/ACCESS.2018.2877696

[18] A. Varga, “OMNeT++,” in Modeling and Tools for Network Simulation,

Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 35–59.

https://doi.org/10.1007/978-3-642-12331-3_3

[19] I. Lera, C. Guerrero, and C. Juiz, “YAFS: A Simulator for IoT Scenarios

in Fog Computing,” IEEE Access, Vol. 7, pp. 91745–91758, 2019.

https://doi.org/10.1109/ACCESS.2019.2927895

[20] A. W. Malik, T. Qayyum, A. U. Rahman, M. A. Khan, O. Khalid, and S.

U. Khan, “xFogSim: A Distributed Fog Resource Management

Framework for Sustainable IoT Services,” IEEE Trans. Sustain. Comput.,

Vol. 6, No. 4, pp. 691–702, Oct 2021.

 https://doi.org/10.1109/TSUSC.2020.3025021

[21] S. Majumder, E. Aghayi, M. Noferesti, Z. Pang, and M. Deen, “Smart

Homes for Elderly Healthcare—Recent Advances and Research

Challenges,” Sensors, Vol. 17, No. 11, p. 2496, Oct. 2017.

https://doi.org/10.3390/s17112496

[22] O. Debauche, S. Mahmoudi, P. Manneback, and A. Assila, “Fog IoT for

Health: A new Architecture for Patients and Elderly Monitoring.,”

Procedia Comput. Sci., Vol. 160, pp. 289–297, 2019.

https://doi.org/10.1016/j.procs.2019.11.087

[23] P. Singh, R. Kaur, J. Rashid, and S. Juneja, “A Fog-Cluster Based Load-

Balancing Technique,” Sustainability, Vol. 14, No. 13, p. 7961, Jun. 2022.

https://doi.org/10.3390/su14137961

[24] R. Beraldi, C. Canali, R. Lancellotti, and G. Proietti Mattia, “Randomized

Load Balancing under Loosely Correlated State Information in Fog

Computing,” in Proceedings of the 23rd International ACM Conference

on Modeling, Analysis and Simulation of Wireless and Mobile Systems,

Nov. 2020, pp. 123–127. https://doi.org/10.1145/3416010.3423244

[25] V. Kashyap and A. Kumar, “Load Balancing Techniques for Fog

Computing Environment: Comparison, Taxonomy, Open Issues, and

Challenges,” Concurr. Comput. Pract. Exp., Vol. 34, No. 23, p. e7183,

Oct. 2022. https://doi.org/10.1002/cpe.7183

[26] N. R. O. Al-Rubaie, R. N. N. Kamel, and R. M. Alshemari, “Simulating

Fog Computing in OMNeT++,” Bull. Electr. Eng. Informatics, Vol. 12,

No. 2, pp. 979–986, Apr. 2022. https://doi.org/10.11591/eei.v12i2.4201

[27] D. B. Abdullah and H. H. Mohammed, “DHFogSim: Smart Real-Time

Traffic Management Framework for Fog Computing Systems,” in 4th

International Conference on Advanced Science and Engineering

(ICOASE), Sep. 2022, pp. 60–65.

 https://doi.org/10.1109/ICOASE56293.2022.10075605

[28] A. S. Kadhim and M. E. Manaa, “Hybrid Load-Balancing Algorithm for

Distributed Fog Computing in Internet of Things Environment,” Bull.

Electr. Eng. Informatics, Vol. 11, No. 6, pp. 3462–3470, Dec. 2022.

https://doi.org/10.11591/eei.v11i6.4127

[29] Measurement — INET 4.5.0 documentation, 2023,

https://inet.omnetpp.org/docs/showcases/measurement.

https://www.mdpi.com/1424-8220/19/21/4807
https://doi.org/10.1016/j.icte.2021.05.004
https://doi.org/10.4018/IJFC.2020010105
https://doi.org/10.1016/j.jnca.2020.102531
https://doi.org/10.33899/rengj.2022.136642.1211
https://doi.org/10.1016/j.jnca.2017.09.002
https://doi.org/10.48550/arXiv.1811.09047
https://doi.org/10.1007/978-3-319-57639-8_1
https://doi.org/10.1016/j.future.2017.02.014
https://doi.org/10.1109/TII.2016.2607178
https://doi.org/10.1109/MWC.2013.6704479
https://doi.org/10.1145/3301443
https://doi.org/10.1109/CIOT.2016.7872914
https://doi.org/10.1109/JIOT.2017.2701408
https://doi.org/10.1002/spe.2509
https://doi.org/10.1109/ACCESS.2018.2877696
https://doi.org/10.1007/978-3-642-12331-3_3
https://doi.org/10.1109/ACCESS.2019.2927895
https://doi.org/10.1109/TSUSC.2020.3025021
https://doi.org/10.3390/s17112496
https://doi.org/10.1016/j.procs.2019.11.087
https://doi.org/10.3390/su14137961
https://doi.org/10.1145/3416010.3423244
https://doi.org/10.1002/cpe.7183
https://doi.org/10.11591/eei.v12i2.4201
https://doi.org/10.1109/ICOASE56293.2022.10075605
https://doi.org/10.11591/eei.v11i6.4127
https://inet.omnetpp.org/docs/showcases/measurement

