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Abstract 

In this work, the nonlinear dielectric constant due to the relativistic electron motion by the high 

intense laser beam has been derived. From this, one can evaluate the effect of longitudinal external 

magnetic field in comparison with transverse external magnetic field on relativistic self focusing of 

laser beam inside collisionless plasma. Theoretical and numerical calculations show that the increase 

in the values of external magnetic field, in both cases, lead to the laser beam self focusing is faster 

and stronger. Furthermore, for fixed values of magnetic field, the self focusing of laser beam in 

existence of transverse external magnetic field is greater comparing with longitudinal external 

magnetic field case. 
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Nonlinear dielectric constant.   

 

 

 

 حشمت الليشر خلال البلاسماالذاحيت لبؤرة الحأثيز المجال المغناطيسً الخارجً على 

     منذر باقز حسن       احمد عبيد سواري 

 

 

 

 الخلاصت

اق ثاتد انؼضل انلاخطٌ وانىاذج تسثة حشكح الانكرشوواخ فٌ انمذى انىسثٌ داخم حضمح نَضس راخ شذج ذم إشرقفٌ هزا انؼمم 

ػانَح. مه رنك فئوه ٍمكه حساب ذأثَش انمجال انمغىاطَسٌ انخاسجٌ انطونٌ تانمقاسوح مغ ذأثَش انمجال انمغىاطَسٌ انخاسجٌ 

تلاصما لاذصادمَح. انحساتاخ انىظشٍح وانؼذدٍح ذثَه أن صٍادج قَم انمجال  انمسرؼشض ػهي انرثؤس انزاذٌ انىسثثٌ نحضمح انهَضس داخم

انمغىاطَسٌ انخاسجٌ فٌ كلا انحانرَه ذؤدً اني أن انرثؤس انزاذٌ نحضمح انهَضس ٍكون أسشع وأقوى. تالإضافح نزنك ونقَم مجال 

وجود مجال مغىاطَسٌ خاسجٌ طونٌ تانمقاسوح مغ مغىاصَسٌ خاسجٌ ثاترح فأن انرثؤس انزاذٌ نحضمح انهَضس ٍكون أػظم فٌ حانح 

 وجود مجال مغىاطَسٌ خاسجٌ مسرؼشض.

 , حشمت الليشر , ثابج العشل اللاخطً اللاخطيت النسبيت , البؤرة الذاحيت  كلماث مفخاحيت:
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1. Introduction 

Currently the propagation of an intense laser 

beam through plasmas due to the nonlinear 

interaction has a wide research interest both 

theoretically [1, 2] and practically [3, 4] as a 

result of its relevance with wide-ranging 

applications such as laser-driven fusion, 

laser-driven accelerators, x-ray lasers [5-10]. 

In these applications for efficient interaction 

between laser beam and plasmas, one needs 

the laser beam to propagate several Rayleigh 

lengths without divergence which can be 

achieved by using the nonlinear self focusing 

of laser beam. In plasma, there are three 

main mechanisms of self-focusing: 

relativistic, poderomotive and thermal. At 

laser pulse duration   shorter than  
1

pe


, 

where pe is the electron plasma frequency, 

the relativistic nonlinearity due to the 

electron mass variation relativistically will 

predominate by comparing with 

ponderomotive and thermal nonlinearities. 

Max [11] studied the nonlinear self-focusing 

of laser beam propagation in  plasma due to 

ponderomotive nonlinearity. Sodha et al. 

[12].considered two different situations of 

nonlinearities arising through the thermal 

and the ponderomotive force on steady state 

self-focusing in magnetoplasma. Fedosejevs 

et al. [13] observed a relativistic self-

focusing for hydrogen gas. They employed a 

0.3 TW, 250 fs laser pulse, which gave an 

axial intensity of 3x10
17

 W cm
−2

. Osman et 

al.  [14] presented numerical calculations on 

the concept of relativistic self-focusing of a 

high-power laser beam. Hafizi et al. [15] 

studied the propagation of an intense laser 

beam in plasma as a result of the relativistic 

and ponderomotive effects. Liu and Tripathi 

[16] reported the effect of a self-generated 

azimuthal magnetic field on the relativistic 

self-focusing of an intense laser in plasma. 

K. I. Hassoon et al. [17] showed the role of 

perpendicular external magnetic field on 

relativistic self focusing on other hand M. B. 

Hassan et al. [18] presented a theoretical 

study to explain the longitudinal external 

magnetic field effect on the relativistic self 

focusing leading to enhance THz radiation 

production. In the present article, we 

investigate the nonlinear self focusing of an 

intense laser beam through plasma in 

presence of a static magnetic field in 

longitudinal direction once and 

perpendicular direction in another with 

respect to laser beam propagation direction. 

In section 2 and 3 we derive appropriated 

expressions to calculate the nonlinear 

dielectric constant of plasma and beamwidth 

parameter of laser beam self focuses in 

longitudinal case and perpendicular case 

respectively. The typical parameters of the 

laser beam, plasma and applied magnetic 

fields have been characterized in Section 4 

with discussion of the numerical results and 

introducing the conclusions of the present 

work briefly.        

2. Relativistic self focusing of the laser 

beam with longitudinal magnetic field  

2.1 Nonlinear dielectric constant in 

relativistic case and 0B k    

We consider the propagation of Gaussian 

laser beam in a uniform magnetoplasma of 

equilibrium electron density 0n  along the 

direction of a static magnetic field 0 0
ˆB zB . 
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The electric field vector 0E   of laser beam 

propagating along z -direction via the 

magnetoplasma can be written as [19] 

 0 0 0 0exp ( ),E A i t k z     (1) 

where 0 x yA E iE    is the electric field 

amplitude of a right circular polarized 

electromagnetic wave , 0  and 0k   are the 

angular frequency and wave vector 

respectively , and  0k   is  related with 

dielectric constant 0   as 
2

2 0 0
0 2

,k
c

 
   

where c is the light velocity in the vacuum . 

The electron relativistic motion equation in 

presence of high intense laser is 

  0 0 ,j j j

e
m eE B

t c
  


   


  (2) 

Where  ,  and 0B  are the relativistic 

factor, the oscillation velocity imparted by 

laser beam and external magnetic field 

respectively.      

Using Eq. (2), we calculate the electron 

oscillating velocity  0   for the right 

circular polarized mode of laser beam as 

0
0

0 0

0

,

(1 )
x y

ce

ieE
i

m

  






   



 (3)    

where 0,e m and 0

0

ce

eB

m c
     are the 

electronic charge , rest mass of electron and 

the electron cyclotron frequency respectively  

and
12

0 2
2

(1 ) .
c





    

Proposing ( -1<1) [17] the relativistic factor 

  will be 

 2 0 0
0 0

20 0

0

1
1 ( ) 1 ,

2
(1 )

(4)
ce

A Ae
A A

m c
 






 

  


      



  

The relativistic nonlinearity factor 
2

2 2 2
20 0

0

1

2
(1 )ce

e

m c






  



 will become zero 

at non-relativistic regime (i.e.  1  ). 

In relativistic regime the components of the 

dielectric constant tensor    will be as 

following 

2

2
2

0 2 2

0

1 ,

1

pe

xx yy

ce


 


 

 

  
 
 

 

                                                                                                

2

2

0 0

2

2 2

0

,

1

pe ce

xy yx

ce

i


   
 



 

  
   

    
 
 

 

                                                                                               

0,xz yz zx zy                                                                                                                  

2

2

0

1 ,
pe

zz




 
                                                                                                                              

where the effective dielectric constant 

corresponding to right circular polarized 

laser beam will take the following formula 
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2

2

0

0

1 ,

1

pe

xx xy

ce

i



 
  



 

    
 
 

 

                                                                                                  

where 

1
2 2

0

0

4
pe

n e

m




 
  
 

  is the electron plasma 

frequency. 

Using Eq. (4) the effective dielectric 

constant   can be written as following 

2 2

0 0

0 02

0 0

1 ,

1 1

pe pe

ce ce

A A

 

 
 

 
 



   

   
   
     
   
    

   

(5)  

Eq. (5) shows that the effective dielectric 

constant  consists of a linear part 0   and a 

nonlinear part  0 0A A 

   , where the latter is 

appearing as a result of relativistic electron 

mass increasing. Both parts of the effective 

dielectric constant     may be written as 

2

0

0

0

1 ,

1

pe

ce












 
 
  
 
 

 

   (6)  

2 0 0 ,A A  

       (7)  

where 2  is given by 

2

2

0

2 4

0 0

0

1
.

2
1

pe

ce

e

m c






 





 
 

     
  
 

 

 (8) 

2.2 Relativistic self focusing with 0B k  

The general wave equation        of 

electromagnetic wave propagating through 

magnetized plasma can be given as 

  
2

2 0

2
0,E E E

c


      (9) 

One can consider that the electromagnetic 

wave inside magnetoplasma is transverse 

wave since its field vary along external 

magnetic field(i.e. z -direction) larger than 

its variation via wave front plane(i.e. x y  

plane)[20]so no space charge occur and thus 

  0,D E         (10) 

Using Eq. (10) with components of dielectric 

tensor, one can obtain 

1
, (11)y yz x x

xx xy

zz

E EE E E

z x y x y
 



       
        

        

 

Putting Eq.(11) in Eq.(8)  and using zero-

order approximation, thus we obtained the 

differential equation for the circular 

polarized electric field amplitude 0A   as  

 

2 2 2

0 0
02 2 2

0

2

0
0 2 0 0 02

1
1

2

0,

zz

A
A

z x y

A A A
c






 

 




    

    
    

    

  

(12) 

where the product of nonlinear part with 
2

0

2

A

x




 or 

2

0

2

A

y




    have been neglected[21].                                        

We assume  0 0 0 0expA A i t k z  
   and 

substituting its value in Eq. (12), one can get  
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2 2

0 0
0 02 2

0

2

0
2 0 0 02

1
2 1

2

( ) 0, (13)

zz

A
ik A

z x y

A A A
c








 
 



   

     
     

    

   

 

where 0A 
 is the complex amplitude. 

Proposing a two dimensional Gaussian beam 

(i.e.  0
y





) and introducing an eikonal  

 0

0 0 0exp ,A A ik S   
  where 0

0A   and S  are 

a real function and the phase of the laser 

beam inside magnetoplasma respectively, 

hence Eq.(13) after separating real and 

imaginary parts can be written as following 

[20] 

 

2

0

2 0

0 0 0

2 0
2

00 0 2
02

0 0

1 1
2 1

2 2

1 , (14)

zz

zz

S S

z x k A

A
A

x





 

 

 

 

  




   
    

   

  
   

 

                      

 

 
 

 

2
0 2

20 0 0
0 2

0

2
0

00

0

1
1

2

1
1 0.

2
(15)

zz

zz

A S
A

z x

AS

x x









  


 

   
  

  

  
   

  

  

In the paraxial ray approximation S can be 

expanded to    21

2
S x z z       

where 1 

  may be explained as the curvature 

radius of laser beam and   is a constant  

independent of .x  

Introducing initially Gaussian beam with 

initial beam radius 0x  as 

 
2 2

2
0 00
0 2 2

0

exp
E x

A
f r f



 

 
  

 
, (16) 

and substituting S  in Eq.(15),  z will 

take the following formula [22] 

 
1

0

0

1
2 1 ,

zz

df
z

f dz








 




 
  

 


where  f  represents the beam width 

parameter.  

Using 0

0A   and  z values in Eq. (19) and 

assuming initially plane wavefront condition 

( 1f   and  0
df

dz

    at 0z  ) we obtain  

2
2

0

2 2 3

0

2

0 2 00

2 2

0 0 0

1 1
1

4

1 1
1 .

2

zz d

zz

d f

dz R f

E

r f





 

 



 

 

 

 
  

 

  
   

  

(17) 

where  2

0 0dR k r   represents diffraction 

length and 0r  is the initial radius beam. 

In term of normalization distance of 

propagation
d

z

R




 , the last equation may 

be rewritten to become more suitable for the 

computing programs as follows 

2

2
2

0
3

0

22
0 2 00

2 2
0 0 0

1 1
1

4

1
1 .

2
(18)

zz

d

zz r

d f

d f

RE

f



 

 

 







  



 
 
 

  
  
  

 

 

 

Eq. (18) represents the spot size variation of 

laser beam profile as a result of competition 

between the diffraction and self-focusing 
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terms (first and second terms on the right 

hand side of Eq.(18) respectively), it has 

been solved numerically for several external 

magnetic fields. 

3. Relativistic self focusing of the laser 

beam with transverse magnetic field 

3.1 Nonlinear dielectric constant in 

relativistic case and 0B k  

Consider the propagation of extraordinary 

laser beam (X-mode) inside homogeneous 

magnetoplasma along z-direction and 

perpendicular on an external magnetic 

field 0B aligned in y-direction. The variation 

of        X-mode electric field E  may be 

written as follows   

   0 0 0
ˆ ˆ exp , (19)x zE E x E z i t k z   where  

0  and  0k  are the angular frequency and wave 

vector respectively which can be related by 

 
1

02
0 ,rk

c




 
  

      

(20)

               

c is the light 

speed and r is the dielectric constant in 

relativistic case which may given by

 

 
 

2 2

2

0

2 2

2 2

0 0 2

1 ,
1

pe pe

r

pe u

 


 


  
 



 
  

  
  

  
 

 

(21) 

where  

1
12 2

2 20 2

0

4
,pe u pe ce

n e

m


   

 
   
   

and 0

0

ce

eB

m c
   

are the angular frequencies of  the electron 

plasma wave , upper hybrid wave and electron 

cyclotron respectively,  also 0 0, andn m e  

represent the plasma density, electron rest mass 

and electron charge respectively.  

The relativistic factor    in Eq. (21) refers to the 

variation of the dielectric constant due to the 

electron mass increasing at relativistic case, 

which can be written as following [17]  

2

0

2
1 ,

2c




 
  
            

(22) 

where 0  is the electron  oscillating velocity 

imparted by electric field of laser beam  

 
1

2
0 0 0 0 0

1
,

2
x x z z        

   

(23) 

The relativistic motion equation of an electron 

in electric field of laser beam is given as 

  0 0 0 0 0 ,
e

m eE B
t c

  


   
    

(24) 

From Eq. (24) , one may get the velocity 

components 0x  and 0z of the electron as 

0 2 2
2 2

0 0 0 02 2 2 2

0 0

,

1 1

(25)ce
x z x

ce ce

e ie
E E

m m




 
  

   

 
   
    

   

 

0 2 2
2 2

0 0 0 02 2 2 2

0 0

,

1 1

(26)ce
z z x

ce ce

eie
E E

m m




 
  

   

 
   
    

   

For 

the extraordinary mode, one can introduce the 

following equations [23] 

0 0,E  
                      

(27) 

,xz
z x

xx

E E






                  

(28) 
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2

2
2

0 2 2

0

1 ,

1

pe

xx

ce







 

 
 
 

   

(29) 

2

2
2 3

0 2 2

0

,

1

pe ce

xz

ce

i 



 

 




 
 

        

(30) 

using Esq.(27-30) , then  Eq.(25) and Eq.(26) 

will take the following formulas 

 

22

2 2 2

0 0

0 2 22

0 0 2 2 2 2
0 0

1 ,
1

1 1

(31)

pece

x x

pe uce

ie
E

m



  


  


   

   
    

         
           

 

 

2

2

0 0

0 2 22
0

0 0 2 2 2 2
0 0

,
1

1 1

(32)

pece

ce
z x

pe uce

e
E

m



  


  


   

   
              
           

 

Taking the complex conjugates 0x  and  0z  of  

0x  and 0z then substituting in Eq.(23) and 

Eq.(22), the relativistic factor   can be written as 

the following 

2 2 2 2 4

0 0 0 0 0 0

2 4 2 6 4 4

0 0 0 0 0 0

6 2 4

0 0 0

1
1 1 3 4 2

4

5 2 13

8 6

pece ce ce

pe pe pece ce ce

pe pece ce

e

m c

  


    

    

     

  

  

         
             
         

           
             

           

     
      

     

6 6 4

0 0 0

6 6 8 4

0 0 0 0

8

4 4 ,

(33)pece

pe pece ce
x xE E



  

  

   



     
     

     

       
        
        

     

  It is important to mention that we have 

neglected the terms of higher orders than x xE E   

order. 

  The relativistic factor    may be written as 

following [24] 

 1 ,x xE E  
      

(34) 

 Thus by equaling terms of order x xE E   in both 

Eq.(33) and Eq.(34) we get 

2 2 2 2 4

0 0 0 0 0 0

2 4 2 6 4 4

0 0 0 0 0 0

6 2 4

0 0 0

1
1 3 4 2

4

5 2 13

8 6

pece ce ce
x x

pe pe pece ce ce

pece ce

e
E E

m c

  


    

    

     

 

  


         
            
         

           
             

           

     
      

     

6 6 4

0 0 0

6 6 8 4

0 0 0 0

8 (35)

4 4 ,

pe pece

pe pece ce
x xE E

 

  

  

   



     
     

     

       
        
        

 

where refers to the relativistic nonlinearity 

which is occurring due to electron mass 

increment which oscillating in high intense laser 

field.                      

 

Substituting the value of   from Eq. (34) into 

Eq.(22), one obtains 

2
2 2 22 2

2 2 2
2 2

0 0 0
0 0

22 2

2 2
0 0

11

1 ,

1 1

(36)

pe pe cepe pe

r x x

u u

E E

   

   
 

 
 



                       
    
     

    
 

 

 In the above equation r  includes the non 

relativistic part 0  and the relativistic part 

2 where, 

2 2

2 2

0 0

0 2

2

0

1

1 ,

1

pe pe

u

 

 






 
  

  
 
 

 

        (37) 
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2
2 2 2

2 2 2

0 0 0

2 2
2

2

0

1

.

1

pe pe ce

u

  

  
 





   
          
  

  
  

      

(38) 

3.2 Relativistic self focusing with 0B k  

The wave equation governing the laser beam 

propagation inside plasma may be written as 

   
2

2 0
0 0 02

,rE E E
c


    

 
(39) 

Using Eq. (27) and Eq.(28) we can write [23]  

0 ,xz xz x x

zz zz

E E
E

x z

 

 

   
  

    

(40) 

Substituting Eq.(36) and Eq.(40) in Eq.(39) 
22 2

2 0
0 22 2 2

,x x
x x x

E E
k E E E

z y c


   

   
     

(41)      

where the products of nonlinear terms with 

second order space derivatives have been 

ignored and assuming 0
x





 in two 

dimensional beam case. 

To solve Eq.(41) we introduce [20] 

 0 0exp ,x xE A i t k z 
    

(42) 

where xA  is a complex function of space which 

may be written as [21] 

   0 0, exp ,xA A y z i k S
 
(43) 

0A  is a real function and S  is the phase of  the 

beam laser. 

Putting Eq. (42) and Eq.(43) in Eq.(41) , then 

separating real and imaginary parts we get 
2 2

2 02
0 2 2

0 0 0

1
2 ,

AS S
A

z y k A y





   
   

   
(44) 

2 2 2
20 0
02

0,
A AS S

A
z y y y

    
    

       

(45) 

Assuming  21

2
S y z    and introducing 

Gaussian laser beam 
2 2

2 00
0 2

0

exp
E y

A
f r f

 
  

 
 

where  z  is the curvature of the wave front 

and   f z  beam width parameter also using 

paraxial  ray approximation then substituting in 

Eq.(45) we get  
1 df

z
f dz

  . 

Employing  2

0 and  zA   in Eq. (44) thus for 

initially plane wavefront conditions (i.e.  

1 and  0 at =0
df

f z
dz

  ) we obtain 

22

2 00

2 2 3 2 2

0 0

1
,

d

Ed f

dz R f r f




 

         

(46) 

where  2

0 0dR k r  represents diffraction length 

and 0r  is the initial radius beam. 

In term of normalization distance of 

propagation
d

z

R
  , the last equation may be 

rewritten to become more suitable for the 

computing programs as follows 
2 22

2 00

2 3 2 2

0 0

1
,dR Ed f

d f r f



 
             (47) 

The first term in RHS of Eq.(47) represents the 

diffraction term (linear term) while the second 

term is the converging term (nonlinear 

term).When the initial laser power is greater than 

critical power , the nonlinear term will overcome 

the linear term and hence the laser beam spot 

size f  will decrease along beam propagation 

direction. One can expect that at the balance of 

the diffraction and converging terms the laser 

beam will propagate inside plasma with constant 

spot size. 

4. Result discussion and conclusions 

The plasma density will fluctuate as a result of 

the relativistic nonlinearity by the Gaussian laser 

beam. The beam width parameter of incident 

laser beam also will undergo variations leading 

to vary the laser beam intensity via plasma, this 

may be understood depending on Eq. (18) in 

longitudinal case and Eq.(47) in perpendicular 
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case. Numerical simulations have been achieved 

to Eq. (18) and Eq. (47) with following typical 

parameters: laser beam 

intensity 16 24 10 .W cm   (laser strength 

parameter 00
0

0

0.5
e

eE

m c



 ),   the frequency of 

pump laser   14 1

0 10 .secrad  , laser beam 

radius 3 m , plasma density   18 3

0 2.55 10n cm    and 

external magnetic fields    0
51,102,and 153B MG . 

Figure (1) (related with longitudinal case) and 

Figure (2) (related with perpendicular case) 

demonstrate the nonlinear manner of laser beam 

propagation inside magnetoplasma to several 

magnetic field values 

   0 51,102,and 153B MG while relativistic 

nonlinearity is considered. The decreasing of 

laser beam spot size is due to the increasing of 

magnetic field values. 

For longitudinal case, Figure (1) shows that the 

beam width parameter f   of laser beam is 

decreasing after short normalized distance of 

propagation   and leading to increase the laser 

beam intensity extremely (see Eq. (18)). On the 

other hand in perpendicular case the beam width 

parameter f  of laser beam is decreasing after 

shorter normalized distance of propagation   

than longitudinal case               (see Figure 2). 

One may conclude that the presence of magnetic 

field has significant role on enhanced the self-

focusing in both cases but in perpendicular case 

this role will be more affected on self-focusing 

laser beam. Therefore for confined plasma 

applications the perpendicular   magnetic    field     

will be more candidate than          longitudinal 

magnetic field.

 

 

FIG.1. Variation of beam width parameter f   with 

normalized distance  when B k .Where dotted red 

line, blue solid line and semi-dotted black line represent  

0 0 0

0.01, 0.02 and 0.03ce ce ce  

  
    respectively. 

 

 FIG.2. Variation of beam width parameter f  with 

normalized distance   when B k .Where dotted 

red line, blue solid line and semi-dotted black line 

represent  

0 0 0

0.01, 0.02 and 0.03ce ce ce  

  
    

respectively.
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