Totally sb* - Continuous Functions and sb*- Totally Continuous Functions in Topological Spaces

Dunya Mohamed

Sanaa Hamdi

AL-Mustansiriya University, College of Education ,Department of Mathematics

Hamdi_Sanaa@gmail.com

Dunya_Mohamed@gmail.com

Abstract

The aim in this work is to give some a new types of totally - continuous functions called (totally sb* - continuous functions and sb*- totally continuous functions) in topological spaces. As well as, will be investigated and discussion the relationships among these functions with other totally – continuous functions. Furthermore, will be introducing some of their properties.

Key words: totally continuous function, sb*-continuous ,sb*-open, sb*-closed

الخلاصة

الهدف الرئيسي في هذا ألعمل هو تقدم نوع جديد من الدوال التامة المستمرة تدعى (الدول المستمرة - *sb التامة و الدوال التامة المستمرة - *sb في الفضاءات التبولوجية . ايضا سوف نبحث و نناقش العلاقات في ما بين تلك الدوال مع دوال مستمرة - تامة اخرى . علاوة على ذلك، سوف نقدم بعض من خواصها.

الكلمات المفتاحية: سالب *b المستمرة، سالب *sb المغلقة المغلقة المغلقة

1-Introduction:

Many different forms of continuous functions have been introduced over the years. Some of them are totally–continuous functions [Jain 1980], in 1995, Nour. T.M., introduced and studied the concepts of totally semi- continuous functions. Recently, Rajesh (2007), and Caldasm and Rajesh 2009), introduce the notions of totally ω -continuous functions and totally b- continuous functions respectively. In (2011), Raviet *et al.*, They give and investigated the concept of totally sg- continuous functions. While, the concepts (sb*- open sets , sb*- closed sets and sb*- continuous functions) were discussed and introduced by (Poongothai and Parimelazhagan , 2012) .

The purpose of this paper, we introduce and study a new types of totally—continuous functions which are (totally sb*-continuous functions and sb*-totally continuous functions). Also, we give several properties of these functions are proved.

Throughout this paper (X, τ) , (Y, σ) and (Z, μ) (or simply X,Y and Z) represent non – empty topological spaces .For a subsets A of a spaces X. cl(A), int (A) and A^c denote the closure of A, the interior of A and the complement of A respectively.

2-Preliminaries:

Some definitions and basic concepts related to this paper.

Definition (2-1):

A subset A of a space (X,τ) is said to be a :

1-semi open set [Levine, 1963] if $A \subseteq cL(int(A))$ and semi closed set if $int(cl(A)) \subseteq A$. 2- b-open set [Andrijevic, 1996] if $A \subseteq int(cl(A)) \cup cl(int(A))$ and b-closed set if $int(cl(A)) \cap cl(int(A)) \subseteq A$.

Definition (2-2):

The intersection of all semi-closed subsets of topological space (X,τ) containing a set A is called *semi-closure* [Levine, 1963] of A and is denoted by scl(A).

Definition (2-3):

A subset A of a space (X,τ) is said to be a :

- **1-semi-** generalized closed set (briefly, sg-closed) [Bhattacharyya1987] if scl(A) ⊆ U whenever A⊆ U and U is semi-open set in X. The complement of sg-closed set is called sg-open.
- 2- ω closed set [Sundaram1995] if cl(A) \subseteq U whenever A \subseteq U and U is semi- open set in X. The complement of sg- closed set is called ω -open.
- 3-strongly b*- closed set (briefly, sb*- closed) [Poongothai2012] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is b- open set in X. The complement of sb*- closed set is called sb*-open.

The collection of all semi-open subsets (resp . b-open , sg-open , ω -open and sb*-open) subsets in (X,τ) is denoted by $SO(X,\tau)$ (resp . $BO(X,\tau)$, $SGO(X,\tau)$, $\omega O(X,\tau)$ and $SB*O(X,\tau)$) and the collection all semi-closed subsets (resp . b-closed , sg- closed , ω - closed and sb*- closed) subsets in (X,τ) is denoted by $SC(X,\tau)$ (resp . $BC(X,\tau)$, $SGC(X,\tau)$, $\omega C(X,\tau)$ and $SB*C(X,\tau)$) .

Remark(2-4),[Poongothai, 2012]:

Every open (resp . closed) subset in (X,τ) is a sb*- open (resp . sb*- closed) subset . But the converse need not be true in general.

Example (2-1):

Let $X = \{a,b\}$ with the topology $\tau = \{X,\emptyset\}$. Then the set $A = \{a\}$ is a sb*-open subsets but not open subsets in (X,τ) . And Also, $A^c = \{b\}$ is sb*-closed subset in (X,τ) . But is not closed.

Definitions (2-5):

A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be

- 1- Continuous function [Levine, 1993] if for each open set A of (Y,σ) , then $f^{-1}(A)$ open in (X,τ) .
- 2- **b-continuous function** [El.Atik, 1997] if for each open set A of (Y,σ) , then $f^{-1}(A)$ b-open $in(X,\tau)$.
- 3- **sb*-continuous function** [Poongothai] if for each open set A of (Y,σ) , then $f^{-1}(A)$ sb*-open in (X,τ) .

A function $f: (X, \tau) \to (Y, \sigma)$ is said to be

- 1- **totally- continuous function** [Jain 1980] if the inverse image of every open subset of (Y,σ) is a clopen (i.e., open and closed) subset of (X,τ) .
- 2- **totally semi -continuous function** [Nour1995] if the inverse image of every open subset of (Y,σ) is a semi- clopen (i.e., semi- open and semi-closed) subset of (X,τ) .
- 3- *totally b-continuous function* [El.Atik, 1997] if the inverse image of every open subset of (Y,σ) is a b- clopen (i.e.,b- open and b-closed) subset of (X,τ) .
- 4- *Totally ω-continuous function* [Rajesh, 2007] if the inverse image of every open subset of (Y, σ) is a ω- clopen (i.e., ω- open and ω- closed) subset of (X, τ) .
- 5- *Totally sg-continuous function* [Ravi, 2011] if the inverse image of every open subset of (Y,σ) is a sg-clopen (i.e.,sg- open and sg-closed) subset of (X,τ) .

Definition (2-7):

A topological space (X,τ) is said to be **b**– **space**[Nasef 1999] if every b-open subsets in (X,τ) is open.

3- Totally sb* - Continuous Functions and sb*- Totally Continuous Functions

In this section, we introduce a new type of totally-continuous functions namely (totally sb* -continuous functions and sb*- totally continuous functions) and studying the relations between them . Also, we give some of their propositions .

Definition(3-1):

A function $f:(X,\tau) \to (Y,\sigma)$ is said to be **totally sb*- continuous** if the inverse image of every open subset in (Y,σ) is a sb*-clopen subset in (X,τ) .

Example (3-1):

Let $X=Y=\{a,b,c\}$ with the topologies $\tau=\{X,\emptyset,\{c\},\{a,b\}\}$ and $\sigma=\{Y,\emptyset,\{c\}\}$ then $SB*O(X,\tau)=\{X,\emptyset,\{c\},\{a,b\},\{a,c\},\{b,c\}\}\}$. Let $f:(X,\tau)\to(Y,\sigma)$ be an identity function . It observe that f is a totally sb^* - continuous function .

Proposition (3-2):

A function $f:(X,\tau)\to(Y,\sigma)$ is totally sb*- continuous if and only if the inverse of every closed subset in (Y,σ) is a sb*-clopen subset in (X,τ) .

Proof:

Assume that f is totally sb*- continuous. Let A be any closed subset in Y. Then A^c is a open subset in Y, since f is totally sb*- continuous. Thus, $f^{-1}(A^c)$ is sb*- clopen subset in X (i.e., sb*- open and sb*-closed subset in X). But $f^{-1}(A^c) = X - f^{-1}(A)$, and so $f^{-1}(A)$ is both sb*-closed and sb*-open subset. Hence, $f^{-1}(A)$ is sb*-clopen subset in X. Conversely, let G be an open subset in Y. Then G^c is closed subset in Y. By assumption $f^{-1}(G^c)$ is sb*-clopen subset in Y (i.e., sb*- open and sb*-closed subset in Y). But $f^{-1}(G^c) = X - f^{-1}(G)$, and so $f^{-1}(G)$ is both sb*-closed and sb*-open subset. Hence, $f^{-1}(G)$ is sb*-clopen subset in Y. Therefore, Y is totally sb*- continuous function.

Proposition (3-3):

- (i) Every totally–continuous function is totally sb* continuous.
- (ii) Every totally ω continuous function is totally sb* continuous.

Proof:

(i)Let $f:(X,\tau)\to (Y,\sigma)$ be a totally - continuous and A be an open subset in (Y,σ) . Since f is a totally- continuous function . Thus, $f^{-1}(A)$ is clopen subset in (X,τ) (i.e., $f^{-1}(A)$ is both open and closed subset in (X,τ)) by using Remark(2-4) we get $f^{-1}(A)$ is both sb*-open and sb*-closed subset in (X,τ) . This implies that $f^{-1}(A)$ is sb*-clopen subset in (X,τ) . therefore, f is a totally sb* - continuous.

(ii) Let $f:(X,\tau)\to (Y,\sigma)$ be a totally ω -continuous and A be an open subset in (Y,σ) . Since f is a totally ω – continuous function . Thus, $f^{-1}(A)$ is ω –clopen subset in (X,τ) (i.e., $f^{-1}(A)$ is both ω – open and ω – closed subset in (X,τ)), since (Every ω – open set is a sb*-open, [Poongothai 2012], and every ω –closed set is a sb*-closed, [Poongothai 2012]) we get $f^{-1}(A)$ is both sb*-open and sb*-closed subset in (X,τ) . This implies that $f^{-1}(A)$ is sb*-clopen subset in (X,τ) . therefore, f is a totally sb* – continuous.

The following example shows that the converse of Proposition (3-3) is not true.

Example (3-2): Let $X=Y=\{a,b\}$ with the topologies $\tau = \{X,\emptyset\}$ and $\sigma = \{Y,\emptyset,\{a\}\}$, then $SB*O(X,\tau) = SB*C(X,\tau) = \{X,\emptyset,\{a\},\{b\}\}$. Let $f:(X,\tau) \to (Y,\sigma)$ be function defined by f(a)=b and f(b)=a. It observe that f is a totally sb^* - continuous function, but f is not

totally-continuous function and totally ω - continuous function, since for open set A={a} . $f^{-1}(A)=f^{-1}(\{a\})=\{b\}$ is not clopen (resp. ω - clopen) subset in (X, τ) .

Proposition (3-4):

Every totally sb*- continuous function $f: (X, \tau) \rightarrow (Y, \sigma)$ is a

- (i) totally b- continuous function.
- (ii) b- continuous function.
- (iii) sb*- continuous function.

Proof:

- (i)Let A be an open subset in (Y,σ) . Since f is a totally sb^*- continuous function. Thus, $f^{-1}(A)$ is sb^*- clopen subset in (X,τ) (i.e., $f^{-1}(A)$ is both sb^*- open and sb^* closed subset in (X,τ)) since (Every sb^*- open set is a b-open, [Poongothai 2012], and every sb^*- closed set is a b-closed, [Poongothai 2012]) we get $f^{-1}(A)$ is both b-open and b-closed subset in (X,τ) . This implies that $f^{-1}(A)$ is b-clopen subset in (X,τ) , therefore, f is a totally b continuous.
- (ii) Let A be an open subset in (Y,σ) . Since f is a totally sb^* continuous function. Thus, $f^{-1}(A)$ is sb^* clopen subset in (X,τ) (i.e., $f^{-1}(A)$ is both sb^* open and sb^* closed subset in (X,τ)), since Every sb^* open set is a b-open, [Poongothai 2012], and every sb^* closed set is a b-closed, [Poongothai 2012]) we get $f^{-1}(A)$ is both b-open and b-closed subset in (X,τ) , and so, $f^{-1}(A)$ is b-open subset in (X,τ) , therefore, f is a b continuous.
- (iii) Let A be an open subset in (Y, σ) . Since f is a totally sb^* continuous function. Thus, $f^{-1}(A)$ is sb^* clopen subset in (X,τ) (i.e., $f^{-1}(A)$ is both sb^* open and sb^* closed subset in (X,τ)), thus $f^{-1}(A)$ is sb^* -open subset in (X,τ) . therefore, f is a sb^* continuous.

The following example shows that the converse of Proposition (3-4) is not true.

Example (3-3):

Let $X=Y=\{a,b,c\}$ with the topologies $\tau=\{X,\emptyset, \{a\},\{a,c\}\}\}$ and $\sigma=\{Y,\emptyset,\{b,c\}\}\}$, then $SB*O(X,\tau)=\{X,\emptyset,\{a\},\{a,c\},\{a,b\}\}\}$, $SB*C(X,\tau)=\{X,\emptyset,\{c\},\{a,c\},\{b,c\}\}\}$ and $BO(X,\tau)=\{X,\emptyset,\{a\},\{b\},\{a,c\},\{b,c\}\}\}$. Let $f:(X,\tau)\to (Y,\sigma)$ f(a)=a,f(b)=b and f(c)=c. It observe that f is a totally b- continuous function ,but f is not totally sb^* - continuous. Since for open subset $A=\{a,c\}$ in (Y,σ) . $f^{-1}(A)=f^{-1}(\{a,c\})=\{a,c\}$ is sb^* -closed but is not sb^* - open subset in (X,τ) . Hence, $f^{-1}(A)=f^{-1}(\{a,c\})=\{a,c\}$ is not sb^* -clopen subset in X.

Example (3-4):

Let $X=Y=\{a,b,c\}$ with the topologies $\tau=\{X \emptyset, \{a\}, \{b\}, \{a,b\}\}\}$ and $\sigma=\{Y,\emptyset,\{a\},\{b\},\{a,b\},\{b,c\}\}\}$, then $SB*O(X,\tau)=\{X,\emptyset,\{a\},\{b\},\{a,b\}\}\}$, $SB*C(X,\tau)=\{X,\emptyset,\{c\},\{a,c\},\{b,c\}\}\}$, $BO(X,\tau)=\{X,\emptyset,\{a\},\{a,b\},\{a,c\},\{b,c\}\}\}$ and $BC(X,\tau)=\{X,\emptyset,\{a\},\{b\},\{c\},\{a,c\},\{b,c\}\}\}$, Let $f:(X,\tau)\to (Y,\sigma)$ f(a)=a,f(b)=c and f(c)=c. Then, f is a b- continuous function, but f is not totally sb^* - continuous. Since for open subset $A=\{a,b\}$ in (Y,σ) . $f^{-1}(A)=f^{-1}(\{a,b\})=\{a,c\}$ is sb^* -closed but is not sb^* - open subset in (X,τ) . Hence, $f^{-1}(A)=f^{-1}(\{a,b\})=\{a,c\}$ is not sb^* -clopen subset in X.

Example (3-5):

Let $X=Y=\{a,b,c\}$ with the topologies $\tau=\{X,\emptyset,\{a\},\{b\},\{a,b\}\}$ and $\sigma=\{Y,\emptyset,\{a,c\}\}$, then $SB*O(X,\tau)=\{X,\emptyset,\{a\},\{b\},\{a,b\}\}$, $SB*C(X,\tau)=\{X,\emptyset,\{c\},\{a,c\},\{b,c\}\}$ and Let $f:(X,\tau)\to (Y,\sigma)$ f(a)=c, f(b)=b and f(c)=a . Then , f is a sb*- continuous function ,but f is not totally sb*- continuous. Since for open subset $A=\{b,c\}$ in (Y,σ) . $f^{-1}(A)=f^{-1}(\{b,c\})=$

{a,b} is sb*-open but is not sb*- closed subset in (X, τ) . Hence, $f^{-1}(A) = f^{-1}(\{b,c\}) = \{a,b\}$ is not sb*-clopen subset in X.

Remark(3-5):

The concepts of totally semi- continuous functions and totally sg- continuous functions are independent to totally sb*- continuous functions . In Example(3-2) it is clear that f is totally sb*- continuous functions , but f is not totally semi – continuous function . Also , in Example (3-3) f is totally semi- continuous functions and f is totally sg- continuous functions , but f is not totally sb*- continuous function .

Remark(3-6):

The concept of continuous functions and totally sb*- continuous functions are independent. As, shows in the following example.

Example (3-6):

- (i) Let $X=\{a,b,c\}$ with the topology= $\{X,\emptyset,\{a\},\{a,c\}\}$, then SB*O $(X,\tau)=\{X,\emptyset,\{a\},\{a,c\},\{a,b\}\}\}$, SB*C $(X,\tau)=\{X,\emptyset,\{c\},\{b\},\{b,c\}\}\}$. Let $f:(X,\tau)\to(X,\tau)$ be the identity function .Then, f is a continuous function ,but f is not totally sb*- continuous. Since for open subset $A=\{a\}$ in (X,τ) . $f^{-1}(A)=f^{-1}(\{a\})=\{a\}$ is sb*-openbut is not sb*- closed subset in (X,τ) . Hence, $f^{-1}(A)=f^{-1}(\{a\})=\{a\}$ is not sb*-clopen subset in (X,τ) .
- (ii) Let X=Y={a,b} with the topologies $\tau = \{X,\emptyset\}$ and $\sigma = \{Y,\emptyset,\{b\}\}$, then SB*O $(X,\tau) = SB*C(X,\tau) = \{X,\emptyset,\{a\},\{b\}\}\}$. Let $f:(X,\tau) \to (Y,\sigma)$ be function defined by f (a)=b and f(b)=a. It observe that f is a totally sb*- continuous function, but f is not continuous function, since for open set A={b}. $f^{-1}(\{b\}) = \{a\}$ is not open subset in (X,τ) .

The following proposition give the condition in order to every sb*-clopen is clopen.

Proposition(3-7):

If a space (X,τ) is b-space, then

- (i) Every sb*-open subset of space (X,τ) is an open .
- (ii) Every sb*-closed subset of space (X,τ) is an closed.
- (iii) Every sb*-clopen subset of space (X,τ) is an clopen.

Proof:

- (i)Let A is a sb*- open subset in (X,τ) , since (Every sb*- open set is b-open). This implies that A is a b-open subset in (X,τ) . By hypotheses (X,τ) is a b-space and by using definition (2-7) we get A is an open subset in (X,τ) .
- (ii) Let A is a sb*- closed subset in (X,τ) , then A^c is an sb*- open subset in (X,τ) , since (X,τ) is a b-space and by step-i- we get A^c is an open subset in (X,τ) . Thus, A is a closed subset in (X,τ) .
- (iii) Let A is a sb*- clopen subset in (X,τ) , (i.e., A is both sb*-open and sb*closed subset in (X,τ)). Since (X,τ) is a b-space and by step-i- and -ii- we get A is an open and closed subset in (X,τ) . Hence, A is clopen subset in (X,τ) .

Next, in the following proposition we give the conditions to make the converse of a proposition (3-3),(3-4), Remark(3-5) and Remark(3-6) are true:

Proposition(3-8):

If $f: (X, \tau) \to (Y, \sigma)$ is a totally sb*- continuous function and X is a b- space, then f is a

- (i) totally continuous function.
- (ii) totally ω continuous function.

Proof:

(i)Let A is an open subset of (Y,σ) . Since f is a totally sb^* -continuous function. Thus, $f^{-1}(A)$ is sb^* -clopen subset in (X,τ) (i.e., $f^{-1}(A)$ is $both sb^*$ -open and sb^* -closed

subset in (X,τ)). By hypotheses (X,τ) is a b-space and by using Proposition (3-7) step-iii-we get $f^{-1}(A)$ is clopen subset in (X,τ) . Therefore, f is totally-continuous function.

(ii) Let A is an open subset of (Y,σ) . Since f is a totally sb*- continuous function. Thus, $f^{-1}(A)$ is sb* -clopen subset in (X,τ) By hypotheses (X,τ) is a b-space and by using Proposition (3-7) step-iii- we get $f^{-1}(A)$ is clopen subset in (X,τ) (i.e., $f^{-1}(A)$ is both open and closed subset in (X,τ)), since (Every open set is an ω -open, [Sundaram 1995] and every closed set is a ω - closed [Sundaram1995]. This implies $f^{-1}(A)$ is ω - clopen subset in (X,τ) . Therefore, f is totally ω - continuous function.

Proposition(3-9):

Let $f: (X, \tau) \to (Y, \sigma)$ be any function from discrete space (X, τ) and topological space (Y, σ) , then f is a totally sb*- continuous function if and only if

- (i) f is totally b-continuous function.
- (ii) f is totally semi-continuous function.
- (iii) f is totally sg-continuous function.
- (iv) f is continuous function.
- (v) f is b-continuous function.
- (vi) f is sb*-continuous function.

Proof:

- (i) If f is totally sb*- continuous function, then by using Proposition (3-4) step-i- we get f is a totally b- continuous function and A is an open subset of (Y,σ) . Thus, $f^{-1}(A)$ is b-clopen subset in (X,τ) i.e., $f^{-1}(A)$ is both b-open and b-closed subset in (X,τ) . By hypotheses (X,τ) is a discrete space we get every subset of (X,τ) is both open and closed subset in (X,τ) . By Remark (2-4) we get $f^{-1}(A)$ is both sb*-open and sb*-closed subset in (X,τ) . This implies $f^{-1}(A)$ is sb*-clopen subset in (X,τ) . therefore, f totally sb*-continuous
- (ii)Let f is totally sb*- continuous function and A be an open subset in (Y,σ) . Thus, $f^{-1}(A)$ is sb*-clopen subset in (X,τ) (i.e., $f^{-1}(A)$ is both sb*- open and sb* closed subset in (X,τ)). By hypotheses (X,τ) is a discrete space we get every subset of (X,τ) is both open and closed subset in (X,τ) , and since (Every open set is semi-open [Levine 1963], and every closed set is semi-closed, [Levine,1963]), this implies $f^{-1}(A)$ is both semi-open and semi-closed subset in (X,τ) . Hence, $f^{-1}(A)$ is semi-clopen subset in (X,τ) , and so f totally semi-continuous function. Conversely, assume that f is a totally semi-continuous function, and A be an open subset in (Y,σ) . Thus, $f^{-1}(A)$ is semi-clopen subset in (X,τ) (i.e., $f^{-1}(A)$ is both semi-open and is semi-closed subset in (X,τ)). By hypotheses (X,τ) is a discrete space we get every subset of (X,τ) is both open and closed subset in (X,τ) ,. By Remark(2-4) we get $f^{-1}(A)$ is both sb*-open and sb*-closed subset in (X,τ) . This implies $f^{-1}(A)$ is sb*-clopen subset in (X,τ) , therefore, f totally sb*-continuous. The proof of steps-iii-, -iv-,-v-and -vi- is similar to step -ii-.

Next, we give other type of totally sb*- continuous function is called sb*- totally continuous function.

Definition(3-10):

A function $f:(X,\tau) \to (Y,\sigma)$ is said to be **sb*- totally continuous** if the inverse image of every sb*-open subset in (Y,σ) is a clopen subset in (X,τ) .

Example (3-7):

Let $X=\{a,b,c\},Y=\{a,b\}$ with the topologies $\tau=\{X,\emptyset,\{a\},\{b,c\}\}$ and $\sigma=\{Y,\emptyset,\{a\}\}\}$, then the clopen subset in (X,τ) are $\{X,\emptyset,\{a\},\{b,c\}\}$ and $SB*O(Y,\sigma)=\{X,\emptyset,\{a\}\}\}$. Let $f:(X,\tau)\to (Y,\sigma)$ be a function defined by f (a)=b and f (b)=f (c)=b. It observe that f is a sb*-totally continuous function .

Proposition (3-11):

A function $f: (X, \tau) \to (Y, \sigma)$ is sb*- totally continuous if and only if the inverse of every sb*-closed subset in (Y, σ) is a clopen subset in (X, τ) .

Proof: This proof is similar to that of proposition (3-2)

Proposition(3-12):

If f: $(X,\tau) \rightarrow (Y,\sigma)$ is sb*- totally continuous function, then f is a

- (i) Totally continuous function.
- (ii) Totally semi continuous function.
- (iii) Totally ω continuous function.
- (iv) Totally sg continuous function.
- (v) Totally b continuous function.
- (vi) Totally sb* continuous function.

Proof:

- (i)Let A is an open subset in (Y,σ) . By Remark (2-4) we get A is a sb*- open subset in (Y,σ) . Since f is a sb*- totally continuous function, this implies that $f^{-1}(A)$ is clopen in (X,τ) . Therefore, f totally continuous function.
- (ii) Let A is an open subset in (Y,σ) . By Remark (2-4) we get A is a sb*- open subset in (Y,σ) . Since f is a sb*- totally continuous function. Thus, $f^{-1}(A)$ is clopen in (X,τ) , since (Every open set is a semi- open, [Levine 1963] and every closed set is a semi-closed, [Levin 1963]). this implies that $f^{-1}(A)$ is both semi- open and semi-closed subset in (X,τ) . Hence, $f^{-1}(A)$ is semi-clopen subset in (X,τ) . Therefore, f totally semi continuous function.
- (iii)) Let A is an open subset in (Y,σ) . By Remark(2-4) we get A is a sb*- open subset in (Y,σ) . Since f is a sb*- totally continuous function. Thus, $f^{-1}(A)$ is clopen in (X,τ) , since (Every open set is a ω open, [Sundaram 1995] and every closed set is a ω closed, [Sundaram 1995]). this implies that $f^{-1}(A)$ is both ω open and semiclosed subset in (X,τ) . Hence, $f^{-1}(A)$ is ω -clopen subset in (X,τ) . therefore, f totally ω continuous function.

The proof of steps, -iv-,-v-and -vi- are similar to step -iii-.

The converse of Proposition(3-12) need not be true in general, the following example shows that.

Example(3-8):

Let X=Y={a,b} with the topologies $\tau = \{X,\emptyset,\{a\}\}$ and $\sigma = \{Y,\emptyset\}$, then $SO(X,\tau) = \omega O(X,\tau) = SGO(X,\tau) = SB*O(X,\tau) = \{X,\emptyset,\{a\}\}$. Let $f:(X,\tau) \to (Y,\sigma)$ be function defined by f(a) = b and f(b) = a. It observe that f is a totally- continuous (resp. totally semi – continuous, totally ω - continuous, totally b- continuous and sb*-continuous) function, but f is not sb*-totally continuous function, since for sb*-open subset $A = \{a\}$. $f^{-1}(A) = f^{-1}(\{a\}) = \{b\}$ is closed subset in (X,τ) , but is not open. Hence, $f^{-1}(A) = f^{-1}(\{a\}) = \{b\}$ is not clopen subset in (X,τ) .

Proposition(3-13):

If $f: (X,\tau) \to (Y,\sigma)$ is sb*- totally continuous function, then f is a

- (i) Continuous- function.
- (ii) b- continuous- function.
- (iii) sb*-continuous- function.

Proof: It is clear.

The converse of Proposition (3-13) need not be true in general, the following example shows that.

Example(3-9):

Let $X=\{a,b,c\}$ with the topology $\tau=\{X,\emptyset,\{a\}\}$, then $BO(X,\tau)=SB*O(X,\tau)=\{X,\emptyset,\{a\},\{a,b\},\{a,c\}\}$. Let $f:(X,\tau)\to (X,\tau)$ be an identity function . It observe that f is a continuous function (resp. b- continuous function and sb*- continuous function),but f is not sb*- totally continuous function, sinc for sb*-open subset $A=\{a\}$. $f^{-1}(A)=f^{-1}(\{a\})=\{a\}$ is an open subset in (X,τ) , but is not closed. Hence, $f^{-1}(A)=f^{-1}(\{a\})=\{a\}$ is not clopen subset in (X,τ) .

Next, in the following proposition we give the conditions to make the converse of a proposition (3-12) and (3-13) are true:

Proposition(3-14):

Let $f: (X, \tau) \to (Y, \sigma)$ be any function from discrete space (X, τ) into b- space (Y, σ) , then f is a sb*- totally continuous function if f is a

- (i) Totally- continuous function.
- (ii) Totally -semi continuous function.
- (iii) Totally ω continuous function.
- (iv) Totally sg- continuous function.
- (v) Totally b- continuous function.
- (vi) Totally sb*- continuous function.

Proof:

- (i) Let A be a sb*- open subset of (Y,σ) . Since (Y,σ) is b-space and by using Proposition (3-7) step-i- we get A is an open subset in (Y,σ) . By hypotheses f is a totally continuous function, this implies that $f^{-1}(A)$ is a clopen subset in (X,τ) . Therefore, f sb*- totally continuous function.
- (ii) Let A be a sb*- open subset of (Y,σ) . By hypotheses (Y,σ) is b-space and by using Proposition (3-7) step-i- we get A is an open subset in (Y,σ) . Since f is a totally semi continuous function, this implies that $f^{-1}(A)$ is a semi- clopen subset in (X,τ) . Also, since f is a discrete space, then every subset in (X,τ) is both open and closed. Hence, $f^{-1}(A)$ is a clopen subset in (X,τ) , therefore, f sb*- totally continuous function.
- (iii) Let A be a sb*- open subset of (Y,σ) . By hypotheses (Y,σ) is b-space and by using Proposition (3-7) step-i- we get A is an open subset in (Y,σ) . Since f is a totally ω continuous function, this implies that $f^{-1}(A)$ is a ω -clopen subset in (X,τ) . Also, since f is a discrete space, then every subset in (X,τ) is both open and closed. Hence, $f^{-1}(A)$ is a clopen subset in (X,τ) , therefore $f^{-1}(A)$ is a continuous function.

The proof of steps, -iv-,-v-and -vi- are similar to step -iii-.

The proof of the following Proposition it is easy. Hence, it is omitted.

Proposition(3-15)

Let $f: (X, \tau) \to (Y, \sigma)$ be any function from discrete space (X, τ) and topological space (Y, σ) , then f is a totally sb*- continuous function if and only if

- (i) Continuous function.
- (ii) b-continuous function.
- (iii) sb*- continuous function.

Proposition (3-16)

Let $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\mu)$ be any two function, then $g:f:(X,\tau) \to (Z,\mu)$ is totally sb*- continuous function if

- (i) f is a totally sb*- continuous function and g is a continuous function.
- (ii) f is a totally sb*- continuous function and g is a totally- continuous function.
- (iii) f and g are two totally continuous functions.

Proof:

- (i) Let A be an open subset in Z , since g is a continuous function . Thus $g^{-1}(A)$ is an open subset in Y .Also ,since f is a totally sb*- continuous function ,then $f^{-1}(g^{-1}(A))$ is sb*-clopen subset in X . But $f^{-1}(g^{-1}(A)) = (g f)^{-1}(A)$ and so $(g f)^{-1}(A)$ is sb*- clopen subset in X .Hence, $g f: (X, \tau) \to (Z, \mu)$ is a totally sb*- continuous function .
- (ii) Let A be an open subset in Z, since g is a totally- continuous function. Thus $g^{-1}(A)$ is clopen subset in Y, this implies that $g^{-1}(A)$ is an open subset in Y. By hypotheses f is a totally sb*- continuous function, then $f^{-1}(g^{-1}(A))$ is sb*- clopen subset in X. But $f^{-1}(g^{-1}(A)) = (g f)^{-1}(A)$ and so $(g f)^{-1}(A)$ is sb*- clopen subset in X. Hence, $g f: (X, \tau) \to (Z, \mu)$ is a totally sb*- continuous function.
- (iii) Let A be an open subset in Z , since g is a totally- continuous function . Thus $g^{-1}(A)$ is clopen subset in Y , this implies that $g^{-1}(A)$ is an open subset in Y By hypotheses f is a totally -continuous function ,then $f^{-1}(g^{-1}(A))$ is clopen subset in X and by using Remark(2-4) we get $f^{-1}(g^{-1}(A))$ is sb*- clopen subset in X . But $f^{-1}(g^{-1}(A))$ is $g^{-1}(A)$ and $g^{-1}(A)$ is sb*- clopen subset in X . Hence, $g^{-1}(A)$ is a totally sb*- continuous function .

Next, we give some propositions about the composition of these types of functions **Remark(3-17):**

If $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\mu)$ are two totally sb*- continuous function, then $g:f:(X,\tau) \to (Z,\mu)$ is not necessarily totally sb*- continuous function, as shows in the following example.

Example(3-10):

Let $X=Y=Z=\{a,b\}$ with topologies $\tau=\{X,\emptyset,\{a\}\},\ \sigma=\{Y,\emptyset\}$ and $\mu=\{Z,\emptyset,\{b\}\}$. Then $SB*O(X,\tau)=\{X,\emptyset,\{a\}\},\ SB*O(Y,\sigma)=\{Y,\emptyset\{a\},\{b\}\}\}$ and $\mu=\{Z,\emptyset,\{b\}\}\}$. Define $f:(X,\tau)\to (Y,\sigma)$ by f (a)=a, f (b)=b and $g:(Y,\sigma)\to (Z,\mu)$ defined by g(a)=a,g(b)=b. Then clearly f and g are two totally sb^* - continuous function , but g $f:(X,\tau)\to (Z,\mu)$ is not totally sb^* - continuous function . Since for open subset $A=\{b\}$ in (Z,μ) . (g $f)^{-1}(A)=f^{-1}(g^{-1}(A))=f^{-1}(g^{-1}(\{b\}))=\{b\}$. is a sb^* - closed subset in (X,τ) but is not open . this implies (g $f)^{-1}(A)=f^{-1}(g^{-1}(\{b\}))=\{b\}$ is not sb^* - clopen subset in (X,τ) .

Proposition (3-18):

Let $f:(X,\tau) \to (Y,\sigma)$ be a sb*-totally continuous function and $g:(Y,\sigma) \to (Z,\mu)$ be any function, then g $f:(X,\tau) \to (Z,\mu)$ is totally sb*- continuous function if

- (i) g is a totally sb*- continuous function.
- (ii) g is a totally continuous function.
- (iii) g is a totally ω -continuous function.

Proof:

(i)Let A be an open subset in Z, since g is a totally sb*- continuous function. Thus $g^{-1}(A)$ is sb*-clopen subset in Y, this implies that $g^{-1}(A)$ is an sb*- open subset in Y. By hypotheses f is a sb*- totally continuous function, then $f^{-1}(g^{-1}(A))$ is clopen subset in X and by using Remark(2-4) we get $f^{-1}(g^{-1}(A))$ is sb*- clopen subset in X. But $f^{-1}(g^{-1}(A)) = (g f)^{-1}(A)$ and so $(g f)^{-1}(A)$ is sb*- clopen subset in X. Hence, $g f: (X, \tau) \to (Z, \mu)$ is a totally sb*- continuous function.

The proof of step-ii- and -iii- are similar to step-i-.

Similarly, we prove the following corollary.

Corollary(3-19):

Let $f: (X, \tau) \to (Y, \sigma)$ be a sb*-totally continuous function and $g: (Y, \sigma) \to (Z, \mu)$ be any function, then $g : f: (X, \tau) \to (Z, \mu)$ is totally sb*- continuous function if

- (i) g is a continuous function
- (ii) (ii) g is a sb^* continuous function.

Proposition (3-20):

Let $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\mu)$ be any two function, if g is a sb*- totally continuous function and

- (i) f is a totally continuous function ,then g $f:(X,\tau) \to (Z,\mu)$ is sb*- totally continuous function .
- (ii) f is a totally semi continuous function, then g $f:(X,\tau) \to (Z,\mu)$ is totally semicontinuous function.
- (iii) f is a totally b continuous function ,then g $f:(X,\tau)\to(Z,\mu)$ is totally b- continuous function .
- (iv) f is a totally ω continuous function ,then g $f:(X,\tau) \to (Z,\mu)$ is totally sb*- continuous function.
- (v) f is a totally sg-continuous function, then g $f:(X,\tau) \to (Z,\mu)$ is totally sg-continuous function.

Proof:

- (i) Let A be a sb*-open subset in Z, since g is a sb*- totally continuous function. Thus $g^{-1}(A)$ is clopen subset in Y, this implies that $g^{-1}(A)$ is an open subset in Y. By hypotheses f is a totally- continuous function, then $f^{-1}(g^{-1}(A))$ is clopen subset in X and by using Remark(2-4) we get $f^{-1}(g^{-1}(A))$ is sb*- clopen subset in X. But $f^{-1}(g^{-1}(A)) = (g f)^{-1}(A)$ and so $(g f)^{-1}(A)$ is sb*- clopen subset in X. Hence, $g f = (X, \tau) \to (X, \mu)$ is a sb* totally continuous function.
- (ii) Let A is an open subset in (Z,μ) . By Remark(2-4) we get A is a sb*- open subset in (Z,μ) . Since g is a sb*- totally continuous function, $g^{-1}(A)$ is clopen subset in Y, this implies that $g^{-1}(A)$ is an open subset in Y. By hypotheses f is a totally semi-continuous function, then $f^{-1}(g^{-1}(A))$ is semi-clopen subset in X. But $f^{-1}(g^{-1}(A)) = (g f)^{-1}(A)$ and so $(g f)^{-1}(A)$ is semi-clopen subset in X. Hence, $g f: (X,\tau) \to (Z,\mu)$ is a totally semi-continuous function.
- (iii) Let A is an open subset in (Z,μ) . By Remark (2-4) we get A is a sb*- open subset in (Z,μ) . Since g is a sb*- totally continuous function, $g^{-1}(A)$ is clopen subset in Y, this implies that $g^{-1}(A)$ is an open subset in Y. By hypotheses f is a totally b-

continuous function, then $f^{-1}(g^{-1}(A))$ is b-clopen subset in X . $f^{-1}(g^{-1}(A))$ = $(g \ f)^{-1}(A)$ and so $(g \ f)^{-1}(A)$ is b-clopen subset in X . Hence, $g \ f:(X,\tau) \to (Z,\mu)$ is a totally b-continuous function .

The proof of step-iv- and -v- are similar to step-iii-.

Proposition (3-21):

- Let $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\mu)$ be any two function, if g is a sb*- totally continuous function and
- (i) f is a continuous function, then $g(f): (X, \tau) \to (Z, \mu)$ is continuous function.
- (ii) f is a b continuous function, then $g(f): (X, \tau) \to (Z, \mu)$ is b- continuous function.
- (iii) f is a sb*- continuous function ,then g $f:(X,\tau) \to (Z,\mu)$ is sb*- continuous function.

Proof: It is observe.

Proposition (3-22):

Let $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\mu)$ be two sb*- totally continuous function, the g $f:(X,\tau) \to (Z,\mu)$ is also sb*- totally continuous function.

Proof:

Let A be a sb*-open subset in Z , since g is a sb*- totally continuous function . Thus $g^{-1}(A)$ is clopen subset in Y , this implies that $g^{-1}(A)$ is an open subset in Y . By Remark (2-4) we get $g^{-1}(A)$ is sb*-open subset in Y , since f is a sb*- totally continuous function ,then $f^{-1}(g^{-1}(A))$ is clopen . But $f^{-1}(g^{-1}(A)) = (g f)^{-1}(A)$ and so $(g f)^{-1}(A)$ is clopen subset in X .Hence, $g f: (X, \tau) \to (Z, \mu)$ is a sb*-totally continuous function .

References

Andrijevic, D., "on b-Open Sets ", Matema Bech., Vesnisk, Vol. 48, pp. 59-64, (1996). Bhattacharyya, P.and lahiri, B.K.;" Semi-Generalized Closed Sets in Topology," Indian J. Math., 29(1987).

Caldas.M., Jafari.S., and Rajesh.N., "Properties of Totally b-Continuous Functions", Analele Stiintifice Ale University. Math, 2009, 120-130.

EL.Atik.A.A.,"A Study of Some Types of Mapping on Topological Spaces", M.S.C .Thesis. Tanta University . Egypt, 1997 .

Jain.R.C.," The Role of Regularly Open Sets in General Topology ", Ph.D. Thesis . Meerut University Institute of a Duanced Studies . Meerut .Indian , 1980 .

Levine, N.; "Semi-open Sets and Semi-continuity In Topological Spaces" Amer.Math.Monthly.70(1963),36-41.

Nasef.A.A., and Farrag.A.S.," Completely b- Irresolute Functions ", Proc . Soc .Egypt , 74(1999),73-86 .

Nour.T.M.," Totally Semi-Continuous Functions ", Indian . J. Pure appl . Math. ,26(7), July 1995, 675-678 .

Poongothai .A., and Parimelazhagan .R.," sb*-Closed Sets in Topological Spaces ", Int .Journal of Math. Analysis , Vol.6,2012, No. 47., 2325-2333.

Poongothai .A., and Parimelazhagan .R.," Strongly b- Continuous Functions in Topological Spaces ", Int .Journal of Computer Applications , Vol.58, No.14, November 2012, 8-11 .

Rajesh.N.,"On Totally ω - Continuity , Strongly ω - Continuity and Contra ω - Continuity ", Soochow Journal of Math ., Vol.33, No.4, October 2007, 679-690 .

Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(24): 2016

Ravi.O.,Ganesan.S., and Chandrasekar.S.,"On Totally sg- Continuity, Strongly sg-Continuity and Contra sg-Continuity, Gen. Math, Notes, Vol.7, 2011, 13-24.

Sundaram.P.,Sheik John.M.," Weakly Closed Sets and Weak Continuous Maps in Topological spaces, Indian. Sci, Cang. Calcutta, 1995, p-49.