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Abstract

In this paper , numerical solutions of fractional integro differential equations
of a deferent order by using Adomian decomposition method (ADM) and
compare our result with exact solution numerical result show that (ADM) is
more efficient and powerful method .
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1.Introduction and Basic Concepts:
Let us consider a linear fractional integro-differential equation
D%(t)=f(t)+J®u(t) with the intial condition  u(0)=0, O<t<a and 0< q, B<I

Where DY refers to the capnto derivative , f is a continuous function on (t,u)
foru€R , a>0

There is som of the moste important nations and definitions and theorem of
fractional integro-defferential equations.
Definition 1.1:  The Gama Function .
The complete gamma function T'(t) ,is T (t)=] X' e*dx , t>0
, T(t+])=tTt
I'ntl=n!
Definition 1.2: The fractional Derivative .

The fractional derivative , given in
Du(t)=1/T m-q d™/dx™ [ (t-s)™** u(s) ds (1.2.1)
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The caputo definition of fractional derivative is given by :
DYu(t) =1/T m-q [ (t-5 )™ u™(s) ds (1.2.2)

Definition 1.3 : the fractional integral .
Fut)y =1\ q [ (t-s)" u(s) ds, g>0 (1.3.1)

The properties of the operator J* can be found in [Rawashdeh , 2005 ], for q
>0,0>0, we have :
JVIu(t) =J T u(t)

Wt = Iy+l/Ty+l+q 47 , &0 ., q 20,y =-1
(1.3.2)

D4%u(t) = u(t)
(1.3.3)

Definition 1.4 ,(Samah,2010; Samko,1993).
Fractional integro — Differential equations:
Consider the linear fractional integro — differential equation :

DA(t)=f(t)+JPu(t), with initial condition u(0) = up.,0<q,p<1
(1.4.2)

where DY refers to the caputo derivative operator of order 0<g<1
wich is defined

D%(t)=1/Tm-gJ(t-s)™ " u™(s)ds ,-1< g <m, m € N ,t € [0,T]

and JP | denotes the fractional integro operator of B, 0<p <1 where

Futy = 1B [ )P u@) ds , Au®®) = f()
(1.4.2)

where

Au(t) = 1/Tm-q | ()™ u™@s) ds — /T B | (t=5)** u(s) ds
(14.3)

Defintion 1.5 ,(Mittal and Ruchi,2008; Loverro,2004):
The Adomain Decompsion method (ADM) :

Let D= f(t)+Put) , where t€ [0 ,T], 0<q,p <l

by tack the J% in the tow said we have
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u®) =39 f@) +J3% [ 1B | (t-s)Ptu(s) ds ]

where
Uo(t) = u(0) + J9 f(t)

u®) =39 f@) + 3% [ 1B | (t=s)Ptu(s) ds ]

Un1=d% [ U/TB [ (t-5)P un(s) ds ]
So u(t) = >"i=0 Un (1)

That is the Approximiat solution of the fractional — integro differential
equ.
2.Some Theorems:
Theorem 2.1 ,(Al-husseiny,2006,Momani ,2007):( The uniqueness theorem )
The uniqueness of the solution of the fractional integro — differential equations

Consider the initial value problem,which consists of the fractional integro-
differential equations ,

Dhu(t) = f(t) +Put) 0 <q,P<1,u(0)=up (2.1.1)

Where DY refers to the caputo derivative operator of order 0<qg<1, and
u(0)=uo

the initial condition , f is a continuous functionont for u€ R , t€[ 0, T] ,
Uo IS

areal positive constant

We shall use Biharis inequality to to obtain the uniqueness to equations given
by (2.1.1) can be transformed in the next lemma .

Now , some additional properties are given for completeness purposes,
Lemma 2.2:
The solution of the initial value problem given by egs (2.1.1) has the form :

U@)=ug+ 1Iqf(t=s)"f(s)ds + 1/Tqf(t=s) [ UIB] ( s—o )" u(o)
do] ds

601



Journal of Babylon University/Pure and Applied Sciences/ No.(3)/ Vol.(24): 2016

Proof :

From (2.1.1)

DYu(t) = f(t) +Pu(t) , 0 <q,p<1 with initial condition u(0)=uy (2.2.1)
Applying the integral

DY u(t) =J3f@) +3% UIBJ ( s—0)** u(o) do]

Ut —up = 1/Iqft=s) " 1f(s)ds +1/Tqf t=s) [ UTB[ ( s—0) uo)
do] ds.

The initial value problem by eq ( 2.1.1) has a unique solution on the interval [
0, T]if uis continuous function in the region :

D={(t,u)/ O0<t<T,|u—Up|<b} , and satisfy the condition :
11T q (s—0)™u(e)~1q(s—0)™ y(o)|do < Mo ([uy]) (222)

Where M is a positive constant and ¢ is a nondecreasing continuous function
and satisfy

llop(x) < o(x/o) , for x>0 ,a > 0 and the following
integral :

O(x)=] dx/¢(x) (2.2.3)

Where ¢ (x) is a primitive of the function 1/ ¢ (x ) , and ¢ denotes the
inverse of ¢ .

let that there exists two solutionsuand y of eq (2.1.1) then

Ut)=up+ 1/rqf () f(s)ds+ 1/rqf (t—s)"™ {1/TBf (s-6)*u(o)d
c}ds

Y () =ug+ Iqf (t-s) " f(s)ds+ 1/Tqf (t=s)** {1/TB] (s-0) y(0)d
c}ds
This implies to :
| u) - y(t) | < 1rql (t=s) {U/TB] (s-0) " u(o)-y(®) |do} ds
It follows from eq (2.2.2) that :

lu®) -y | < 1/Tqf (ts)™ Mo(|u-y]|)ds.
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Thus

| u@® - y® | S E+MTq ] (t-9)" " g (Ju-y[)ds.
For any £>0,0 <t<T by using theorem( Biharis inequality ), then

lu@t)-y(@)[< ¢ [ E)+ MTY/T q+1 ], forany fixed t € [0, T] (2.2.3)
We shall proof that the right — hand side of eq (2.2.3)
Tend towards zero as £ — 0.

Since | u(t) - y(t) | isindependent of & , it followsthat u(t) = y(t) ,
which

we need .

Let us remark that condition (2.2.3) implies that ¢, &—-00 as &0, no
matter how

we choose the primitive of 1/ ¢ (x) .
Thus ¢(x) — 0 as x— - . consequently , when &—0 in ineq (2.2.3)

the right — hand side tends towareds zero (for all finite t) therefore , u(t) =y (t)

for t€[0,T].
Theorem 2.3, (Momani,2001) : ( The existence theorem)

Let u and u™ be a real non negative function in ¢ [0,T], and that t€ [0,
T], 0<qg<1,thenequ (2.1.1) hasasolution u.

Proof :
In order to discuss the condition for the existence for the solution of egs
(2.1.1), let

us define B=c[ 0, T ], to be the banach space with the supremum norm , let
us define

theset :u={u€c0,T]:|lul|<ct [[u*™|<co, ¢1,>0,kENY}
Now , since our proof depends on the schander fixed point theorem , then it is
sufficient

to prove that u is a nonempty , close , bounded and convex subset of the banach
space B
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and then the operal or A : U — U is compact operator .

It is easy to see that the set U in nonempty since from the properties of the norm
we

have 0 € U and also bounded and closed ( from the definition of U ) to prove
Uis

convex subset of B .

Letup, U €U, [Jur][<ci, ™| < co, || all<cr, ™| <co,
such that

w(®)=hus+(1-A) up(t) , AE[0.1]
Toprove u€U , [lul/<ci, [[u* | <ec,,

[ull= Ao+ @-DNuz || < [M] [Jue[+]@-D) [[Juz]| < ker+ (1-2) 1=
C1

Tu®™ =11 [hug+ (@0 wd ™ =1 2™ )+ @) u*™ )
<A™+ 1@ | e
<Aict (IA)c

= C2
Hence , u€ U , U is convex set .

Now , in order to show that eqs (3.1.1) , (3.1.2), has a solution , we have to
show that the operator A in eq

Au(t) = 1/I(m-q) [ (t-5)" " u™(s)ds- 1/TB | (t-5)** u(s) ds.
Is completely continuous .

Let v(t) = Au(t), to prove that v(t) € U,

| v]=| UTm-q) | (t-s)™"u™(s)ds- 1/TB | (t-5)"* u(s) ds ||
<[ u™||/T (m-q) J(t-s)™ % ds+ ||ul/TB | (t-5)**ds
< T m-g+l + ¢ T/ Tp+1

<C,
That is v(t) is bounded .

IVED [ = 10 meq) [ (t-5)™u@D™(s) ds — 1/ TP [ (t5)™ u™™ (5) i
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< @I T m-g+ 1) T+ | ut ™ TP AT+

™/ Tm-q+1l + TP/TB+1

<
<c

Thatis V&™(t) is V&™(t) is bounded , v(t) € U . then the operator A maps
Uinto it self.
Since for all u € U we have A(u) <c , then A(u) is bounded operator .
To prove that A is continuous operator .
Let u,v€ U , then we have

lAu—Av || = || /T(Mm-q) | (t=5)" " u™(s)ds- 1/TB [ (t-5)"* u(s) ds —
[ 1/T(m- q) ] (t5)™ V™) ds- 1/TB | (t-5)"* v(s) ds] ||

= || UT(m-q) | (t-5 )™ (u™(s) - v™) -1/ TB J(t-5)"*( u(s) -
v(s) )ds ||
< [ u™—v™ ||/ T(m-g+1) T™ + |[u—v | /Tp+1 T
< V)" |/ T(m-g+1) T™ + Ju—v||/T p+1 TP
Let w=u-v
< || W™ /T(m—q+1) T™ + ||w||/Tp+1 T*
<c

That is Au is bounded operator , Au is continuous

operator .
Now , we shall prove that A is equicontinuous operator .

Let u€U and t;,t,€ [0, T],then :

| Au(t;) - Av(t) ||= || [ UT(m-q) J (t-s)™ % u™(s)ds- 1/TB | (ts-
s u@s)ds | 1-[ /I(m-q) | (t-s )™ u™(s) ds -

/TR | (t-s)" u(s) ds] |

< u™] /Tm-q) | ] ( tz—s)™ % ds-] (tp—s)™
ds|+ ||ul[/TB| J(tr—s)P*ds - [ (t,—s )" ds|

<cy/ T(m-g+1) | (™= t™ N [+ c/TB+1 | (tP- &)

< 2¢y/T(m-q+1) T™ + 2cy /T(B+1) TP
< c¢c , where f,q>0

Au is equicontinuous operator .

A s relatively compact , now from Arzela - Ascoli theorem , A is
completely continuous operator then Ais compact .

Then schander fixed point , which corresponds to the solution of eq .
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3.Some Examples
In this chapter we display the adomen decompsion method for solve fractional —integro

defferential equations .
Example 3.1:
Consider the fractional integlro — Differential equation

D% u(t) = f(t) + 3% u@®) ,u(0)=0, t€ [0,T]

Where
fit)y=6/T3.5 t*°> - 6/T4.5 t3°

and the exact solution is given by

u(®) =2
According to the Adomian Decomposition method , the approximate solution :

U(t) = u(0) +3%f(t) + I°°[%3 u(t) ]
U(t) = u(0) +J%f(t) + 1°°[ 1/10.3 [ (t-5)**" u (s) ds ]

= u(0) + 6/I3.5 1°° #° - 645 1°° 2 + 1°° [ /1705 | (t-5)°
u(s) dsj

therefor,
Uo(t) = u(0) + 3°° f(t)

0+6/T35 1% t5_6/Tr45 1°°¢3°

0+ (6/T3.5)(T35 /T4 )t -(6/T45)(T45/T5) t*
=t*-025¢t

Ust) = 3%°[ 1/T70.3 [(t-s )% up(s) ds ]
=51 1/r03 [ (t-s)%" [ - 025t ] ds]
=% 3/ 0.3 +0.25/0.3 t**]

=%°¢3%/ 03 + 025/03 J05t*3
Since

It =T 1+ / Ty+l+q ™0
= (-01) %% - (0.06)t*®
Up(®) = 3°°[ 1/T0.3 [(t-s )" uy(s) ds]

= [ [(-01) % - (006)t** 1]
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= (-0.05)t** - 0.03t>*
So that

U(t) = uo(t) + ug(t) +ux(t)y + ........
= £2-0.25t* + (-0.1) 38— 0.06 t*® — (0.05) t*1- 0.03 t>1+ ...
That is the approximat solution
Now to find the error of this solution we have
Qs(t) = Yi=o"" U
So the error
| u(t) - Qs(t) |

Where u(t) is the exact solutio
Now we have atable of the solution

Exact and approximate results

Exact solution ADMgs Es

-
0 0 0 0
0.1 1x10° 9.546 x 10™ 4.6 x 10°
0.2 8x 107 7.283 x 107 7.17 x 10™
0.3 2.7 x 107 2.3x 107 4x10°
0.4 6.4 x 107 6.100 x107 0.005
0.5 0.125 0.110 0.015
0.6 0.216 0.145 0.071
0.7 0.343 0.230 0.113
0.8 0.512 0.500 0.012
0.9 0.729 0.6999 0.0291
1 1 0.999 0.001

607




Journal of Babylon University/Pure and Applied Sciences/ No.(3)/ Vol.(24): 2016

References

Al-Husseiny R.N., "Existence and uniqueness Theorem of some fuzzy fractional
order Differential Equations”, M.Sc. Thesis, College of science, Al-Nahrain
University , 2006 .

Loverro A., "Fractional calculus: History Definitions and Applications for the
Engineer” , 2004 .

Mittal R.C. and Ruchi N., "Solution of Fractional Integro — Differential
Equations By Adomian Decomposition Method ", Int. J. of Appl. Math.
And mech, Vol. 4, No. 2, PP87-94 , 2008 .

Momani S., "Some Existence theorems on fractional Integro — Differential
Equations”, No. 2B . PP.435-444 , 2001 .

Momani S., Ahlam J. and Sove Al-Azawi , "Local Global uniqueness Theorems
on Fractional in tegro-Differential Equations Via Biharis and Grunwalls
Inequalitties™ , Vol. 33, No. 4, PP.619-627 , 2007 .

Oldham K.B. , and Sanir J. , "the fractional calculus"”, Academic press , New
York and London , 1974 .

Samah M. A., "Some Approximate solutions of fractional Integro — Differential
Equations™, Al-Nahrain University , 2010 .

Samko , S. , "Integrals and Derivatives of Fractional order and some of Their
Applications” , Gordon and Breach , London , 1993 .

608



