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Abstract- Surface roughness and dimensional deviation are critical quality 

dimensions of machined products and several machining parameters including 

tool insert dimensional tolerance affect them. Machining performance studies 

involving dimensional tolerance of the insert during machining, particularly hard 

face milling do not have considerable attention of the researchers. Therefore, the 

aim of the present work is to investigate the effect of the dimensional tolerance of 

the insert along with other machining parameters such as spindle speed, feed per 

tooth, and depth of cut on the roughness and dimensional deviation 

simultaneously. Experiments were conducted as per standard L18 mixed 

orthogonal array on a CNC vertical milling machine. Significance of machining 

parameters with respect to roughness and dimensional deviation was determined 

using Analysis of variance (ANOVA). Results revealed that among several 

machining parameters, feed per tooth greatly affects surface roughness and 

dimensional deviation. Optimum machining parameters that give minimum values 

of surface roughness and dimensional deviation simultaneously was obtained 

using Genetic Algorithm (GA).  
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1. Introduction 

Hard machining refers to machining of hard to 

machine materials by processes such as turning, 

milling, drilling, threading and broaching 

operations. Hard machining offers advantages 

over grinding in terms of high material removal 

rates (MRR), smaller machining times, flexible 

process design and almost no use of coolant. 

However, increased tool wear is a major 

disadvantage of hard machining. Hard milling is a 

process, which provides high accuracy, better 

surface finish, and overall quality improvement. 

In recent years, several authors have studied hard 

milling and considerable attention has been given 

to the understanding of the machinability of 

hardened steel [1-3]. In manufacturing industries, 

especially in die and mould manufacturing 

industries, machining of hardened steels is 

performed. Owing to the high strength of the 

hardened steels, their milling relatively poses 

difficulties during mould and die making [4]. 

Among several milling operations, the face 

milling is associated with relatively high metal 

removal rates and therefore, it is an operation of 

choice particularly for quick and precise 

machining of large, flat surfaces.  

Product quality has always been a critical element 

in manufacturing operations. Machining 

processes are required to work with specific 

attention towards manufacturing specifications in 

order to produce high quality final products 

measured in terms of dimensional accuracy, 

surface roughness, etc. It has been reported that 

several mechanical properties including wear 

resistance and fatigue strength of machined parts 

depend largely on the surface roughness (Ra) [5-

8].  

In recent years, several researchers have studied 

the effect of milling parameters on the surface 

roughness. Biermann and Heilmann [9] observed 

that use of coolant during face milling of 

aluminum alloys improves the surface roughness.  

Munoz-Escalonaa and Maropoulos [5] developed 

a mathematical model for face milling of Al 

7075-T7351 with square insert tools, which 

predicted the surface roughness with 98% 

accuracy. During dry milling of Hadfield steel 

with PVD TiAlN- and CVD TiCN/Al2O3 coated 

carbide inserts, feed rate has been found to be the 

most influential factor for surface roughness [10]. 

Zhang et al. [11] found that the depth of cut is the 

main factor affecting the Ra during end face 

milling of C45E4 (ISO) steel [11]. An et al. [12] 

revealed that machining at high cutting speed 
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minimizes the surface roughness but the feed rate 

and the depth of cut (DoC) affect it adversely.  

Accuracy and precision of mechanical design, 

manufacturing processes, and manufacturing 

systems are generally evaluated in terms of 

dimensional deviation emphasizing its 

importance in research pertaining to these fields. 

The tool wear itself is directly connected with a 

consecutive dimensional deviation of work piece 

from the nominal value. During machining, the 

magnitude of dimensional deviation gets affected 

by several factors such as work piece and cutting 

tool material, cutting conditions, etc. [13]. 

Researchers have performed studies about 

dimensional deviation of the work piece during 

machining [14-16]. Researchers [17-19] have 

reported methods for prediction of both 

roughness and dimensional deviation of the work 

piece. Dimensional tolerance of the inserts is an 

extremely important machining parameter 

specially, when it comes to machining of ultra-

precise jobs such as production of machine tools, 

jigs and fixtures, measuring instruments and for 

that matter even the tool itself. Available 

literature pertaining to machining reveals that the 

effect of dimensional tolerance of the inserts on 

machining performance needs to be explored to 

understand and establish relationship between this 

important parameter with machining 

performance. Investigations of this nature shall be 

of great importance to the tasks, which require 

high precision and close dimensional tolerances. 

Keeping this in view, this paper investigates the 

effect of milling parameters i.e. dimensional 

tolerance of the inserts, cutting speed, feed rate, 

and depth of cut on the machining performance, 

including both dimensional deviation and surface 

roughness during face milling for EN 31 steel. 

Further, multi-response optimization of the face 

milling process has also been done using Genetic 

Algorithm (GA) to minimize the surface 

roughness and dimensional deviation 

simultaneously. 

 

2. Experimental Details and Data Analysis  

In the following sections, the details of 

experimental work and procedure for data 

analysis are presented. 

 

I.  Material 

The experimentation was performed on a CNC 

vertical milling machine (model: Chandra; make: 

BFW, India). EN 31 steel plates with dimensions 

of 300 mm   150 mm   25 mm were used as 

work piece material and they were machined 

using a face milling cutter of 80 mm diameter. 

Figure 1 (a and b) shows the schematic of milling 

operation. EN 31 steel has high resistance to 

wear and it is widely used to manufacture such as 

brake roller, cylindrical roller, conical and needle 

rollers due to its poor thermal conductivity and its 

ability to maintain mechanical properties at high 

temperature [20]. Table 1 shows the chemical 

composition of the EN 31 steel.  
 

II. Face milling Cutter 

Face milling cutters with two types of solid 

carbide tool inserts i.e. SEG13T3AGFN-JP 

HTi10 and SEMT13T3AGSN-JH VP15TF, were 

used in the experiments. These two inserts having 

different dimensional tolerance. Figure 2 (a and 

b) shows a solid carbide tool inserts along with 

their geometry used in this study. 
   

III. Machining conditions 

The machining parameters selected in this study 

were the dimensional tolerance of the inserts (A), 

spindle speed (B), the feed per tooth (C), and the 

depth of cut (D). Two levels of dimensional 

tolerance and three levels each of the other 

machining parameters were selected. Table 2 

shows the selected machining parameters and their 

levels.  
 

IV. Measurement of the response variables 

In this study, two response variables i.e. surface 

roughness average (Ra) and dimensional deviation 

(Dd) were measured. Surface roughness average 

values (Ra) were measured immediately after the 

milling process using surface roughness test 

equipment (model: SURFTEST, SV-2100; make: 

Mitutoyo, Japan). The measurement of 

dimensional deviation (Dd) was made with a 

digital vernier caliper (Mitutoyo, Japan).  
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Figure 1: Schematic diagram of face milling (a) 3D 

view and (b) 2D view 

Table 1: Wt% composition of EN 31 

C Mn Si Cr S P Mg 

1.5 0.52 0.2

2 

1.

3 

0.0

5 

0.0

5 

46.

6 

       

 

Figure 2: Tool inserts and their geometry: (a) 

SEG13T3AGFN-JP HTi10, (b) SEMT13T3AGSN-

JH VP15TF 

 

V. Taguchi design  

Experiments were performed as per the Taguchi 

design L18 mixed orthogonal array. Taguchi 

method is widely used for optimizing industrial/ 

production processes [21-23]. The Taguchi 

design comprises of the following steps: selection 

of a proper orthogonal array (OA) and conducting 

experiments as per the selected array; analysis of 

the collected data; identification of the optimum 

condition; confirmation of the result [21]. Many 

researchers have used the Taguchi method to 

optimize the various machining operations [10, 

21-25].  

Table 3 shows the L18 mixed orthogonal array. 

This array has eighteen rows and four columns. 

The machining parameters are assigned to these 

columns as shown in Table 3. The goal of this 

study is to minimize both surface roughness and 

dimensional deviation and therefore, the lower-

the- better quality characteristic was used for both 

the response variables. The signal- to-noise (S/N) 

ratio for lower-the better quality characteristics is 

obtained from Eqn. (1).  

 

1 2S N 10log
1

m
y
imi

  


                                       

(1) 

 

Where S/N is the ratio of the mean (Signal) to the 

standard deviation (Noise), m is number of 

repetition of the measurement, yi is the value of 

response variable for ith experiment. 

VI. Multi-Objective Optimization Using Genetic 

Algorithm 

It has been reported that typically, the machining 

parameters exhibit a nonlinear relation with 

responses which causes difficulty in doing 

analytical optimization, especially in case of multi-

objective optimization where more than one 

objective need to be optimized simultaneously [26].  

Multi-objective optimization simultaneously 

optimizes two or more responses with conflicting 

objectives subject to certain constraints [27]. It has 

been observed that in multi-objective problems, 

such as the one considered in this study where the 

objective is to minimize both surface roughness and 

dimensional deviation, an attempt to improve an 

objective may further deteriorate the second 

objective. Thus, it may be difficult to obtain a single 

solution, which simultaneously optimizes each and 

every objective.  In situations like this, a non-

dominated, Pareto optimal solution is found as it 

improves an objective without worsening the other. 

Therefore, while solving a multi-objective 

optimization problem, the main objective is to find 

such non-dominated solutions.  

The genetic algorithm (GA) offers several 

advantages over other optimization methods and 

consequently, it has been used for solving multi-

objective optimization problem considered in the 

present study. GA is very effective technique for 

solving multi-objective optimization problems as it 

computes an approximation of the entire Pareto 

front in a single algorithm run. Su and Hou [28] 

demonstrated the utility of multi-population 

intelligent genetic algorithm (MPIGA) in terms of 

its effectiveness in generating Pareto-optimal 
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solutions required to arrive at optimal solution. 

Liang and Leung [29] solved multimodal function 

optimization problems by integrating GA with 

adaptive elitist-population strategies (AEGA) and 

they reported that this technique is very efficient 

and effective for the multi-objective optimization of 

complicated real-world problems. Zio and Bazzo 

[30] applied a technique called clustering procedure 

to a multi-objective optimization problem i.e. 

redundancy allocation problem and found that this 

procedure considerably reduces number of 

representative solutions in the Pareto front which 

enables the decision maker to select the final 

solution based on the assumed  preferences. Eiben 

and Smit [31] reported that application of 

evolutionary tuning algorithms provide superior 

values of the parameters involved in the multi-

objective optimization problems. Moreover, GA 

was applied to optimize the machining parameters 

during turning and electro-discharge machining [32-

36].  

Table 2: Machining conditions 

Factors Symbol Unit Level 1 Level 2 Level 3 

Dimensional tolerance of the insert A mm 0.025 0.13 - 

Spindle speed B rpm 500 1000 1500 

Feed per tooth C mm/tooth 500 2000 2500 

Depth of cut D mm 0.4 0.7 1 

 
Table 3: Experimental layout using an L18 

Expt. No. A B C D 

1 1 1 1 1 

2 1 1 2 2 

3 1 1 3 3 

4 1 2 1 1 

5 1 2 2 2 

6 1 2 3 3 

7 1 3 1 2 

8 1 3 2 3 

9 1 3 3 1 

10 2 1 1 3 

11 2 1 2 1 

12 2 1 3 2 

13 2 2 1 2 

14 2 2 2 3 

15 2 2 3 1 

16 2 3 1 3 

17 2 3 2 1 

18 2 3 3 2 

 

3. Results and Discussion 

The details of the data analysis and related 

technical discussions in light of the available 

literature are presented in the following sections: 

 

 

 

 

I. Analysis of S/N ratio 

Table 4 lists the values of Ra and Dd for all 

eighteen experiments and the corresponding S/N 

ratios that have been obtained from Eq. (1). The 

normal probability plot of the residuals for Ra and 

Dd are shown in Figure 3 and Figure 4 

respectively, which depict that the errors are 

normally distributed as all the point either lie on 

the line or are close to it.  

 

Table 4: Experimental results and S/N ratio for surface roughness and dimensional deviation 

Expt. No. A B C D Ra(µm) Dd(mm) S/N for Ra S/N for Dd 

1 0.02

5 

500 500 0.

4 

0.356 0.05 8.971 26.021 

2 0.02

5 

500 200

0 

0.

7 

0.726 0.22 2.781 13.152 

3 0.02 500 250 1. 0.852 0.32 1.391 9.897 
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5 0 0 

4 0.02

5 

100

0 

500 0.

4 

0.301 0.02 10.429 33.979 

5 0.02

5 

100

0 

200

0 

0.

7 

0.512 0.09 5.815 20.915 

6 0.02

5 

100

0 

250

0 

1.

0 

0.651 0.29 3.728 10.752 

7 0.02

5 

150

0 

500 0.

7 

0.387 0.05 8.246 26.021 

8 0.02

5 

150

0 

200

0 

1.

0 

0.872 0.26 1.190 11.701 

9 0.02

5 

150

0 

250

0 

0.

4 

0.990 0.09 0.087 20.915 

10 0.13 500 500 1.

0 

0.312 0.08 10.117 21.938 

11 0.13 500 200

0 

0.

4 

0.489 0.11 6.214 19.172 

12 0.13 500 250

0 

0.

7 

0.385 0.1 8.291 20.000 

13 0.13 100

0 

500 0.

7 

0.114 0.02 18.862 33.979 

14 0.13 100

0 

200

0 

1.

0 

0.497 0.11 6.073 19.172 

15 0.13 100

0 

250

0 

0.

4 

0.528 0.06 5.547 24.437 

16 0.13 150

0 

500 1.

0 

0.218 0.03 13.231 30.458 

17 0.13 150

0 

200

0 

0.

4 

0.618 0.04 4.180 27.959 

18 0.13 150

0 

250

0 

0.

7 

0.705 0.06 3.036 24.437 

 

Figure 3: Normal plot of residuals for surface 

roughness 

 

 

Figure 4: Normal plot of residuals for dimensional 

deviation 

 

Analysis of variance (ANOVA) was used to 

determine the statistically significant factors that 

influence the Ra and Dd. The analysis was made 

for a level significance of 5%. The ANOVA 

results for surface roughness and dimensional 

deviation are presented in Table 5 and Table 6 

respectively. Table 5 reveals that the dimensional 
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tolerance of the insert, spindle speed, and feed per 

tooth all have statistically significant on the 

surface roughness. However, depth of cut does 

not have statistically significant effect on the 

surface roughness. Further, from the analysis of 

the Table 6, it can be seen that all the machining 

parameters have statistically significant effect on 

the dimensional deviation. Furthermore, the 

analysis of the results showed that the feed per 

tooth is the dominant factor which affects both 

surface roughness and dimensional deviation with 

a percentage contribution of 62.257% and 

45.275% respectively. The literature also reveals 

the same result i.e. surface roughness is mainly 

influenced by feed per tooth [24, 37- 38]. 

 

II. Regression analysis  

Regression analysis is used to establish relation 

between independent and dependent variables so 

as to predict dependent variable for a given set of 

independent variables. A first-order regression 

model is given in Eqn. 2. 





k

i

ii xy
1

0                                           

(2)  

Where β0 and βi  are the constants called 

regression coefficients, k is the number of 

independent variables and ɛ is an error term. 

In the present study, Ra and Dd were chosen as 

output variables while dimensional tolerance of 

the inserts (A), spindle speed (B), feed per tooth 

(C), and DoC (D) were independent (input) 

variables. The first-order equations were as 

follows: 

Ra = 0.194  - 1.885 A + 0.000112 B + 

 0.000207 C + 0.033 D                         
           

(3) 

Dd = -0.0030-0.825 A-0.000058 B+

0.000058 C+0.2000 D                 
       (4) 

The predicted values obtained from first-order 

models (Eqn.3 and Eqn.4) for surface roughness 

and dimensional deviation respectively are shown 

in Table 7. On comparing the experimental values 

of response variables given in Table 4 with those 

of predicted values given in Table 7 a close 

agreement between experimental and predicted 

values is observed.  

  

Table 5: ANOVA table for surface roughness 

Factors SS DF MS F P-Value % Contribution 

A 60.18 1 60.182 19.35

2 

0.001 16.054 

B 35.63 2 17.815 5.73 0.022 9.505 

C 233.3

9 

2 116.69

3 

37.52 0.000 62.257 

D 14.58 2 7.289 2.34 0.146 3.889 

Error 31.10 10 3.110   8.296 

Total 374.8

7 

17    100.000 

 

Table 6: ANOVA table for dimensional deviation 

Factors SS DF MS F P-Value % Contribution 

A 129.0

7 

1 129.07 26.0

3 

0.000 14.061 

B 115.3

4 

2 57.668 11.6

3 

0.002 12.565 

C 415.5

9 

2 207.79

4 

41.9

1 

0.000 45.275 

D 208.3

5 

2 104.17

3 

21.0

1 

0.000 22.698 

Error 49.58 10 4.958   5.401 

Total 917.9

2 

17    100.000 

 

 

Table 7: Predicted values of Ra and Dd 
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Expt. 

No. 

A B C D Ra Dd 

1 0.025 500 500 0.4 0.320 0.05638 

2 0.025 500 2000 0.7 0.640 0.20338 

3 0.025 500 2500 1 0.753 0.29238 

4 0.025 1000 500 0.4 0.376 0.02738 

5 0.025 1000 2000 0.7 0.696 0.17438 

6 0.025 1000 2500 1 0.809 0.26338 

7 0.025 1500 500 0.7 0.441 0.05838 

8 0.025 1500 2000 1 0.762 0.20538 

9 0.025 1500 2500 0.4 0.846 0.11438 

10 0.13 500 500 1 0.141 0.08975 

11 0.13 500 2000 0.4 0.432 0.05675 

12 0.13 500 2500 0.7 0.545 0.14575 

13 0.13 1000 500 0.7 0.187 0.00075 

14 0.13 1000 2000 1 0.508 0.14775 

15 0.13 1000 2500 0.4 0.592 0.05675 

16 0.13 1500 500 1 0.253 0.03175 

17 0.13 1500 2000 0.4 0.544 0.00125 

18 0.13 1500 2500 0.7 0.657 0.08775 

III. GA Optimization Solution 

GA tool of MATLAB was used to generate 

Pareto optimal solution points for multi objective 

optimization (minimization) of surface roughness 

and dimensional deviations simultaneously. The 

controlled elitist genetic algorithm (NSGA-II) is a 

variant of GA and it was used to solve multi-

objective optimization problem considered in the 

present study. This variant of GA retains the 

diversity of population and also generates an 

optimal pareto front with convergence to favor 

individuals with better fitness value. Objective 

function equations (fitness function) for 

minimization of both the response variables were 

written in the standard format in the “Mfile” 

extension and saved in the MATLAB directory.  

The objective functions are given below: 

Objective I = min [Ra]  

Objective I = min [Dd]  

This file was run in the “gatool” using the 

“gamultiobj” solver.  For solving the fitness 

function to generate the results, the bound 

constraints for all the four input variables were 

placed at the required constraint section. For 

implementation of “gamultiobj” solver following 

options were used: Population type: Double 

Vector/Bit Strong/Custom; Population size: 75; 

Creation Function: Constraint dependent; 

Selection function: Tournament (size 2); 

Crossover function: Scattered; Mutation function: 

Adaptive feasible; Direction of migration: 

Forward (migration function 0.2); Distance 

measure function: distance crowding and 

Stopping Criteria: 150 generations. 

The Pareto front of optimization objective after 

first 50 iterations is shown in Figure 5. In Figure 

5 the two response variables i.e. Ra and 

dimensional deviation are shown along x-axis and 

y-axis respectively and the individual non 

dominated solution points are shown as the star 

marks between both the axes among the Pareto 

optimal set of all the star points which form the 

Pareto front. It can be seen from Figure 5 that in 

region A, the dimensional deviation decreases 

rapidly along with very little increase in the 

surface roughness. Meanwhile, the value of the 

dimensional deviation comes close to zero in 

region C. Thus, the region B is satisfying region 

to optimize i.e. minimize both the surface 

roughness and dimensional deviation 

simultaneously and it is regarded as an optimal 

region. This is also evident from the results listed 

in Table 8.
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Figure.5: Pareto-optimal set of solutions 

 
Table 8: Pareto optimal solution point and corresponding values of the response variables 

S.No. Machining  Parameters Responses 

 A B (rpm) C (mm/tooth) D (mm) Ra (µm) Dd (mm) 

1 0.130

0 

559.6164 500.0793 0.4041 0.128 0.03289247

1 

2 0.130

0 

559.6164 500.0793 0.4042 0.128 0.03286804

4 

3 0.130

0 

559.6162 500.0776 0.4218 0.130 0.02935251

7 

4 0.129

9 

559.6208 500.1274 0.4302 0.130 0.02755639

6 

5 0.130

0 

559.6162 500.0796 0.4427 0.130 0.02515990

5 

6 0.129

8 

559.6209 500.1268 0.4441 0.130 0.02473243

6 

7 0.130

0 

559.6164 500.0793 0.4552 0.130 0.02266957

7 

8 0.129

9 

559.6164 500.1274 0.4552 0.130 0.02255954 

9 0.130

0 

559.6162 506.9199 0.4630 0.131 0.02070755

9 

10 0.130

0 

559.6164 500.0776 0.5067 0.131 0.01235655

2 

11 0.129

8 

559.6164 500.0778 0.5085 0.132 0.01181431

2 

12 0.130

0 

559.6164 500.0793 0.5246 0.132 0.00877828

3 

13 0.129

8 

559.6208 500.1268 0.5246 0.133 0.00862146

3 

14 0.130

0 

559.6164 500.0796 0.5370 0.133 0.00630533

3 

15 0.130 559.6167 500.0793 0.5468 0.133 0.00435243
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0 3 

16 0.129

9 

559.6208 500.1274 0.5487 0.134 0.00384761

2 

17 0.130

0 

559.6165 500.0777 0.5594 0.134 0.00177731

2 

18 0.129

8 

559.6164 500.0798 0.5675 0.134 6.63E-06 

19 0.120

9 

621.5995 506.4114 0.5472 0.159 6.27E-06 

20 0.120

8 

621.5998 506.4160 0.5468 0.159 4.35E-06 

21 0.100

9 

767.9522 506.8843 0.5070 0.21142

0 

2.77E-06 

22 0.100

9 

767.9523 506.8843 0.5070 0.21144

5 

6.97E-08 

23 0.086

4 

1145.7344

0 

899.9535 0.4427 0.36034

0 

1.06E-08 

24 0.086

4 

1145.7344 899.9538 0.4427 0.36034

0 

3.54E-09 

In real life situations, the responses often conflict 

to fulfill the different objective simultaneously. 

Therefore, it is generally difficult to find a single 

solution for all the objectives considering the all 

responses together. In the present study, input 

control parameters of the Pareto optimal set of 

solutions along with the corresponding value of 

responses at each set of parameters using GA 

(multi-objective) are tabulated in Table 8. Table 8 

reveals that an attempt to minimize the surface 

roughness leads to increase in the dimensional 

deviation and vice versa. Table 8 also reveals that 

each solution point provided by GA is a unique 

(none dominated) solution point. Therefore, a set 

of solution points is a better option to be 

determined instead of a single solution point for 

optimizing both the responses simultaneously. In 

addition, change in any of the control parameters 

further improves a response on the cost of others. 

Thus, it may be concluded that GA is a novel 

approach for solving such problems as it 

generates the Pareto optimal set of solutions 

rather than a single unique solution, which 

enables the decision maker to obtain a wide range 

of optimal setting of controlling parameters for 

simultaneous optimization of the response 

variables under investigation. Hence, operational 

flexibility is achieved as different parametric 

combinations may be used for desired responses 

within range. From the results of the predicted 

values of surface roughness and dimensional 

deviation obtained from Eqn. (3) and Eqn. (4) 

respectively and presented in Table 7, it can be 

seen that input parameters listed in the 

experiment number 10 leads to minimum value of 

surface roughness i.e. 0.141 µm while the input 

parameters listed in the experiment number 13 

results in minimum value of dimensional 

deviation 0.00075 mm.  From the optimization 

results obtained using GA (Table 8), it can be 

seen that run 18 result in minimum values of both 

surface roughness and dimensional deviation. 

Table 9 presents the minimum predicted values of 

surface roughness and dimensional deviation and 

the values of these responses obtained using 

multi-optimization by GA. It can be seen from 

Table 9 that optimization with GA provides not 

only a better solution but also optimizes the 

response variables simultaneously. In addition, 

confirmation test was performed at optimum 

levels of controlling parameters. The result of 

confirmation test is also presented in Table 9. 

Table 9 reveals that the results obtained from the 

confirmation test shows a good agreement with 

the optimized values of responses using GA. 

Therefore, the results obtained from the 

confirmation tests reflect successful optimization. 

 

4. Conclusion 

Based on the Taguchi L18 mixed orthogonal array, 

the face milling experiments on EN 31 with two 

types of solid carbide tool inserts steel were 

performed using a CNC vertical milling machine. 

Effect of four milling parameters including 

dimensional tolerance of the insert on two 

response variables i.e. surface roughness and 

dimensional deviation was investigated. The 

empirical relations between milling parameters 

and surface roughness as well as dimensional 

deviation were obtained. Multi-objective 

optimization problem was solved using GA and a 

set of GA Pareto-optimal solutions was obtained. 

It has been observed that Pareto frontier graphics 

provide several different situations which 
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facilitate the choice of right parameters for any 

condition and consequently, it helps the decision-

making process. Conclusions that can be drawn 

on the basis of the present study are given below:  

 Feed per tooth is the dominant factor affecting 

both surface roughness and dimensional deviation 

as their percentage contribution for these 

response variables obtained through ANOVA is 

62.257% and 45.275% respectively.  

 The dimensional tolerance of the inserts 

significantly affects both surface roughness and 

dimensional deviation. In addition, the best value 

of dimensional tolerance of the inserts that yields 

minimum value of surface roughness as well as 

dimensional deviation is found to be 0.13 mm. 

 Multi-objective optimization using GA enables 

decision maker to select optimal milling 

parameters to optimize the surface quality in face 

milling.  

 Multi-objective optimization using GA 

suggests that the optimum machining parameters 

i.e. dimensional tolerance of the inserts (A), 

spindle speed (B), the feed per tooth (C), and the 

depth of cut (D) are 0.13 mm, 559 rpm, 500 

mm/tooth, 0.57 mm respectively, which result in 

best optimum values of the surface roughness at 

0.134 µm and dimensional deviation at 6.63E-06 

mm simultaneously. 

 

 
 

 

Table 9: The predicted and optimized values of response variables 

 A B (rpm) C (mm/tooth) D (mm) Ra (µm) Dd (mm) 

Predicted 

 

0.1

3 

500 500 1 0.141 0.08975 

0.1

3 

1000 500 0.7 0.187 0.00075 

Optimized 0.1

3 

559 500 0.57 0.134 6.63E-

06 

Confirmation test 0.1

3 

559 500 0.57 0.136 4.24E-

05 
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