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Abstract- Recently, algorithms of machine learning are widely used in the field of electroencephalography (EEG)
-Brain-Computer interfaces (BCI). In this paper, a sign language software model based on the EEG brain signal
was implemented, to help the speechless persons to communicate their thoughts to others. The preprocessing stage
for the EEG signals was performed by applying the Principle Component Analysis (PCA) algorithm to extract the
important features and reducing the data redundancy. A model for classifying ten classes of EEG signals, including
Facial Expression (FE) and some Motor Execution(ME) processes, had been designed. A neural network of three
hidden layers with a deep learning classifier had been used in this work. Data set from four different subjects
were collected using a 14 channels Emotiv epoc + device. A classification results with an accuracy of 95.75% were
obtained for the collected samples. An optimization process was performed on the predicted class with the aid of
the user, and then the signing class will be connected to the specified sentence under a predesigned lock-up table.

I. INTRODUCTION

It is well known that, the system which connects human brain signals with appliances or devices without requiring
of any physical contact is called BCI. It has been seen as a new way for communication, where the Brain activity
has been used as a refected form by electric brain signals to control external systems such as computers, wheelchairs,
switches, or neuroprosthetic extensions [1]- [6]. Electroencephalographic (EEG) signals mean that the continuous potential
or voltage fluctuation collected in a non- invasive manner from a human’s scalp. A special EEG headset having many EEG
sensors (electrodes) put on special points on the head depending on the international 10/20 system electrode pattern. The
obtained signal is interpreted as a randomly determined time-series signal with multiple lengths and tiny amplitudes (tens
of microvolts)[2], [3]. EEG signals are modelled and classified into five types: (Theta, Delta, Beta, Alpha, and Gamma
waves), which are responsible to capture different associated brain activities inside the brain [7], [8]. EEG signals contain a
high redundancy in the collected data, so the important stage before being classifying those signals, is the feature extraction
stage. In fact, a feature illustrates a distinctive attribute, identifiable measure, and functional element getting from a segment
of samples. Feature extraction used to maintain the significant information in the signal and minimizing its loss as much as
possible, as well as to simplify the needed resources for describing the huge amount of data accurately. So, this will lead to
a simple implementation that reduces the processing cost for the information, and eliminates the need for data compression
[31, [9]-[13]. In this work, Principle Component Analysis (PCA) method was used for the unsupervised feature extraction
process. This method is a descriptive statistical technique that describes the differences between the samples of the dataset
and the most correlated samples. PCA detects the principal component of the dataset of the signal, so it will perform
the dimension reduction of the data [14]-[16]. Algorithms for classifying EEG-based BCIs were classified into four main
classes: matrix and tensor, adaptive, deep learning, and transfer learning classifiers as well as a few other diverse classifiers

[16]-[20]. In EEG researches, machine learning had been used to discover the related information for neuroimaging and
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neural classification. The advances in machine learning and the availability of huge EEG data sets led to deep learning
deployment in analyzing EEG signals and in the field of understanding brain functionality by defining collected information

inside it [17], [18], [22]-[25].

II. RESEARCH METHODOLOGY

The work in this paper focuses on EEG signal features to identify the EEG signals classes for facial expressions (FEs)
and some motor execution actions. FEs include: surprise, smile, left wink, right wink, and mouth opened. While, motor
execution actions include:right-hand lifting, left-hand lifting, head rotating to right, head rotating to left and clapping. All
these signals first collected by EMOTIV EPOC + 14 Channel Mobile Brain wear headset, and fetched by the licensed
software of EMOTIV Pro with python environment. A model for classifying those signals had been designed. Fig. 1 shows

the research methodology block diagram. The details of each step will be explained in the next subsections.

Data Data Features Classification model
Collectson Preprocessing Extractions =

Development

Text to Binding clazses with Performance
< . < .
speech cotresponding sentences Evaluation

Figure 1: Research methodology block diagram

A. Data Collection

The EEG signal data set samples were collected using 14 channels EMOTIV Epoc + headset device with a sampling
frequency of 128 Hz and a built-in digital notch filter at 50 Hz and 60 Hz and a digital band-pass filter of 0.16-45 Hz.
The 14 channels extended around the head according to international 10/20 system electrode pattern placement as shown
in Fig. 2. The data was collected from four subjects of different ages (10-50 years), males and females while they are
doing of the required facial expressions and the motor execution actions. The EEG signals were recorded by the monthly
licensed Emotiv software (Emotiv PRO) and saved as excel files (.csv files) to be used later in training the neural network
within the python environment. During the recording process, about 6487 EEG samples were collected. Table I shows

some samples of the collected EEG data for lifting the left hand for one subject.

B. Data Pre-Processing

This stage is the removal of the artefacts of EEG signals, which is doing by the Emotiv headset itself, where the data
is recorded directly as it is received from the headset. There is a good amount of signal processing and filtering in the
headset to remove artifacts and harmonic frequencies. So, the signals appear clean when we gained a good contact quality.
The signals had been sampled at 2048 Hz sampling frequency, and then applied to a dual notch filter at 50 Hz and 60 Hz
as well as a low pass filter at 64 Hz cutoff frequency. Finally, the data was sampled down to 128 Hz or 256 Hz.
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Figure 2: International 10/20 system electrode pattern placement

TABLE I
EEG Datasets Samples for Left-Hand Lifting
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C. Feature Extraction

The goal of this step is to characterize the EEG signals depending on few related values called "features" , which should
capture the related information within the EEG signals which is relevant to characterize the distinctive nature of the brain
mental states to be identified, while refusing the noise and other non-relevant information [26]. In this stage, the obtained
preprocessed data from the EMOTIV headset is processed with a PCA algorithm to improve the classifier’s accuracy. PCA
is a technique used for the reduction of dimensionality of the large data sets. This can be achieved by converting the huge
set of variables into a smaller one which contains most of the information in the large set. To implement PCA, the mean
values must be computed firstly, so that we can compute the standardization (Z) of the initial values of the dataset to
transform all the variables to the same range [16], [27], [28] .

value — mean

ey

= Standard deviation
The second step of PCA is to compute the covariance matrix, to check if there is any relationship or correlation between
the variables of the dataset to reduce the information redundancy as much as possible. First of all, the covariance between
all potential pairs of the initial dataset variables was computed using Eq. 2, to instruct the entries of the covariance matrix,

which is a p X p symmetric matrix. o
2oiy Xi¥i — pXY

p

cov[X,Y] =

(@)

Where: X means the mean value of variable X,

p is the dimension’s number

The third step of PCA is to compute the eigenvectors and eigenvalues for the dataset values, to locate their principal
components. The principal components are the new uncorrelated variables and have the most of information about the
dataset is compressed in the first components and it gradually descends. The fourth step is to find the feature vector, which
is represented by a matrix with columns of eigenvectors for the required component from the previous step. This will
lead to keeping only k components (eigenvectors) instead of the total number of them (p). The final step of PCA is the
reformation of the original dataset axis to the axis of the selected principal components, by multiplying the transpose of
the feature vector as in Eq. 3

Final dataset = FeatureVectorT x ZT 3)

D. Classification Model Development

In this work, a neural network with deep learning was built to classify the EEG signals for the ten actions including facial
expression and motor execution. The main facility of applying a deep learning mechanism is that, it often continues to
improve as the size of the dataset increases. This task was implemented with spider3.3.1/ Python environment by importing
keras libraries, which is a deep learning API written in Python. A Sequential model, which is a linear stack of layers with
3 hidden layers which contain (1024, 512 and 256) neurons respectively, was built with an activation function of type
tanh(X). The output layer consists of 10 output neurons with an activation function of type SoftMax(X). Fig. 3 shows the

sequential model of the work.
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Figure 3: Sequential model representation

E. Performance Evaluation

The collected dataset samples are divided into two groups: 80% training dataset and 20% testing dataset to construct the
sequential model of the classification to be tested. The performance is evaluated in each epoch concerning two parameters:
loss-values and accuracy of the classification. Accuracy calculates the percentage of predicted values (yPred) that match
with actual values (yTrue). When running the model, important parameters effect must be observed since they significantly
affect the accuracy and the processing time of the classification process. The parameters include: number of samples for
each class,the total number of samples, and the type of the activation function applied within the hidden and output layers
neurons. When using an equal number of samples for each class, this will give better classification accuracy than those
with a different number of samples per class as well as to the obvious reduction in the number of epochs required to
train the neural network, and hence the overall processing time will be reduced, as shown in Fig. 4. The total number
of samples is the size of the collected samples, as this size increases the deep learning will give a better classification
result but this increment cannot be continued since the processing time will be increased as well as to the stability of the
accuracy results to a specific value. Finally, there are many types of activation functions such as: sigmoid, relu, SoftMax,
tanh and exponential activation function. So, after implementing those types within the neurons of the hidden layer, the

most acceptable accuracy level was obtained when using tanh(X) activation function, while the SoftMax(X) was used within
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the output layers neurons. Root Mean Square (RMS) was used as an optimizer to minimize the error while learning the

neural network.

Totalno.of  |Accuracy % Accuracy %

98.00%
samples. {epoch 150) _|(epoch 100) Nowofsamples \class
6487 93.04% 91.75%|random no. of samples/class 9600%
5943 91.94% 92.43%)|random no. of samples/class
4168 93.01%| 94.24% | random no. of samples/class 2400%
3173 88.73%) 93.14%|random no. of samples/class
2270, 93.77% 93.72%)|random no. of samples/class
2001 93.56% 9300|200 samples / class 9200%
973 94,47% 95.75%| 100 samples / class Aecuracy W epoch 150
751 93.33% 93.00%| 75 samples / class 9040% B epoch 100
501 95.25% 95.00%|50 samples / class
276 92.73% 93,64%)|25 samples / dlass 88.00%
101 92.50% | IINNOTI5H] 10 samples / class
86.00%
E4.00% T -
6487 5943 4168 3173 2270 2001 973 751 501 276 101
No. of samples

Figure 4: Classification accuracy levels

F. Binding Classes with Corresponding Sentences

After acquiring the predicted class of the specific sign an optimization process will be followed, by asking the user about
the validity of the detected sign, if it is true then a lockup table will be searched to bind the sign with the corresponding
sentence, else the prediction process will be repeated until reaching the required sign. Table II shows the binding of sings
with sentences. Then the selected sentence will be transferred to a speech by intended text to speech instruction in python.

TABLE II
Binding of Sings with Sentences

Class

EEG Signal Type Number Class Label Sentence

1 Surprise I have headache
2 Smile Thank you

FE 3 Right wink I have eye pain
4 Left wink I need help
5 Mouth opened I'm hungry
6 Left-hand lifting I need my son
7 Right-hand lifting I need my daughter

ME 8 Head to right I need my parents
9 Head to left I have stomach
10 Clipping I want to go outside

III. CONCLUSION

In this paper, the classification of EEG time series signal was done by building a deep neural network and implementing
deep learning techniques. Ten classes of EEG signal were classified from specialized dataset samples recording. In the
offline training, the classification accuracy results reached to 95.75% with minimum processing requirements. So, the sign
language model for binding those classes with the corresponding sentences, became more accurate and faster than those

models which toke the images for EEG signal segments to feed the deep learning neural network.
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