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Abstract- Sparse array such as the coprime array is one of the most preferable sparse arrays for the direction of
arrival estimation due to its properties, like simplicity, the capability of resolving more sources than the number of
elements and resistance to mutual coupling issue. In this paper, a new coprime array model is proposed to increase
the degree of freedom (DOF) and improve the performance of the coprime array. The newly designed array can
avoid mutual coupling by minimizing the lag redundancy and expand the central lags in the virtual difference
co-array. Thus, the proposed structure can resolve more sources than the prototype coprime array using the same
number of elements with the improved direction of arrival estimation. Simulation results demonstrate that the
proposed array model is more efficient than the other coprime array model.

keywords: Coprime array, Degree of freedom, Difference co-array, Direction of arrival (DOA) estimation-sparse
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I. INTRODUCTION

In array signal processing, an array of elements gathered the received data for estimating the sources signal parameters

[1]. The traditional uniform linear array (ULA) consists of N elements with uniform spacing between the elements that can

resolve up to N-1 source or degree of freedom (DOF). To identify more sources, extra elements are added to increase the

number of DOF that may lead to increased mutual coupling due to the inter-element spacing which is half the wavelength

and complexity [2]. To cope with this situation, different types of the sparse array with the different co-array concept are

implemented to resolve up to O(N2) source using N elements. As an example, MRA [3], MHA [4], nested array [5], and

coprime array [6] are sparse arrays. So as the size of the difference co-array is larger than the number of the physical

elements, more uncorrelated sources can be recovered using the DOA estimator. MRA and MHA sparse arrays expanded

the size of the difference co-array with a minimum number of holes (empty positions) and reduced the mutual coupling,

but they lack the formal expression for the array configuration besides the long processing time to build the physical array

[7]. The nested array (NA) and coprime array (CA) focus on these issues and provide large virtual arrays that have a

formal expression for the physical array geometry. NA proposed by [5] can generate a hole-free virtual array using two

ULAs, one is a dense array with small spacing between the elements and the other is a sparse array. The resulted virtual

array suffers from remarkable mutual coupling that declined the DOA estimation performance. One of the most interested

sparse array models is the CA that attracts many researchers over the last few. CA consists of two ULA (M,N) with small

inter-element spacing between element pairs that eliminate the mutual coupling effect. Lately, different works have been

suggested to enhance the CA configuration by maximizing the obtainable DOFs and reducing the mutual coupling affects.

In [6], the extended coprime array (ECA) is proposed to get MN +N − 1 contiguous lags by extending the M-subarray

to 2M. The authors in [8] proposed two CA configurations, the former is CACIS in which one sub-array is compressed
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by a compression factor (CF), the latter is CADiS configuration that indicate one subarray is displaced from the other one

by a specified distance regarding the (M,N) pairs value. After reconstructing the array model, different spatial smoothing

technique like MUSIC and EEPIRT can be applied to recover the sources which rely on the continuous lags to perceive the

signal covariance matrix rank as in [5], [6], [9], [10]. Other works rely on the interpolation technique to manage the holes

and exploits of all the unique lags constructed in the virtual array as in [11], [12]. While the CA model is a prospective

sparse array model, the main issue is the holes and the inconsecutive ULA lags that directly affects the number of the

DOFs [13]. Far from the issue of the holes, different elements pair may produce the same virtual elements in the difference

co-array, the number of frequent elements (m) in the difference co-array is called the weight function [14]. So, following

some design criteria is an important to construct a sparse array, these criteria include: [9].

• The formal expression that identifies the element positions in an array.

• Large virtual elements in the difference co-array to increase the number of resolvable sources.

• The maximum economic array that means all the elements are essential elements that greatly affect the construction

of the difference co-array. MRA, MHA, nested array, and cantor array are examples of maximally economic arrays.

• The weight function had better be small, especially w(1), w(2), and w(3) to alleviate the mutual coupling and root

mean square error (RMSE) [9], [15].

In CA with (M,N) elements pair, the number of DOF be enhanced by eliminating the number of lag frequencies in the

difference co-array, specifically the cross difference co-array since the self-difference lag frequencies cannot be prevented

[16]. In this paper, a new coprime array model is designed based on the above remarks. The proposed array model construct

under the coprime array structure accomplishes a higher DOF with reduce mutual coupling and reduced the lag frequencies

using the same number of elements as the prototype coprime array.

II. SIGNAL MODEL

For any sensor array with M elements, the element positioned at P = (0, 1, ...M − 1)d, where d is the spacing between

elements and d = λ/2 , λ is the signal wavelength and the zero position is the reference position. Suppose that Q far-field,

uncorrelated narrowband signal is impinging on the array from the direction θ1, θ2, ..., θQ , and then the received data at

time t is expressed as:

x(t) =

Q∑
q=1

a(θq)sq(t) + n(t) = As(t) + n(t) (1)

WhereA = [a(θ1), a(θ2), ...a(θq)] is the array steering vector and, a(θq) = [1, ej2πd sin(θq), ..., ej2π(M−1)d sin(θq)]T , s(t) =

[s1(t), ..., sQ(t)]
T is the source signal vector, and n(t) is the noise vector which is an additive Gaussian white noise with

variance σ2
n that is uniformly distributed. The covariance matrix of the received data x(t) can be illustrated as:

R = E[x(t)xH(t)] = APAH +Rn (2)
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Where P is the source signal covariance matrix, P = E[s(t)sH(t)] = diag([σ2
1 , σ

2
2 , ..., σ

2
Q]
T ), σ2

q is the signal power of

the qth source. Rn is the noise covariance matrix, Rn = σ2
nIM , IM is the identity matrix. For an estimated covariance

matrix with T snapshots, the sample covariance matrix is expressed as:

R̂ =
1

T

T∑
t=1

x(t)xH(t) (3)

A. Difference Co-Array Concept

For sparse array, to obtain higher DOFs with less number of physical elements, a virtual array is constructed from the

difference co-array. Here, some fundamental definition is introduced first.

Definition 1 (Difference Co-array Suppose an array with an integer number of elements positioned at P, the difference

set is obtained as follows [5], [17]:

D = dj − di|dj , di ∈ P (4)

Definition 2(Degree of freedom) For a particular array P, the degree of freedom (DOF) is the number of virtual lags of

its difference co-array (D). The uDOF is the uniform DOF that indicates the number of DOF of the central lags of the

difference co-array. For a co-array MUSIC, the number of uncorrelated sources that can be resolved is (uDOF − 1)/2

[5], [6].

Definition 3 (weight function) For an array P, the weight function w(m) is the number of the elements pair that construct

the virtual elements in the difference co-array D with the index position (m) [18] [9]. It can be described as:

M(m) = {(dj , di) ∈ P|dj − di = m|m ∈ D}

w(m) = length{M(m)}
(5)

The weight function gives an indication of the element allocation in an array. When the weight is larger than one, it refers

that there are additional elements pair with a small distance in the physical array that leads to serious mutual coupling

[19]. The weight function of the first three elements w(1), w(2) and w(3), which illustrate the number of element pairs

can rule the mutual coupling action [20].

By vectoring R in equation (2), we get

y = vec(R) = Ãb+ σ2
nĩ (6)

Where y is the virtual measurement of the received vector for the virtual array with central lags for both the positive

and negative parts. Ã = [ã(θ1), ã(θ2), ...ã(θQ)], ã(θq) = a∗(θq)
⊗
a(θq) is the virtual steering matrix,

⊗
represents the

Kronecker product, and b is the signal vector. The corresponding received signal can be found from the difference co-array

after discharging the repeated rows. Then, the spatial smoothing technique is applied to the central lags only that have

consecutive virtual elements [10]. In this paper, for DOA estimation we use both the spatial smoothing technique and

interpolation technique. For spatial smoothing, the Toeplitz matrix is implemented on the contiguous lags to build a full
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rank covariance matrix as follow:

R =


(Y )ρ (Y )ρ−1 .. (Y )1

(Y )ρ+1 (Y )ρ .. (Y )2

: : : :

(Y )2ρ−1 (Y )2ρ−2 .. (Y )ρ

 (7)

Where ρ refers to the uDOF for the positive side only. R can be used to estimate the DOA with less multiplication

complexity. The nuclear norm minimization interpolation technique mentioned in ref [21] is applied to manage the holes

in the difference co-array and exploit all the virtual elements to increase the number of DOF.

B. Prototype Coprime Array Structure

A prototype coprime array (PCA) is composed of a pair of ULAs (M, N) wavelength as shown in Fig 1. M and N are an

integer coprime numbers, such that the greater common divisor is one. The distance between the elements in M-subarray

is Nd, while the distance between the elements in N-subarray is Md , where d is the distance which is half the signal [17].

Figure 1: Prototype coprime structure

The physical element’s position in the PCA can be expressed in the following sets:

P1 = {nM |0 ≤ n ≤ N − 1}

P2 = {mN |0 ≤ m ≤M − 1}
(8)

The total number of physical elements isN +M − 1, since the two subarrays are located at collinear and the first element

at zero position is the reference elements for the two subarrays. The difference co-array set of the PCA is given by the

self-difference of the two subarrays and the cross difference between the two subarrays as follows:

Dself = (P1 − P1) ∪ (P2 − P2),Dcross = (P1 − P2) ∪ (P2 − P1)

D = Dself ∪ Dcross
(9)

The PCA model has some frequent lags in both the self-difference and the cross-difference. The cross difference lags result

from the overlapped elements in P1 − P2 and P2 − P1. The general structure of the difference PCA is demonstrated in

Fig. 2. The difference co-array can generate a central lag from −M −N +1 to M +N − 1, several DOF =M +N − 1

and a lags redundancy MN −M − N − 2 [16] . The first layer hole position in the difference co-array is at M+N, the
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second layer is at 2M +N and 2M +N +1, the third layer at 3M +N, 3M +N +1 and , 3M +N +2 [16]. The length

of the central lag in the resulted virtual array can’t provide the effective number of resolvable DOF after employing the

spatial smoothing [22].

Figure 2: the difference co-array of prototype coprime array

III. MODIFIED PROTOTYPE COPRIME ARRAY MODEL

The holes problem and the lag frequencies of the array elements are the main issues considered in designing the proposed

array model. The proposed array model does not require additional elements to fill the holes or reduce the lag frequencies.

The elements are reallocated in a way that reduces the frequent lags in the difference co-array, fill some holes and enhance

the weight unction. The modified model of the PCA structures can be formally expressed for the new array elements

position, the contiguous ULA difference co-array, the weight function, and the number of DOFs. From the difference

co-array of the PCA, it can be observed that there are common pair’s leads to frequent elements in the resulted virtual

array. These pairs may lies at the beginning of the two subarrays. We explore this redundancy to construct a new geometry

of the PCA as shown in Fig. 3.

Figure 3: the proposed array model (a) when N is the odd value (b) when N is even value

The proposed PCA model is applied by keeping the M-subarray as in PCA and displacing the first three or more elements

of the N-subarray depending on the value of N-subarray whether it’s even or odd to new positions since they result in
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overweights function. Besides, they may have less contribution to the central lags of the PCA. After displacing these

elements, the position of the new element can be expressed as:

If N is an odd, then N1 = [N2 ], N2 = N −N1

P1 = {mN |0 ≤ m ≤M − 1}

P2 = {n1M |N1 ≤ n1 ≤ N}

P3 = {MN +M +N + n2M |0 ≤ n2 ≤ N2− 2}

(10)

If N is an even, then N1 = [N2 ], N2 = N −N1

P1 = {mN |0 ≤ m ≤M − 1}

P2 = {n1M |N1 ≤ n1 ≤ N − 1}

P2 = {−N
2
}

P4 = {MN +M +N + n2M |0 ≤ n2 ≤ N2− 1}

(11)

The proposed PCA model has nil cross-difference redundancy and large difference co-array with more unique lags in the

resulted virtual array. The number of uDOF and aperture size of the proposed array model is as listed in Table I.

TABLE I
Number of uDOF and Aperture Size for The Proposed PCA

(M,N)pair uDOF Aperture size
(M,N-odd) MN −M + 1, 2MN +N −M − [N2 ]M

(M,N-even) MN +M −N − [N2 ] − 1 2MN −M − (M − 1)N
2

For example, a PCA with M=4, N=5, utilize the proposed PCA, the elements are positioned at [0, 5,10,12,15, 16, 20,

29] will generate for the positive side, 17 uniform DOF, 22 unique lags, and aperture size is 29 using 8 elements which

are more than the traditional PCA, CACIS and the proposed PCA in [16].

IV. SIMULATION RESULTS

The performance of the proposed array model is evaluated and compared with PCA, CACIS (CF=2) and proposed

array by [16]. To compare the number of obtainable uDOFs, aperture size and the unique lags using the same number of

elements which is M+N-1, Table II summarize the formal expressions for the proposed array model and the other array

configurations

TABLE II
Comparison of Different Array Types Regarding The Aperture Size, uDOF and Unique Lags

Array Type Aperture Size uDOF
PCA MN −M M +N − 1

(CACIS), CF=2 MN MN − (M/CF + 1)
Reference [16] 2MN − 2N −M + 1 2M +N − 1

Proposed Array Model N-odd 2MN +N −M − [N2 ]M MN −M + 1
N-even 2MN −M − (M − 1)N

2 MN +M −N − N
2 − 1

A coprime array consists of 8 elements with M=4 and N=5 as shown in Fig. 4. In Fig. 4, the top part shows the position

of the physical element, while the bottom part shows the weight function, it illustrates the positive side of virtual difference
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co-arrays for (a) PCA, (b) CACIS, (c) Proposed array by ref[16] and (d) proposed array model. It can be concluded from

Fig. 4, that the proposed array model has the cross-difference lags frequency at the virtual element 0 only as of the proposed

array model in [16], while the other array configurations have frequent elements lags at different positions.

Figure 4: Elements position and weight function for (a) Prototype coprime array (b) Generalized Coprime array (c) Proposed
array [16] (d) Proposed array model, where square red the position of M-subarray element, dot black the N-subarray elements
position, x hole

The proposed array model can recover 17 uncorrelated sources successfully since the contiguous is expanded while the

PCA, CACIS, proposed array by [16] can recover 8, 11,12 sources respectively using spatial smoothing techniques. The

estimation spectrum using spatial smoothing technique for 17 narrowband uncorrelated that uniformly distributed between

[-600:600], with SNR=10dB, and the number of snapshots is 500 is demonstrated in Fig. 5. It is clearly shown in Fig. 5 that

the proposed array model can detects the entire source successfully with high resolution. Fig. 6 shows the comparison of
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the DOA estimation performance of different array types for 16 uncorrelated sources using the nuclear norm interpolation

technique to overcome the problem of the holes in each array using the same number of elements. It can be seen from Fig.

6(a) and (b), that PCA and CACIS can’t recover all the sources, there are missing sources. While in Fig. 6(c) and (d),

the proposed array in [16] and our proposed array can recover the entire sources successively and with higher resolution.

However, the proposed array model can perform better since it presents less RMSE with the generation of higher uDOF

and small weight functions that reduce RMSE.

Then, a comparison of the different array configuration is performed regarding the root mean squared error (RMSE). The

RMSE is described as :

RMSE =

√
1

QMc

∑Q
q=1

∑Mc

mc=1(estimatedDOA(mc)− trueDOA)2
(12)

Where, Mc indicates the number of Monte Carlo trails. Fig. 7 demonstrate the RMSE of different array types for 14 sources

that distributed uniformly in the range (-60o, -60o) and the number of trials set to 100. Fig. 7(a), shows the RMSE as a

function of SNR, where the number of SNR varies from (-20:20) dB with fixed snapshots at 500, while Fig. 7(b) shows

the RMSE as a function of different snapshots ranging from (100:1000) with fixed SNR at 10 dB. It can be observed from

the figure that the RMSE results of the proposed array model have better performance and a reduction in the RMSE values

than other array types. For Fig. 7(a), when the SNR is greater than 5dB, the RMSE is near to zero since it obtains larger

contiguous lags of the resulted virtual array. In Fig. 7(b), the RMSE is near zero when the number of snapshots is more

than 500 snapshots.

Figure 5: DOA estimation performance of 17 targets with SNR=10dB, snapshot=500
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Figure 6: DOA estimation performance of different array configuration using interpolation (nuclear norm)

Figure 7: The RMSE performance for different array configurations
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V. CONCLUSION

A new coprime array model is proposed by reallocating the position of N-subarray to enhance the number of degree of

freedom and improves the DOA estimation. The first three or more elements positions are moved to the end beyond the

last element of N-subarray depending on the value of N (odd or even), the last position in N-subarray and displaced by

M+N to eliminate the lag frequency and increased the number of uDOF. The resulted array enhances the uDOF using the

same number of elements as PCA, CACIS and other arrays. The DOA is performed using the spatial smoothing technique

and interpolation technique that reveals better performance and high detection of the resolved signals comparing to other

array configurations.
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