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Abstract-The present work studies the mechanical properties of composite 

materials, experimentally and analytically, that are fabricated by stacking 4-

layers of fiberglass reinforced with polyester resin. This plies are tested under 

dynamic load (fatigue test) in fully reversible tension-compression (R=-1) to 

estimate the fatigue life of the composite where fatigue performance of 

fiberglass reinforced composed is an increasingly important consideration 

especially when designing wind turbine blades. In order to predict fatigue life 

(Number of cycles to failure), conventional analytical techniques are used in the 

present work. In addition, Artificial Neural Network (ANN) is a reliable and 

accurate technique that is used for predicting fatigue life. The used networks 

are; Feed Forward Neural Network (FFNN), Generalized Regression Neural 

Network (GRNN) and Radial Bases Function Neural Network (RBFNN). Based 

on the comparison of the results, it is found that the ANN techniques are better 

than conventional methods for prediction. The results shows that (RBNN2), 

where stress load and angle of orientation are input to the network and number 

of cycles to failure as output, is an efficient tool for prediction and optimization 

the fatigue life of fiberglass reinforced composite. 
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1. Introduction 

I. Typical of rotor blades fatigue; loads 

The load on the rotor blade is in two extreme 

ways. This is illustrate in Figure 1, which first, 

shows the applications of composite materials 

(bicycles, cars, airplanes, helicopters, bridges, 

wind turbines), with the No. of load cycles that 

experienced; during the life of structure, and on 

the vertical, the degree of variations in load 

cycles. Rotor blades of Wind turbine are 

subjected to a wide No. of loads during ; their 

lifetime of twenty years.  

Prediction of the No.; of load cycles were up to 

    or     cycles [1]. Second, high variability 

are showed by this loads. The variation; of loads 

on rotor blades is a result of the random nature of 

the wind. This is in spite of the fact, that there is 

indeed regular component of fatigue; loading. 

 

 

Figure 1: Wind turbine loading regime [1]. 

 

II. Materials of Rotor blade 

Typically, rotor blade is constructed from fiber-

reinforced polymer, because of its high stiffness, 

ratio of high (stiffness to density) and good 

toughness of fracture [2]. Typically, continuous 

fiberglass composite is used, although designer is 

moving toward employing fiberglass because of 

its stiffer fiber and is slowly becoming available 

for wind industries. In this case, the materials 

used in wind turbine, relative to composite of 

aerospace, is characterize by relatively coarsely. 

The fibers are contained in polymer matrix, 

which provide a resistance to the compression 

load, but mainly serve to fix and align the fibers 

geometrically. Wide of blades are made from 

polyester but epoxy is also used. Both densities; 

are the same but better performance of fatigue is 

attributed to composite with the epoxy matrix, 

enable of lighter design. Moreover, the advantage 

of epoxy is the absence the vapor of toxic styrene 

during manufacturing. Essentially, each blade is 

made with resin. 

 

III. The Aim of the work 

The aim of the present research is to optimize life 

predictions of composite under variable stress 

loads. Ultimately, this research aims to optimize 
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life prediction guidelines by enhancement the 

fatigue life prediction that obtained by the 

traditional approaches using linear, power law 

and quadratic polynomial regression in 

comparison with ANN techniques that considered 

as an accurate and reliable method 

 

IV. Fatigue of composite 

Before the fatigue; has been treated generally, so 

an introduction of fatigue life must be given. 

Fatigue loads; are represented by a waveform, 

typically sinusoidal, cyclic load. The 

characteristic of this waveform is given in Figure 

2, in terms of the quantity S and N. Typically; 

stresses are used for homogeneous material, while 

strain is preferred for composite. For (N), the No. 

of cycles to failures is used. In addition, half 

cycle to failure, No. of load sequence to failure, 

or No. of cycles to predefined stiffness, may be 

used. The result of fatigue experiments is often 

plotted in (S-N) diagrams, as shown in Figure 2. 

In general, fatigue characteristics are calculated 

by the slope of the (S-N) curve. The flat S-N 

curve (small slop) often is considered; to 

represent main fatigue characteristics over the 

steep S-N curve. The fatigue behavior can be 

appraised, depend upon; the location of the 

intersect with the abscissa. 

Knowledge of the damage mechanisms and their 

progression is to understand the fatigue behavior 

of composite materials, these damage 

mechanisms are abundant, they occur at many 

unpredictable locations throughout the laminate. 

There are five major damage mechanisms: 

cracking of matrix, breaking of fiber, crack 

coupling, beginning of delamination and growth 

of delamination. 

Figure 3 shows the state of damage versus 

percent1 of life for three phase's progression of 

damage. Phase I, cracking of matrix; Phase II, 

fracture of fiber, crack coupling and beginning of 

delamination; Phase III, growth of delamination 

and final fracture1 [4]. 

 

 

Figure 2: General fatigue terminology [3]. 

 

 
Figure 3: Schematic representation of the three 

phases of damage during the fatigue Life of a 

multidirectional composite laminate [4] 

 

2. Methodology     

I. Fabricatingcmold  

The mold was manufactured from two steel plates 

in the workshop. It has dimensions of 30*30 cm2 

area with thickness of 3mm as shown in Figure 4, 

with some weights to make the fibers tighten and 

strung. 

 

II. Fatigue test Specimen  

The specimens are cut out of 30*30 cm2 panels 

and the cut edge is polished in two stages in order 

to remove the flaws and the additional fibers and 

to obtain surfaces. Emery papers of grade 434 and 

1000 were used for this purpose. According to 

ASTM D 3479/D 3479M–96, standard test 

method, the specimens are prepared for fatigue of 

composite materials [5]. A set of five specimens 

of unidirectional laminate [04] and a set of five 

specimens of angle-ply [45/-45/45/-45] at 0o, 30o 

and 45o cut angle are prepared. These specimens 

of composite materials are chosen as they showed 

promising strength characteristics in the tensile 

test compared with other types. Suitable 

dimension for fatigue specimens to satisfy the 

section the machine that suited for flat plate 

specimens. Figure 5 shows the geometry of the 

specimens with its dimension, Figure 6 shows the 

fatigue specimens. 

 

 
Figure 4: fabricating mold 

The frame was manufactured to produce multi-ply 

unidirectional laminates (  /  /  /  ), angle ply 

laminates [±45], with thickness range (2.3-3.5) mm. 
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    Figure 5: fatigue specimens (all dimension in mm) 

 

 

Figure 6: fatigue test specimens 

 

III. Fatigue test procedure 

Fatigue test is a procedure type of cyclic 

bending2 loading. The aim of the fatigue test is to 

produce S-N curve (applied stress versus No. of 

cycles to failure) for each fatigue test specimen. 

For this test, the AVERY Fatigue Testing 

Machine Type-7305 is designed to apply loads 

with or without initial static loads, as shown in 

Figure 7.  The grip is provided for the cyclic load 

where3 the load is applied on one4 end of the 

fatigue specimen by an oscillating1 spindle by a 

connection means such as a crank, connecting rod 

and double eccentric attached. The eccentric 

attachment can be adjusted to provide the 

necessary range of bending angle. 

At the opposite end of the specimen, the applied 

load is measured by means of a Torsion 

Dynamometer. The angle of twist can be 

registered by horizontal rod on a Dial gage. The 

relationship between the reading of dial gage and 

the imposed torque by using the calibration 

curves. From the applied torque and the 

deflection angle, the applied stress can be 

calculated. In order to record the number of 

cycles, a revolution counter is fitted to the motor. 

The cycling rate is 1420 rpm (24 Hz). 

The test machine is adjusted at stress ratio R=-1 

refers to that the cyclic bending load stress means 

tension- compression stress. Each set of 

specimens have been tested by changing the 

moment each time and recording the number of 

cycle to failure". 

 
Figure 7:  Fatigue test machine. 

 

IV. Artificial Neural Network (ANN) 

The history of AI (Artificial Intelligence) is 

begun in 1956 as a term by John McCarthy first 

academic conference (Dartmouth). After five 

years, Alan Turing gave a proposal about the 

machines that can be able to simulate the human 

brain and can3 do intelligent things [6]. AI 

becomes important area of research in many 

fields; "engineering, science, education, 

medicine, business, accounting, finance, 

marketing, economics and stock market" [7]. 

The intelligent machines are nearly similar to the 

humans brain and it follow that one could achieve 

AI by simulating the function of the humans brains 

on the computer. The artificial neural network can 

be characterized by several features: "large number 

of simple neuron-like processing elements; large 

number of weighted connections between the 

elements in which the weights on the connections 

encode the networks knowledge; highly parallel; 

distributed control and emphasis on learning 

internal representations automatically" [8]. An input 

of neural network determines the net input signals to 

neuron that coming from the inputs with activation 

functions that calculate the activation; level of the 

neuron  as a function of its summation  input signals 

and (perhaps) of its previous situation. The output 

signals are emitted through output of the neuron [9]. 

 

V. Feed Forward Back Propagation Neural 

Network (FFNN) [10] 

FFNN is one of the most popular structures in 

ANNs, which are widely used to solve many 
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complex problems by creating a relationship 

between input and output. In many applications, 

BPNN widely used method for FFNN learning 

because it has good advantage with simple 

implementation. The structure of BBNN is shown 

in Figure 8 where the output of neuron is input to 

the next neuron multiplied by its weights [11]. 

The input values converted to output values by 

calculation of activation functions, which is 

sigmoid activation, function because it is 

differentiable: 

  ( )  
 

      
                                                     

(1)                              

Where   is a constant parameter, and   is the 

input to the activation function [12]. 

  BPNN is widely used in diverse applications 

like performance evaluation, location selection,  

prediction and optimization.                 

 a1 = f1(IW1,1 ×p+b1)                                         (2)                                  

a2 =f2(LW2,1×a1+b2)                                          (3)  

           

 

Figure 8: Feed forward neural network [13] 

 

VI. Generalized Regression Neural Network 

(GRNN) 

GRNN has a certain characteristics which are 

used to solve a complex problem because it is fast 

learning and good approximate with a large 

number of training data. It consist of three layers, 

in other research four layers; input, pattern, 

summing and output layer as shown in figure (9). 

Normal distribution function is the probability 

density function that is used in GRNN [14].  

 ( )  

∑       (
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∑     (
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                                  (4)    

Where:    is distance and (   (    )
  

(    ),    is the mean input and   is the 

smoothness parameter (can be arbitrarily chosen 

to.      ) and t is the number of alteration  

 

 

Figure 9: Architecture of GRNN [15]. 

VII. Radial Basis Function Neural Network 

(RBFNN)  

RBFNN can be used as a replacement of many 

networks that have flexibility transfer function 

(sigmoid activation function) and it is considered 

as powerful method for regression and 

approximation. It consists of three layers; input, 

hidden that has the nonlinear (RBF) and output 

layer with linear activation function; as shown in 

Figure 10. The technique of (RBF) provides 

better generalization ability to avoid unnecessary 

lengthy calculations. The (RBF) represented as: 

 (   )   
‖   ‖ 

                                                  (5)                                                              

Where:   is the mean value of the data,   is the 

distance of the data from the mean value and   is 

the input data. 

 

VIII. Design of ANN 

The ANN consists of elements that are analogue 

to the neuron in the brain. The processing 

contains of many computational1 elements that 

are arranged in layer. Several advantages of ANN 

including the ability to learn compared to the 

conventional techniques. For designing the ANN 

models, the first step is the characterize of the 

problems that have to be solved, this will 

calculate the selection of suitable topology of the 

network. Next step is to identify the input data 

which can be binary or real values input. In the 

last step, determination of the input1, hidden and 

output layers to give a best performance. "To 

evaluate the performance of each models, the 

performance criteria formula are defined as: 

      

(6) 

 

                              

√
 

 
∑ (  
 
      )

                       

                    
 

 
 ∑ (|     |)
 
        (8)                           

 

Where    and    are observed and predicted 

values respectively.    Is the number of input 

data". 

In ANN, all records of different orientation are 

used. 75% of records are training, 10% are cross 

validation and 15% are testing. Three steps are 

(7)  
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used in each network; first with one input 

parameter (stress load), second with two 

parameters (stress load and angle of orientation) 

and third with three input parameters (stress load, 

angle of orientation and thickness of ply) in 

(FFNN1, 2, 3), (GRNN1, 2, 3) and (RBNN1, 2, 

3) respectively. 

 

 
Figure 10: Architecture of (RBFNN) [16] 

 

3. Results and Discussion 

Stress load and number of cycles to failure are calculated 

for each type of fiberglass. The results of fiberglass 

reinforced composites at orientation of unidirectional 

(0o/0o/0o/0o) and cross-angle (45o/-45o/45o/-45o), (15o/-

75o/15o/-75o) and (0o/90o/0o/90o) plies. The results of 

(FGRC) of all orientations are listed in Tables 1, 2, 3 and 

4. 
 

Table 1: stress load and number of cycles to failure 

of fiber glass at orientation (0
o
/0

o
/0

o
/0

o
) 

Stress (Mpa) Experimental No. of cycles 

50.8 21300 

48.69 20200 

44.67 36660 

44.22 33780 

40.7 39800 

39.23 51360 

37.61 55160 

29 44000 

25.64 81020 

25.6 65300 

23.36 92500 

19.4 106500 

19.12 96000 

18.73 133200 

12.55 147300 

12.36 130200 

9.9 247100 

7.5 180480 
 

Table 2: stress load and number of cycles to failure of 

fiberglass at orientation (45
o
/-45

o
/45

o
/-45

o
) 

Stress (Mpa) Experimental No. of cycles (rpm) 

39 33650 

38.29 14000 

35.29 51000 

34.9 4970 

30.49 50360 

26.38 89300 

23.47 64000 

23.14 75300 

21.63 90880 

20.44 122100 

17.28 92450 

15.91 112500 

11 190500 

10.8 255600 

8 199360 

 

Table 3: stress load and number of cycles to 

 failure of fiber glass at orientation   (15
o
/-75

o
/15

o
/-75

o
) 

Stress (Mpa) Experimental No. of cycles (rpm) 

39.38 48250 

37.18 49000 

32.5 15620 

28.55 62480 

28.49 71590 

28.43 72000 

24.55 94360 

23.64 89460 

20 95500 

15.18 125000 

13.6 104000 

13.59 110000 

7.4 197400 

6.9 275000 

5 277100 

 

Table 4: stress load and number of cycles to 

 failure of fiber glass atorientation (0
o
/90

o
/0

o
/90

o
) 

Stress (Mpa) Experimental No. of cycles (rpm) 

41.38 41180 

36.95 58000 

35.94 15180 

27.63 75770 

27.2 48280 

25.17 48280 

22.26 58220 

21.8 90010 

18.64 58220 

18.21 93720 

14.9 100000 

11.69 120720 

9.78 213000 

9.2 161780 

8.28 201500 

 

The stress load versus No. of cycles to failure of 

experimental results of (0o/0o/0o/0o), (45o/-

45o/45o/-45o),(15o/-75o/15o/-75o)and(0o/90o/0o/90o) 

are shown in figures (11), (12), (13) and (14) 

respectively. 
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Figure 11: Experimental stress load versus No. of 

cycles to failure curve of (FGRC) at orientation of 

(0
o
/0

o
/0

o
/0

o
) plies. 

 

 

Figure 12: Experimental stress load versus No. of cycles to 

failure curve of (FGRC) at orientation of (45
o
/-45

o
/45

o
/-45

o
) plies 

 

 

Figure 13: Experimental stress load versus No of cycles to 

failure curve of (FGRC) at orientation of (15
o
/-75

o
/15

o
/-75

o
) plies 

 

Figure 14: Experimental stress load versus No of cycles to 

failure curve of (FGRC) at orientation of (0
o
/90

o
/0

o
/90

o
) plies 

I. Prediction of fatigue life (FGRC) using 

Artificial Neural Network (ANN) 

Many mathematical models are discussed in the 

previous section in order to predict the fatigue life 

of different orientations of (FGRC) using 

traditional models (linear, power law, quadratic 

polynomial regression models). Very efficient 

tool is used which are (ANN) in order to 

approximate the output of the networks to the 

experimental results. ANN is used in many 

architectures for prediction of fatigue life. 

In ANN, all records of different orientations are 

used. 75% of records are training, 10% are cross 

validation, and 15% are testing. 

 

II. Prediction of fatigue life using feed forward 

neural network (FFNN) 

FFNNs are used to predict the fatigue life of 

(FGRC) of all orientations with many models. 

These networks work with hyperbolic (log-

sigmoid) activation function in three strategies:  

Firstly, one parameter, which is stress load, as an 

input variable to the network and one output, 

which is No. of cycles to failure, as an output 

variable of the network (FFNN1).  Secondly, two 

parameters, which are stress load and angle of 

orientation, as an input variables to the network 

and one output, which is No. of cycles to failure, 

as an output variable of the network (FFNN2). 

Thirdly, three parameters, which are stress, angle 

of orientation and the thickness of the ply, as the 

input to the network and  one output, which is 

No. of cycles to failure, as an output variable of 

the network (FFNN3).  The test results of 

(FFNN1), (FFNN2) and (FFNN3) after training 

are listed in Tables 5, 6 and 7. 

 

 

 

 

Table 5: Prediction of fatigue life using FFNN1 with one input parameter 

Stress (Mpa) Experimental No. of cycles (rpm) Modeling No. of cycles (rpm) by FFNN1 

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300

St
re

ss
 (

M
p

a)
 

N*10^3 (rpm) Thousands 

S-N Curve 
Experimental
results

Power
(Experimental
results)



Engineering and Technology Journal                                                              Vol. 35, Part A. No. 4, 2017 
 

888 

 

28.43 71590 64663.43 

24.55 94360 79143.28 

13.59 104000 138581.7 

5 277100 216653.8 

35.94 15180 41306.87 

25.17 48280 76669.09 

18.64 58220 104272 

11.69 120720 174576.4 

8.28 201500 207916.3 

 

 

 

Table 6: Prediction of fatigue life using FFNN2 with two input parameters 

Stress 

(Mpa) 

Angle of  orientation 

   

Experimental No. of cycles 

(rpm) 

Modeling No. of cycles (rpm) by 

FFNN2 

28.43 75o 71590 61842.66 

24.55 75o 94360 78127.79 

13.59 75o 104000 130368 

5 75o 277100 231411.6 

35.94 90o 15180 52915.57 

25.17 90o 48280 68808.33 

18.64 90o 58220 89495.61 

11.69 90o 120720 157397.1 

8.28 90o 201500 182553.2 

Table 7: Prediction of fatigue life using FFNN3 with three input parameters 

Stress 

(Mpa) 

Angle of 

orientation    

Thickness of ply 

(mm) 

Experimental No. of 

cycles (rpm) 

Modeling No. of cycles 

(rpm) by FFNN3 

28.43 75o 3.3 71590 92409.05 

24.55 75o 2.9 94360 53106.45 

13.59 75o 2.9 104000 257841.5 

5 75o 3.1 277100 131283.3 

35.94 90o 3.3 15180 41526.69 

25.17 90o 3.3 48280 91129.76 

18.64 90o 2.7 58220 121669.5 

11.69 90o 2.75 120720 161797.6 

8.28 90o 2.3 201500 161779.9 

 

The fatigue life of both experimental No. of 

cycles and the output of the (FFNN1, 2, 3) are 

shown respectively in figures 15, 16 and 17. 
 

 

Figure15: Stress versus No of cycles to failure of both 

experimental results and FFNN1 (with one input parameter) 

 

 

Figure16: Stress versus No of cycles to failure of both 

experimental results and FFNN2 (with two input 

parameters 
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Figure 17: stress versus No of cycles to failure of both 

experimental results and FFNN3 (with three input parameters) 

 

III. Prediction of fatigue life using Generalized 

Regression Neural Network (GRNN) 

Fatigue life of (FGRC) has been predicted by 

using Generalized Regression Neural network 

(GRNN) with many models, and it works with 

three strategies: Firstly, one parameter, it is stress 

load, as an input variable to the network and one 

output, which is No. of cycles to failure, as an 

output variable of the network. Secondly, two 

parameters, they are stress load and angle of 

orientation, as the input to the network and one 

parameter, which No. of cycles to failure, as the 

output of the network. Thirdly, three parameters, 

they are stress load, angle of orientation and 

thickness of ply, as the input to the network and 

one parameter; it is the No. of cycles, as the 

output of the network. The test results of (GRNN 

1, 2, 3) are listed in Tables 8, 9 and 10 

respectively. 

Table 8: Prediction of fatigue life using (GRNN1) with one input parameter 

Stress (Mpa) Experimental No. of cycles (rpm) Modeling No. of cycles (rpm) by GRNN1 

28.43 71590 61862.97817 

24.55 94360 83133.9819 

13.59 104000 118553.5964 

5 277100 246369.7192 

35.94 15180 38369.71967 

25.17 48280 69737.169 

18.64 58220 109351.7697 

11.69 120720 152178.9417 

8.28 201500 211361.9719 

Table9: Prediction of fatigue life using (GRNN2) with two input parameters 

Stress 

(Mpa) 

Angle of orientation 

(  ) 

Experimental No. of cycles 

(rpm) 

Modeling No. of cycles (rpm) by 

GRNN2 

28.43 75o 71590 66152.5 

24.55 75o 94360 83614.67 

13.59 75o 104000 127682.5 

5 75o 277100 251684.2 

35.94 90o 15180 27841.96 

25.17 90o 48280 67684.2 

18.64 90o 58220 74642.82 

11.69 90o 120720 153691.3 

8.28 90o 201500 187692.2 

   

Table 10: Prediction of fatigue life using (GRNN3) with three input parameters 

Stress 

(Mpa) 

Angle of 

orientation (  ) 

Thickness of ply 

(mm) 

Experimental No. of 

cycles (rpm) 

Modeling No. of cycles 

(rpm) by GRNN3 

28.43 75o 3.3 71590 85154.67 

24.55 75o 2.9 94360 100365.9 

13.59 75o 2.9 104000 43125.65 

5 75o 3.1 277100 137265.5 

35.94 90o 3.3 15180 33326.55 

25.17 90o 3.3 48280 89235.46 

18.64 90o 2.7 58220 101319.9 

11.69 90o 2.75 120720 138263.5 

8.28 90o 2.3 201500 171326 

The fatigue life of both experimental number of 

cycles and the output of the (RBNN1, 2, 3) are 

shown respectively in Figures 18, 19 and 20. 
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Figure 18: Stress versus No of cycles to failure of both 

experimental results and GRNN1 output (with one input 

parameter 

 
Figure19: Stress versus No of cycles to failure of both 

experimental results and GRNN2 output (with two input 

parameters) 

 
Figure 20: Stress versus No of cycles to failure of both 

experimental results and GRNN3 output (with three 

input parameter) 

 

IV. Prediction of fatigue life using Radial Basis 

Neural Network (RBNN) 

Fatigue life of (FGRC) has been predicted by 

using Radial Basis Neural Network (RBNN) with 

many models, and it works with three strategies:  

Firstly, stress load is the input variable to the 

network and the No. of cycles is the output of the 

network. Secondly, stress load and angle of 

orientation as the input parameters to the network 

and number of cycles as the output parameter of 

the network. Thirdly, three inputs, they are stress 

load, angle of orientation and thickness of ply, to 

the network and one output, which is the number 

of cycles, of the network.  

The test results of (RBNN1, 2, 3) are listed in 

Tables 11, 12 and 13 respectively. 

 
Table 11: Prediction of fatigue life using (RBNN1) with one input parameter

Stress (Mpa) Experimental No. of cycles (rpm) Modeling No. of cycles (rpm) by RBNN1 

28.43 71590 46184.85 

24.55 94360 81645.27 

13.59 104000 143366 

5 277100 229642.2 

35.94 15180 19927.57 

25.17 48280 56927.78 

18.64 58220 89982.19 

11.69 120720 168682.5 

8.28 201500 204624.9 

 

Table12: Prediction of fatigue life using (RBNN2) with two input parameter 

Stress 

(Mpa) 

Angle of the orientation 

(  ) 

Experimental No. of cycles 

(rpm) 

Modeling No. of cycles (rpm) by 

RBNN2 

28.43 75o 71590 86411.68 

24.55 75o 94360 87697.19 

13.59 75o 104000 113681.5 

5 75o 277100 271681.7 

35.94 90o 15180 23671.69 

25.17 90o 48280 59861.48 

18.64 90o 58220 65846.24 

11.69 90o 120720 134612.4 
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8.28 90o 201500 181367.3 

 

Table 13: Prediction of fatigue life using (RBNN3) with tree input parameters 

Stress 

(Mpa) 

Angle of 

orientation(  ) 

Thickness of ply 

(mm) 

Experimental 

   (rpm) 

Modeling No. of cycles (rpm) 

by RBNN3 

28.43 75o 3.3 71590 79294.17 

24.55 75o 2.9 94360 82195.62 

13.59 75o 2.9 104000 68919.86 

5 75o 3.1 277100 224864.2 

35.94 90o 3.3 15180 23251.97 

25.17 90o 3.3 48280 89235.46 

18.64 90o 2.7 58220 98134.4 

11.69 90o 2.75 120720 141236 

8.28 90o 2.3 201500 149615.7 

 

The fatigue life of both experimental number of 

cycles and the output of the (RBNN1, 2, 3) are 

shown respectively in Figures 21, 22 and 23. 

 

 
Figure 21: Stress versus No of cycles to failure of 

both experimental results and RBNN1 output (with 

one input parameter) 

 

 
Figure 22: Stress versus No of cycles to failure of 

both experimental results and RBNN2 output (with 

two input parameters) 

 
Figure 23: Stress versus No of cycles to failure of 

both experimental results and RBNN3 output (with 

three input parameters) 

ANNs are used for the prediction and 

optimization of fatigue life of (FGRC) and found 

more accurate than conventional mathematical 

methods (as illustrated in appendix-A) because 

there is more than one input to the networks. The 

results of (RBNN3) with three input parameters 

give more accuracy than (FFNN3) and (GRNN3). 

 

4. Conclusions 

ANNs are accurate and efficient method for 

prediction and optimization of the fatigue life of 

(FGRC). More parameters give more details 

about the materials, so one, two and three 

parameters are individual to three networks: 

(FFNN1, 2, 3), (GRNN1, 2, 3) and (RBNN1, 2, 

3). In general, (RBNN) model gives best and 

more accurate results than (FFNN) and (GRNN). 

 

5. Suggestions of Future work 

Recommendations for future work are including 

in following: 

1- Study the prediction of fatigue life of (FGRC) 

with unidirectional angle of fibers at (  ), (   ), 
(   ) and (   ) plies using Artificial Intelligence. 

2- Study the prediction of fatigue life of (FGRC) 

with different type of layers. 



Engineering and Technology Journal                                                              Vol. 35, Part A. No. 4, 2017 
 

883 

 

3- Study of fatigue life with other parameters like; 

Different Stress ratio (R), different degrees of 

temperature and number of layers. 

Using many soft computing methods for 

prediction and optimization, like; recurrent 

network, Probabilistic neural network, Neuro-

genetic algorithm and Neuro-fuzzy algorithm, to 

compare the results for optimal prediction of 

fatigue life. 
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Appendix 

 

Table A.1: Comparison between of analytical and (FFNN1) results with one input parameter. 

Experimental 

   (rpm) 

Linear reg. eq. 

   (rpm) 

Power law reg. eq. 

   (rpm) 

 

Poly. Reg. eq. 

   (rpm) 

 

Modeling    

by FFNN1 

71590 70080 50980 52760 64663.43 

94360 94590 61850 66760 79143.28 

104000 162720 133130 149260 138581.7 

277100 204400 321210 231360 216653.8 

15180 27490 30020 36890 41306.87 

48280 77300 51440 52250 76669.09 
 

http://mihd.net/yn9up8
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58220 90760 61940 65900 104272 

120720 139640 163990 149460 174576.4 

201500 155410 276210 187790 207916.3 

 

Table A.2: Comparison between of analytical and (FFNN2) results with two input parameter. 

Experimental 

   (rpm) 

Linear reg. eq. 

   (rpm) 

Power law reg. eq. 

   (rpm) 

Poly. Reg. eq. 

   (rpm) 

Modeling    

by FFNN2 

71590 70080 50980 52760 61842.66 

94360 94590 61850 66760 78127.79 

104000 162720 133130 149260 130368 

277100 204400 321210 231360 231411.6 

15180 27490 30020 36890 52915.57 

48280 77300 51440 52250 68808.33 

58220 90760 61940 65900 89495.61 

120720 139640 163990 149460 157397.1 

201500 155410 276210 187790 182553.2 

Table A.3: Comparison between of analytical and (FFNN3) results with three input parameters  

Experimental 

   (rpm) 

Linear reg. eq. 

   (rpm) 

Power law reg. eq.    (rpm) 

 

Poly. Reg. eq. 

   (rpm) 

Modeling    

by FFNN3 

71590 70080 50980 52760 92409.05 

94360 94590 61850 66760 53106.45 

104000 162720 133130 149260 257841.5 

277100 204400 321210 231360 131283.3 

15180 27490 30020 36890 41526.69 

48280 77300 51440 52250 91129.76 

58220 90760 61940 65900 121669.5 

120720 139640 163990 149460 161797.6 

201500 155410 276210 187790 161779.9 

 

Table A.4: Comparison between of analytical and (GRNN1) results with one input parameter 

Experimental 

   (rpm) 

Linear reg. eq. 

   (rpm) 

Power law reg. eq.    (rpm) Poly. Reg. eq. 

   (rpm) 

Modeling    

by GRNN1 

71590 70080 50980 52760 61862.98 

94360 94590 61850 66760 83133.98 

104000 162720 133130 149260 118553.6 

277100 204400 321210 231360 246369.7 

15180 27490 30020 36890 38369.72 

48280 77300 51440 52250 69737.17 

58220 90760 61940 65900 109351.8 

120720 139640 163990 149460 152178.9 

201500 155410 276210 187790 211362 

 

Table A.5: Comparison between of analytical and (GRNN2) results with two input parameters. 

Experimental 

   (rpm) 

Linear reg. eq. 

   (rpm) 

Power law reg. eq.    (rpm) Poly. Reg. eq. 

   (rpm) 

Modeling    

by GRNN 

71590 70080 50980 52760 66152.5 

94360 94590 61850 66760 83614.67 

104000 162720 133130 149260 127682.5 

277100 204400 321210 231360 251684.2 

15180 27490 30020 36890 27841.96 

48280 77300 51440 52250 67684.2 

58220 90760 61940 65900 74642.82 

120720 139640 163990 149460 153691.3 

201500 155410 276210 187790 187692.2 

 

Table A.6: Comparison between of analytical and (GRNN3) results with three input parameters. 

Experimental 

   (rpm) 

Linear reg. eq. 

   (rpm) 

Power law reg. eq.    (rpm) Poly. Reg. eq. 

   (rpm) 

Modeling    

by GRNN3 

71590 70080 50980 52760 85154.67 
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94360 94590 61850 66760 100365.9 

104000 162720 133130 149260 43125.65 

277100 204400 321210 231360 137265.5 

15180 27490 30020 36890 33326.55 

48280 77300 51440 52250 89235.46 

58220 90760 61940 65900 101319.9 

120720 139640 163990 149460 138263.5 

201500 155410 276210 187790 171326 

 

 

 

 

 

 

 

 

 

Table A.7: Comparison between of analytical and (RBNN1) results with one input parameter. 

Experimental 

   (rpm) 

Linear reg. eq. 

   (rpm) 

Power law reg. eq.    (rpm) Poly. Reg. eq. 

   (rpm) 

Modeling    

by RBNN1 

71590 70080 50980 52760 46184.85 

94360 94590 61850 66760 81645.27 

104000 162720 133130 149260 143366 

277100 204400 321210 231360 229642.2 

15180 27490 30020 36890 19927.57 

48280 77300 51440 52250 56927.78 

58220 90760 61940 65900 89982.19 

120720 139640 163990 149460 168682.5 

201500 155410 276210 187790 204624.9 

 

Table A.8: Comparison between of analytical and (RBNN2) results with two input parameters 

Experimental 

   (rpm) 

Linear reg. eq. 

   (rpm) 

Power law reg. eq.    (rpm) Poly. Reg. eq. 

   (rpm) 

Modeling    

by RBNN2 

71590 70080 50980 52760 86411.68 

94360 94590 61850 66760 87697.19 

104000 162720 133130 149260 113681.5 

277100 204400 321210 231360 271681.7 

15180 27490 30020 36890 23671.69 

48280 77300 51440 52250 59861.48 

58220 90760 61940 65900 65846.24 

120720 139640 163990 149460 134612.4 

201500 155410 276210 187790 181367.3 

 

Table A.9: Comparison between of analytical and (RBNN3) results with three input parameters. 

Experimental 

   (rpm) 

Linear reg. eq. 

   (rpm) 

Power law reg. eq.    (rpm) Poly. Reg. eq. 

   (rpm) 

Modeling    

by RBNN3 

71590 70080 50980 52760 79294.17 

94360 94590 61850 66760 82195.62 

104000 162720 133130 149260 68919.86 

277100 204400 321210 231360 224864.2 

15180 27490 30020 36890 23251.97 

48280 77300 51440 52250 89235.46 

58220 90760 61940 65900 98134.4 

120720 139640 163990 149460 141236 

201500 155410 276210 187790 149615.7 

 


