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Abstract  
Practical hydraulic control systems are nonlinear, high-order and parameters sensitive 
systems. On the other hand, usually the customer demands are difficult to achieve without 
some type of tradeoffs among these demands. Therefore, the burden of designing an 
optimal controller will be so complicated, and a suboptimal controller seems to be 
preferable. However, the validation of such design requires a detailed mathematical model 
of the hydraulic system and actual values of parameters. In this paper, a mathematical 
model of a hypothetical hydraulic system is derived first. Then, for the linearized model, a 
suboptimal controller  is designed based on the LQR techniques. A Simulink model of the 
overall controlled system is utilized to simulate the closed-loop performance. The stable 
very fast response indicates the validity of the proposed procedure of design. 
 
Key word:LQR Linear quadratic regulator ,EHS Electro hydraulic system. 
 

   الخلاصة

وبرامیترات حساسة  high orderعملیا انظمة السیطرة الھیدرولیكیة انظمة لاخطیة  من الدرجة العالیة 
ولتحقیق المطالب الصناعیة یكون من الصعب اجراء تصمیم .جراء اي تغیر یحصل بمدخلات النظام

وللتحقق من صحة التصمیم .suboptimalمسیطر امثل لذا من الافضل اللجوء الى المسیطر شبھ امثل 
في ھذا البحث تم .المنظومة  المطلوب تم اعداد مودیل ریاضي لنظام ھیدرولیكي بقیم حقیقیة لبرامیترات

للنظام المسیطر  simulinkاشتقاق مودیل ریاضي افتراضي لنظام ھیدرولیكي اولا ثم استخدمت تقنیة الـ 
  .علیھ كلیا لمحاكاة اداء الحلقة المغلقة للنظام

 .منتائج البحث تشیر الى ان الاستجابة مستقرة وسریعة جدا مما یدل على صحة الاجراء المقترح للتصمی
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1. Introduction  
   In solving problems of optimal control 
systems, one may have the goal of finding a 
rule for determining the present control 
decision, subjected to certain constraints, 
which will minimize some measures of  
deviation from ideal behavior. Such a 
measures is usually provided by a criterion of 
optimization, or performance index.    A 
performance index is a number  which 
indicates the “goodness” of system 
performance. The performance index is 
important because it, to a large degree, 
determines the nature of the resulting optimal 
control. In other words, the resulting control 
may be linear, nonlinear, stationary, or time –
varying, depending on the form of the 
performance index. [1] 

  Electrohydraulic systems (EHS)  have been 
used in industry in a large number of 
applications  due to their size-to-power ratio, 
and the ability to apply very large force and 
torque. However, the dynamics of hydraulic 
systems are highly nonlinear. The system 
may be subjected to non-smooth and 
discontinuous, nonlinearities due to control 
input saturation. Moreover, directional 
change of valve opening, friction, and valve 
overlap are affecting the operation [2]. 
Therefore, it is necessary to simulate the 
hydraulic actual-like system using its 
representative mathematical model. This 
should describe the dynamic of the hydraulic 
directional proportional valve and the 
cylinder unit of the hydraulic driver. A 
conventional controller has been designed 
using suboptimal control theory; as the 
results were within the required accuracy. 

2. Mathematical Modeling of 
Electrohydraulic System: 
   The position electrohydraulic 
servomechanism consists of two parts [3]; 

the electro hydraulic proportional valve 
(proportional solenoid with stroke–to–current 
relationship), and a hydraulic driven unit 
cylinder. The output signal of this system is 
the position of the hydraulic cylinder piston, 
while the control signal is the output current 
of an electrical amplifier unit. Figure (1) 
shows the schematic of the proposed 
hydraulic system. The directional 
proportional valve converts the electrical 
signal to a translation motion, which in turn 
directs the position of the controlled sliding 
lever of the valve to control the fluid flow in 
a hydraulic cylinder. As a result, the 
hydraulic piston moves to translate the 
cylinders to the required position. With such 
description, if this control chain is closed 
through any type of position sensors, then a 
servo hydraulic system is obtained. However, 
the degree of complexity of the system is 
deliberately chosen to be near enough to 
practical systems. 

2.1 Proportional Directional Valve 
Modeling 
   A proportional directional valve with 
electric feedback consists of the housing, two 
proportional solenoids, and inductive 
positional transducer. An electrical amplifier 
of a linear gain a   characteristic is used. It 
is defined by the ratio of the electrical output 
current (solenoid current) i(mA) to the input 
voltage signal ur (volt) for given load. 
Moreover, it is supposed that the current has 
no ripples, and the amplifier output signal u  
is the system control input. It is constrained 
as   maxmax ; UUu , which actuates the 
hydraulic system. The value Umax is the 
maximum permissible value of the signal 
before saturation occurs. This means that the 
amplifier model will be as a nonlinear 
saturation element of gain Ka and ±Umax 
(volt) cutoff values. 
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Figure (1) schematic diagram of hydraulic 
system 

 
 In the solenoid unit, the fixed solenoid 
performs a magnetic field of constant 
boosting, while the movable solenoid 
represents an electrical load of the electronic 
amplifier. The position of the moveable 
solenoid )(mmd s  is a function of the 
current passing through it. A first order lag 
transfer function for the solenoid circuit can 
be used to model this electrical circuit, i.e. 
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where sT   is the solenoid time constant.  

The translation motion of the solenoid 
together with the mechanical part in the 
proportional valve can be represented by the 
following transfer function.
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where Km is the proportional valve gain T1 
and T2 are two time constants. 
If the position of the sliding lever )(mmd  is 
proportional to the movement of the movable  
solenoid then the total transfer function for 
the proportional valve with mechanical 
constraints on the sliding lever movement for

)(mmd becomes
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However, due to the shelter of the sliding 
lever and the passive resistivity of sealing an 
overlap is expected as shown in figure 2. 
 

Such overlap can be simply modeled by a 
dead–zone with saturation nonlinearity of 
2 sensitivity bandwidth and of a gain Kn,  

[2]. Therefore, the output of this hydraulic 
proportional valve will be defined as 
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2.2 Hydraulic Cylinder Modeling 
      It is known that the hydraulic cylinder 
can be represented in general by a third order 
differential equation [4, 5, and 6]. However, 
the nature of this equation (linear or 
nonlinear) and its coefficients depend on the 
piston shape and dimensions, fluid 
properties, the used pressure and sealing 
performance. 
   In this paper, a hydraulic cylinder of non-
equal piston chambers will be considered; 
see figure 1. As it can be seen the piston area 
of the controlled pressure chamber, is greater 
than the area of the uncontrolled pressure 
chamber. For the considered piston chambers 
(the subscript 1 is used for uncontrolled 
pressure chamber, and the subscript 2 is used 
for controlled pressure chamber) the 
continuity relations are 
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where: 
- 2,QQ  are the volumetric flow rates. 

 ( sec
3m ) 

- 21 ,    are the pressure. ( 3m
N ) 

- 21 ,VV   are the volumes. ( 3m ) 
- ipC       is the internal cross part leakage 

coefficient of piston. ( 113 .sec.  pam  ) 
- epC       is the external leakage coefficient of 

piston. ( 113 .sec.  pam  ) 
- e      is the effective bulk modulus.  

( 3m
N ) 

If the initial volumes for the two chambers 
are denoted by 1oV  and 2oV , then the 
instantaneous volumes as a function of the 
piston movement y  are given by 
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where chambers effective area are given by 

)8(][
4

][
4

2
2

2
32

2
1

2
31

dd

dd









  

where 21 , dd , and 3d are piston diameters as 
shown in Figure 1. The rates of change for 
the chambers volume are  
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By subtracting equation (6) from equation (5) 
and substituting for the volumes of the 
chambers, the following equation is obtained 
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Since we have, 
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where   is the coefficient including 
orifice geometry and discharge  coefficient,
   is the oil density and )(df is the 
hydraulic valve output given by equation (4). 
Also, 
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If a leakage constant C  is defined by 

)13(
2
1

epip CCC   

then a final equation can be written 
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For certain constant load force  LF  , the load 
pressure can be calculated from the principle 
equation  
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Applying Newton's law to the forces acting 
on the piston yields 
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where 
- y  is the piston displacement (mm). 
- m  is the total mass of piston & the load 
referred to piston (kg). 
- b   is the viscous damping coefficient of 

piston to the load ( 1.sec. mN ). 
 Arranging both of equation (14) and 
equation (16) in one relation by eliminating 
the load pressure  L  , yields 
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Next, we define the following eight 
coefficients; only two of them 32 ,cc  are 
function of the piston displacement y . 
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The specified 3rd-order nonlinear differential 
equation governs the piston translation 

movement (displacement y ) will have the 
form 

 
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The 4th order transfer function of equation (3) 
and the 3rd-order differential equation of 
equation 19 represent the complete model of 
the electrohydraulic system.  
3. Linearized Model 
   In order to design the controller via the 
optimal LQR theory, we have to determine 
first a linear state space model. A state vector 
X(t) representing the electrohydraulic system 
will have seven states, and are selected as 
follows: 
 

- The current of the movable solenoid, 
)()(1  mitx . 

- The velocity of the movable solenoid, 
. 

-  The position of the movable 
solenoid, . 

- The position of the sliding lever, 
. 

-  The dynamic load pressure, 
 

-  The velocity of piston 
)sec.()( 1

6
 mmytx  

- The position of piston, 
)()(7 mmytx   

     
As it is mentioned in section (2.1) the 
proportional value has been linearized by a 
transfer function of four lags constants 

321 ,&,, TTTS  and total gain m , while the 
hydraulic cylinder has not yet been 
linearized. For constant LF  and assumed 
initial position of the piston y  (the piston is 
moved before any control but only due to 
pressure balance), the two nonlinear 
coefficient functions 32 candc  can be 

)sec.()( 1
2

 mmdtx s
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calculated at yy   to obtain constant values

32 candc . In this way, it is possible to 
represent the differential equation (21) by a 
transfer function of the form  
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With the above definition for state variable 
and the two transfer functions given in 
equation (3) and equation (22), the linearized 
model can be represented by the state 
equation    
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where k is equal to 10 (1cm = 10mm). 
Finally, the nonlinear elements are modeled 
in the linearized model only by their gain 

na and   ; however it is expected that the 
dead zone with saturation element may cause 
unstable limit cycle or at least long regulating 
time and unaccepted overshoot. Therefore, a 
sort of compensation is necessary to be 
included. A standard technique is to use a 
dither signal. 
Due to the expected sensitivity problem of 
the considered hydraulic system, the system 
simulation has to be carefully carried. This in 
turn requires that the system parameters must 
be correct to physical point of view. To 

overcome such circumstances, the numerical 
model is readjusted several times based on 
the suitable literatures [5, 6, and 7] to reach a 
final physical meaningful model. The final 
numerical values taken to construct the 
hydraulic system model are listed in Table 
(1) of the appendix. The hydraulic cylinder 
parameters and coefficients ic  are calculated 
and listed in Table (2) of the appendix . For 
the linearized model, the coefficient matrix, 
A and the input matrix, B are calculated, see 
the appendix.  
The eigenvalues set of the A matrix contain 
one zero. Theoretically, if there is zero 
eigenvalue in the linearized model, then the 
stability of the nonlinear system (according 
to second Lyapunov theory) cannot be 
deduced from the linearized model. 
However, as expected the simulation of the 
open loop nonlinear electrohydraulic system 
shows unstable response for arbitrary step 
input. 
4. Suboptimal Controller Design 
   For the linearized model, the linear optimal 
control theory is invoked; specifically, the 
infinite horizon LQR. Therefore, for this 
SISO constrained system, the problem is 
stated as, 
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Accordingly, a state feedback gain can be 
obtained to perform this task using the 
Matlab function lqr.  However, first the 
weight matrix Q has to be determined. Since 
in this system, only the piston position of 
interest, the Q matrix should have only one 
non zero element q, i.e. Q has the form 





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q
Q

61

1666

0
00

. 

Using the known thumb of rules of selecting 
q, it could be possible to set a range of values 
[qmin, qmax] and based on the system 
performance (the regulating time, settling 
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time and the maximum overshot ) one 
specified value could be obtained. To reduce 
the effort of such ad hoc searching, a 
SIMULINK model of the system as shown in 
figure (3) is set (see the appendix for the 
complete electrohydraulic model), in which a 
direct measure of the regulating time and 
settling time is recorded for different values 
of input q in the stable operation range of 
values. Moreover, a Matlab m. program is 
running simultaneously as a function block in 
the Simulink set up to solve the LQR 
problem and supplies the model with the 
state feedback gain vector K. For

87 102102  q  , the simulation reveals 
that one can choose the value 7105.2 q  as 
an optimal value, for which the step response 
has a compatibly good response. Figure (4) 
illustrates the idea of how to select specific q, 
where the vertical lines represent the crossing 
of 01.01  value. The regulating settling 
time is read at the first and last vertical lines 
respectively. The gain matrix k for 

7105.2 q  is 
 3077.1922598.00007.03514.268653.1411642.01029.0K

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output response y(t)(mm) 

 
Time (sec)  

 
Figure (4) Step response for values of 7105.2 q  

For implementing the optimal state feedback 
control law, the position and velocity of the 
movable solenoid (x2(t), x3(t)) are not 
measurable while the other states are all 
measurable. Therefore, a certain type of 
reduced-order state estimator should be 
incorporated. The general theory of design 
reduced –order Luenberger observer will be 
utilized [8]. The estimator uses states x1(t), 
and x4(t) to estimate x2(t), and x3(t). The 
design of the estimator is performed so as to 
have a fast response with minimal possible 
estimation errors [9]. The result is shown by 
the dynamic system in figure (5), where, 
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Figure (3) The Simulink Model illustrates how to 
reach the optimal value of q   
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Figure (5) Block diagram of reduced order 

Lunberger observer 
 
Running the simulation of the complete 
design electrohydraulic with state estimator 
and state feedback control, we can determine 
the system response. Figure (6) depicts the 
output response for different input set with 
the optimal value of  q; the simulation time is  
0.1 second. In all three cases, the output 
reaches the required position within a settling 
time less than approximately 0.02 second. 
However, the dither signal is experimentally 
decided to be with amplitude 17, and 
frequency (2*pi*100); these values give the 
smallest amplitude of the existing limit cycle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Output y(t)(mm) 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figs. (5-8)  the simulated curves of output response for different 
inputs set at optimal q.(a)input step=0.1,(b) input step =0.5,(c)input 

step=1 

(b)                                                                                  Time (sec) 

(a)                                                                                  Time (sec) 
              

(c)                                                                                     Time (sec) 

O
ut

pu
t y

(t)
 

Figure (6) the output response for different input set with 
the optimal value of q=2.5*  
a)i/p=0.1 unit step  b)i/p=0.5unit step  c)i/p=1 unit step 
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5. Conclusions 
  

The following points summarize the main 
conclusions drawn from this research: 

1. The mathematical modeling of both 
the proportional valve and the 
hydraulic cylinder and hence transfer 
functions are presented. However, the 
degree of complexity of the system is 
deliberately chosen to be near enough 
to practical systems. A Hdraulic 
cylinder of non -equal piston 
chambers is considered. 

2. A suboptimal controller can be 
designed for nonlinear system by 
applying linear quadratic regulator     
( LQR) technique to a linearized 
model and adjusting the controller 
parameters based on nonlinear system 
performance. 

3. The dead zone element causes 
unstable limit cycle, long regulating 
time and unaccepted overshoot, 
therefore a conventional technique 
dither signal is used. 
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Table (1) Numerical values of parameters for  

an electrohydraulic system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

symbol value Unit 

a  26  1.  vm  

maxU  300 volt 

sT  3105.2   .sec  

mK  0.04 1. mm  

1  310018.2   .sec  

2T  2103806.3   .sec  

3T  410424.8   .sec  

  0.1 mm  

d  4 mm  

 0.2 1. vmm  

V  500 3cm  

C  810  113 sec.  am  

1d  100 mm  

2d  25 mm  

3d  136 mm  

s  12 a  

  51073.2   a  


m  41057.2   5.012 .sec.  am  

m  297 kg 

b  61066.1   1.sec.  m  

LF  70 kN 

oy  55 mm 

n
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Table (2) the hydraulic cylinder parameters &coefficients 

 

Parameters 

& 

coefficients 

Values and units 

Parameters 

& 

coefficient

s 

Values and units 

1  266 cm  3c   

2  2140 cm  3c   

  2103 cm  4c  2.88.2  cmg  

a  274 cm  5c  3.sec.161 cm  

L  a8.6  6c  2103 cm  

1c  12 sec.8500 cm  7c  113 .sec.01.0  acm  

2c  
16 )3.105.69(1022.5  y

 8c  14 .sec.1066.1  cm  

2c  22 sec.8207 cm    

 

- The matrices A and B 

 



































































0
0
0
0
0
0

400

,

01000000
09.55347.00000
01043.24.236104000
0001187118700
0000010
0000146581.5253339.586
000000400

67

B  

 

 

y98 1064.61048.4  

137 .101.4   cm
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