IJCCE, VOL.10, No1, 2010

Positively Invariant Sets in Sliding Mode Control Theory with
Application to Servo Actuator System with Friction*

Dr. Shibly Ahmed AL-Samarraie **

Abstract

In this paper two invariant sets are derived for a second order nonlinear affine system
using a sliding mode controller. If the state started in these sets, it will not leave it for all
future time. The invariant set is found function to the initial condition only, from which the
state bound is estimated and used when determining the gain of the sliding mode controller.
This step overcomes an arithmetic difficulty that consists of calculating suitable controller
gain value that ensures the attractiveness of the switching manifold. Also, by using a
differentiable form for the approximate signum function in sliding mode controller formula,
the state will converge to a positively invariant set rather than the origin. The size of this set is
found function to the parameters that can be chosen by the designer, thus, it enables us to
control the size of the steady state error. The sliding mode controller is designed to the servo
actuator system with friction where the derived invariant sets are used in the calculation of the
sliding mode controller gain. The friction model is represented by the major friction
components; Coulomb friction, the Stiction friction, and the viscous friction. The simulation
results demonstrate the rightness of the derived sets and the ability of the differentiable sliding
mode controller to attenuate the friction effect and regulate the state to the positively invariant
set with a prescribed steady state error.

Key words: Positively Invariant Set, Sliding Mode Control, Servo Actuator System, Friction
Model.
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1-Introduction

In this paper we are interested mainly to
answer the following: Consider the
second order affine system with sliding
mode controller

x = f(x) + g(x) * (—k * sgn(S)),

s = s(x)

Then, for a certain controller gain value
k, what is the area around the origin such
that if the state initiated inside this region,
it will not leave it and the origin is an
attractive point. This area is known as the
area of attraction.

The area of attraction forms the so
called positively invariant set. The set
notion appears in control theory when we
considered three aspects, which are crucial
in control systems design, these are:
constraints, uncertainties, and design
specifications [1]. For the sliding mode
controller

u=—k*sgn(s), k>0

the main design step is the calculation of
an appropriate value for the controller
gaink. This point is important since a
large gain value may lead to the chattering
problem. So a better estimate to gain
value may help in reducing the amplitude
of the chattering behavior (the chattering
behavior frequently appears in sliding
mode control system for many reasons
such as the non ideality of the switching
process [2]). In fact, this work is an issue
in this direction. Furthermore, many
methods are wused to eliminate the
chattering in sliding mode control system
(see [2]&[3]), but the simplest method is
introduced by Sloten J. J. [4], where the
segnum function is replaced by a
saturation function. This approximate
sliding mode controller introduces a
positively invariant set around the origin
and its size is determined by the design
parameters [5]. Khalil H.K. [5], derives
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the invariant set formed by the sliding
mode controller that uses the saturation
function as suggested by Sloten. The
saturation function is a continuous but not
differentiable function; and for this reason
we are interested in replacing the segnum
function by a continuous and
differentiable function, and then derive the
positively invariant set formed by the
approximate sliding mode controller.

In recent applications of control
theory, many dynamical systems have
been modeled as interconnected systems
where the state of the upper system is
unaffected by the actual controller [6]. For
this system type a virtual controller is
used to control the upper system if the
system be in a certain form to enable the
application of the so called Backstepping
approach. So, the presence of the
disturbances in the upper system will lead
to the non-matching property for the
control system. The situation becomes
more complicated if the disturbances are
nonsmooth. This situation makes us use
the arc tan function (the continuous and
differentiable function), which may be
used as a virtual controller for the
interconnected system, and derive for it
the positively invariant set. The servo
actuator system is one of the
interconnected system models, where the
torque that actuates the mechanical system
is not the actual input (for a D.C. motor
the voltage is the actual servo actuator
system input). Therefore, we select this
system to design the sliding mode
controller with the aid of the derived
positively invariant sets.

2-Invariant Set

The terminologies of the invariant and
positively invariant set are defined in this
section, where we refer mainly to the
excellent reference [5]. So, consider the
second order autonomous system

x = f(x) 1)
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where x € R%and f(x) is a locally
Lipschitz map from a domain D c R?
into R%. Let x(t) be a solution to the
second order autonomous system in
equation (1) and also let x =0 be an
equilibrium point; that is £(0) = 0. Now,
the set M, with respect to the system in
equation (1), is said to be invariant set if

x(0)eM=>x(t)EM, VEER

It means that: if x(t) belongs to M at
some time instant, then it belongs to Mfor
all future and past time, i.e., it will never
come from a region outside it or leave it
for all future time. A set M is said to be a
positively invariant setif

x(0)eM=>x(t)eM, vt=>0

In this case the state may come from
outside the positively invariant set but will
never leave for all future time. We also
say that x(t) approaches a set M as
tapproaches infinity, if for each &>
Othere is T > 0 such that

dist(x(t),M) < e, Vt>T

where dist(x(t), M) denotes the distance
from a point x(t)to a set M. The positive
limit point is defined as the limit for the
solution x(t) when the time approaches
infinity. The set of all positive limit points
of x(t)is called the positive limit set of
x(t). Accordingly, the asymptotically
stable equilibrium is the positive limit set
of every solution starting sufficiently near
the equilibrium point, while the stable
limit cycle is the positive limit set of every
solution starting sufficiently near the limit
cycle. The solution approaches the limit
cycle as t — oo. The equilibrium point and
the limit cycle are invariant sets, since any
solution starting in either set remains in
the set for all t € R. Moreover, let the set
of positively limit set for a point p
denoted by the w limit set of p, namely
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w(p), then some properties of it are
stated in the following fact [7]:

Let M be a compact, positively invariant
set and p € M, then w(p) satisfies the
following properties:

1. w(p) # @, that is, the w limit set of a
point is not empty.

2. w(p) is closed.

3. w(p) in a positively invariant set.

4. w(p) is connected.

This fact, in later sections, will be helpful
in determining the behavior of the state
trajectory when it is initiated in a
positively invariant set.

3-The First Positively Invariant Set

In the following analysis, the first
invariant set for a second order system
that uses a sliding mode controller is
estimated. Consider the following second
order affine system

X1 = Xy

X, = fx) +g(u, g(x) >0 )

Let the controller in equation (2) be the
sliding mode controller

u = —ksgn(s),s =x, +Ax;, 1 >0 (3)

where s is the switching function which is
selected such that the system at the
switching manifold (s=0) is
asymptotically stable. The main idea
behind the selection of the sliding mode
controller gain k is that the switching
manifold will be attractive. To do that we
use the following nonsmooth Lyapunov
function

V =|s| 4)

The switching manifold is guaranteed to
be attractive if the derivative of the
Lyapunov  function is negative.
Consequently,

V =5 *sgn(s)
= [f(x) — g(x)k = sgn(s) + Ax,Isgn(s)
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= —[g()k = (f(x) + Ax,) * sgn(s)] (5)

Now if k is chosen such that V < 0, then
the switching manifold is attractive. Thus,

(6)

F(x)+Ax,

g |- N

k > max

If k satisfies the inequality (6), then s =0
is asymptotically stable. In fact satisfying
inequality (6) is the main calculation
problem during design process. Formally,
we may use a large gain value to ensure
satisfying (6), and consequently the area
of attraction becomes large. But the gain
cannot be chosen freely without limit due
to the control saturation. Accordingly, the
gain value determines directly the area of
attraction size. In this work, we aim to
find the invariant set for a second order
system that use the sliding mode
controller as given in (3), such that when
the state initiated in it will never leave for
all future time. Hence, the gain is
calculated depending on the invariant set
size and the region of attraction will
include at least the invariant set. In
literature, the existence of the invariant set
is assumed (by assigning the maximum
state value) and accordingly the sliding
mode controller gain is calculated. In this
case the sliding controller will be able to
force the state toward the switching
manifold at least when it initiated in this
invariant set. However, the gain value
may be large and again the saturation
problem arises. Other designers, use a
certain gain value in the design of sliding
controller and, may be, by doing extensive
simulations they prove that the area of
attraction will include the nominal initial
conditions for a certain application [8].

To find the invariant set, we need to
derive its bounds. The first bound on the
invariant set is derived by using the
Lyapunov function given in equation (4).
Suppose that we use a certain value for the
gain k, then there is a certain basin of
attraction such that the time rate of change
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of the Lyapunov function is less than zero,
namely

V<0=V(t)-V(t,) <0
or
Is(®)| = |s(t,)l <O

Therefore the switching function level is
bounded by:

= s < ls(&)l vt > ¢,

(7)

Of course the inequality (7) holds due to
the action of the sliding mode controller
with gain k. However, the inequality (7)
shows that the state will lie in a region
bounded by

_S(to) < S(t) < S(to) VvVt = to

but without assigning the equilibrium
point with respect to the switching
function. So we need to show that, as it is
known, that the switching manifold is an
asymptotically equilibrium manifold due
to the sliding mode controller. To prove
the stability of s = O, the time derivative
of the switching function is found first
when k satisfies inequality (6), as follows:

§ =%, + A%, = f(x) — g(x)ksgn(s)
+ Ax,
= $=—p(x)sgn(s) , 0<p(x)

Now, we return to the Lyapunov function,
equation (4), to find its derivative as:

V(s) = s * sgn(s)
=>V(s)=-B(x)<0

Since V(0) =0 and V(s) <O in the set
{x € R?:s # 0}, then s=0 is
asymptotically stable (theorem 4-1 in
reference [5]). Moreover, we must note
that the solution of the dynamical system
in (7) at the switching manifold does not
exist [9]. This is due to the discontinuity
in sliding mode controller formula. Ideally
the state will slide along the switching
manifold to the origin, i.e., the state

124



IJCCE, VOL.10, No1, 2010

trajectory will identify the switching
manifold until it reaches the origin.
Therefore, the bound given in the

inequality (7) becomes:

0 < Is(t) <|s(t,)l
= 0 < s(t) * sgn(s) < s(t,) = sgn(s,)

But in sliding mode control sgn(s) =
sgn(s,) ,Vt > t,, thus,

0 < s(¢) * sgn(s) < s(t,) * sgn(s) (8)
Accordingly we have

0 <s(t) <s(ty,)for s>0
0=>s(t) >s(t,)for s<O0

©9)

In words, inequality (9) shows that if the
state initiated in the positive side of the
switching manifold, then the state will
stay in an open region bounded by
s =s(t,) and s =0,Vt >t,. The same
thing happens if the state was initiated
with negative switching function level.
Inequality (9) is the first bound; the
second is derived here for x; as follows:

X, + Ax; = s(t)
= d{e“xl(t)} = eMs(t)dt

or
t

eMx, (t) — x,(t,) = fs(r)e’“ dt

to

By taking the absolute for both sides and
considering the inequality (7), we obtain

|e?x1 ()] — [e*oxy (t,)]

< |e*x,(£) — ettox, (¢,)|
t t

= fs(r)e’“ dr| < fls(r)le’“ dr

to to
t
< |s(t,)I fe’“ drt
to
— |S(;o)| (e’“ _ elto)

= |ettx, (8)| <
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|s(¢,)1

|e/1tox1(t0)| +T(e/1t _ 6,11;0)
= |x, ()] < [x,(t,) e A Eto)

4+ |S(;o)| (1 _ e—/l(f—to))
w1 (0] < max {l (6)], 2420 (10)

The result in the inequality (10) is a
consequence of the convexity of the set

W= {x,(t): x,(t) = ulx,(t,)]

AL O]

0<su< 1}

In this case the maximum element of the
set isat u =0 or at u = 1. Therefore the
invariant set is bounded by the inequalities
(9) and (10) in terms of the initial
condition only and hence, the invariant set
is given by:

0= {x € R%:0 < s(t)sgn(s) <
s(to)sgn(s), lx (O)] <
max (12 ()], =) }(12)

The figure below plot the invariant set in
the phase plane and one can find
geometrically that the bound for x,(t)
inside ¥ is

e, (D] < max{lx,(t,)] s )} (12)

L 4

Figure (1):Positively Invariant Set.

4-The Second Positively Invariant Set

In classical sliding mode control theory,
there exist a trivial invariant set. This set
is the origin of the state space where the
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controller regulates the state to it and
keeps the state there for all future time.
The sliding mode control that does the
above task is a discontinuous control and
it may cause the chattering problem.
Many solutions to the chattering problem
exist in the literatures (see references [2],
[3] and [10]). The simplest method to
remove chattering is by replacing the
segnum function, which it used in sliding
mode controller, by an approximate form.
This idea is first introduced by J.J. Sloten
in [4] by using the saturation function
instead of the signum function. Later,
many other approximate segnum functions
are used to remove chattering as found in
reference [11]. However, when replacing
the signum function the state will not be
regulated to the origin, instead it will be
regulated to a certain set around the origin
known as the positively invariant set. The
size of this set is determined by the design
parameters and the approximation form.
In the present work the signum function is
replaced by the arc tan function, namely
SgNapprox.(s) = =tan~*(ys) (13)
Where tan~!(ys) is a continuously
differentiable, odd, monotonically
increasing function with the properties:

tan~(0) = 0, limg,,,, tan~t(ys) =
lim, ., tan~'(ys) = %sgn(s) and
sgn(s) * tan~'(ys) = tan~'(y|s|) = 0

Accordingly, the sliding mode controller,
given in equation (3), becomes

- % tan~1(ys) (14)

Uapprox. =
Now, let us state the following, and then
prove it:

When the sliding mode controller use the
approximate signum function as given in
equation (13), and the controller gain
satisfied the inequality (6), then the state
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will be regulated to a positively invariant
set defined by

As={xeR%|nl<2Isl<s}  (15)

To prove that As is a positively invariant
set for a second order affine system
(equation (3)), we return to use the
Lyapunov function in equation (4) which
has the time rate of change

. 2k
v ={@ - g Zranrs)
+ sz}sgn(s)
= {9 = tan1 (s
— (0 + A) + 59 ()}

For the switching manifold to be attractive
V must be less than zero, namely

{90 2 tan11s) ~ (7 G) + 1)

* sgn(s)} <0
f(x) + Ax,

2k
= —tan~(y|s|) > max |—————=
"~ tan-i(ylsl) -

=h
or

h
> ™
2tan~(yls))

(16)

Now, let |s| = § be the chosen boundary
layer, then inequality (16) reveals, for a
certain y, that: for any § there is k, such
that the state will be regulated to an open
region given by

I ={x € R?:|s| < 6} (17)
Accordingly, the gain k will be
arh

In addition, to determine y, equation (18)

may be written as:
k=ahB, B>1 (29)

provided that;
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yé = tan—

: (20)

The next step in the determination of the
invariant set As is to found the boundary
with respect to x; inside I'. This is done by
using the following Lyapunov function
V=-x (21)
with the x; dynamics, from equations (2)
and (3):

%, = —Ax; +s(t) (22)

Therefore the time rate of change for the
Lyapunov function is

V = X1 Xl = X1 (_Axl + S(t))
= —2Ax 12+ |xq lIs(O)]
< —Alxy |2+ |x, |6
) = —|x1 |(/1|x1 | - 5)
Thus, V < 0 for the following unbounded
interval:
5

|x1|>_

: (23)

Inequality (23) proves that the state x; will

reach and stay within the interval —% <
x; < % This ends the proof that the set
{x € R%: x| < %, [s] < 6} is positively
invariant for the system in equation (2)
that uses a sliding mode controller with
the approximate signum function as given
in equation (14).

Note that the state inside As may or
may not reaches an equilibrium point; the
situation depends on system dynamics,
i.e., the state, instead of that, will reach a
limit cycle inside As. Consequently, and
for the design purpose, & may be
determined according to a desired
permissible steady state deviation of the
state x, and for a selected A, as a design
parameter, as follows:

0 = A*Xiper. (24)
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Thus, the set As is now written as:
As = {x € R2: |xy| < xyper., Is| < 6} (25)

It is also noted that for arbitrary small
Xi1perthe positively invariant set Ag
becomes arbitrary small and it may lead,
again, to the state chattering. This
situation may explain the chattering
phenomena as the state oscillation with a
very narrow width, i.e., the interval
|21 | < x1per. is very small.

5-Sliding Mode Controller Design for
Servo Actuator with Friction

Consider the following model for the
servo actuator with friction:
Ji=u—F-T, (26)
Where x is the actuator position, J is the
moment of inertia,u is the control signal,
Fis the friction torque, including the static
and dynamic components, and T is the
load torque. The friction model taken here
is a combination of Coulomb friction E,,
Stiction friction F,, and the viscous
friction (for more details one can refer to
the survey papers [12] &[13]), namely

i\2

F= Fse_(g) * sgn(x)
+F, <1 _e ) >

* sgn(x) + ox
or
2

F= {Fse‘(%) +F <1 - e‘(fs)z>

+olx[} xsgn(x)  (27)

Where x, is called the Stribeck velocity and
o is the viscous friction coefficient. In
addition, the servo actuator model in
equation (26) is considered uncertain with a
bounded load torque. The uncertainty in the
model parameters reaches to 20% of their
nominal values. Now, define e; =x —x,
and e, = x — x4, then the system model in
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equation (26) in state space form (in (ey, e,)
plane)is written as:

e, =e,

e = (5) w-F-T)—% (28)
In this work the desired position and
velocity are taken as in reference [14]:

1 1
Xg = Esm(&rt) — %sm(lZEt)

= |xyl < —

xq = sin(10mt) * sin(2mt) = |x4] < 1 (29)

Also, the switching function and its
derivative are

s=e,+1e;&
s= () w=F=T,) =i, + e, (30)
J
where %, = 107 * cos(10mt)sin(2nt) —
2m = sin(10mt)cos(2nt) and |%,4| < 12m7.
The sliding mode controller is designed
for two initial conditions (the position and
the velocity at time t = 0). The first initial
condition lies in the 2" positively invariant
set (see (15)), while in the second case the
1% positively invariant set is taken according
to the initial condition which lies outside the
2" positively invariant set. The controller
parameters are calculated for each case in
appendices (A) and (B) for the following
nominal parameters and external load values
[14]

Table (1): Nominal Servo Actuator
Parameters and the External Load values

Par. Definition Value Units
JA Moment of inertia. 0.2 kgm?
Fyp Stiction friction. 219 Nm
E, Coulomb friction. 16.69 Nm
. . . rad
X0 Stribeck velocity. 0.01 /sec

. . Nm
viscous friction
o, . 0.65 - sec
coefficient
/rad
T External Torque 2 Nm

The simulation results and discussions are
presented in the following section.
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6-Simulations Result and Discussions

For the first case the state is started
from the rest, which means e(0) = (0,0)
(this is because x;(0) = x,(0) = 0). In this
case the state is initiated inside the 2"
positively invariant setAgs, and accordingly
the state will not leave it for t = 0.The state
after that reaches an invariant set (it stills
inside As) , namely the w limit set of the
point e(0). For the servo actuator with non-
smooth disturbance (the friction), this set is
a limit cycle lying inside the positively
invariant set As (the fact in section 2).
Indeed, the state will reach the w limit set if
it is started at any point in As. This situation
will be demonstrated by the simulations
result below.

The approximate sliding mode
controller in this case is (the details of the
calculations is found in Appendix (A))

Uapprox. — _(84/7T) * tan_1(14l * S)
S :(J'C—)'Cd)+25*(x—xd)

Jey

This controller will be able to maintain the
state in the following invariant set:

Is| < =

A‘S:{XERZ:lx_xd|<3eoo' 144}
, (32)

T

The response of the servo actuator system
when started at the origin is shown in figure
(2). In this figure the position response is
plotted with time and it appears very close
to the desired position. This result is
demonstrated when plotting the error and
the maximum error shown in the plot, where
it does not exceed 1.5 % 10~* radian. For
the velocity, figure (3) plot the time
response and again the maximum error,
which does not exceed 6.5 % 1073 radian
per second, reveal the closeness between the
velocity response and the desired velocity.
The error phase plot is found in figure (4)
where the state reaches the w limit set of the
origin point. The w limit set forms here a
non-smooth time varying limit cycle and
accordingly, the error state will oscillate for
all future time within certain amplitude. The
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oscillation amplitude has an upper bound
decided early by the choice of the
permissible error.

The positively invariant set formed by
the sliding mode controller, as given by
(32), enables the same controller to regulate
the state when it is started within this set.
This situation is verified in figure (5) for
two starting points where the state reaches
the wlimit set corresponding to each point.

(b)

Figure (2)a) Position and the desired
position vs. time (equation (29)). b) The
position error for 5 second
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(b)
Figure (3) a) Velocity and the desired
velocity vs. time (equation (29)). b) The
velocity error for 5 second.

Figure (4) The phase plane plot when the
error started at the origin.

(b)
Figure (5) The phase plane plot a) when

the error started at (e,%)=(-Z-,0) b)
when the error started at(e,%):

T T
(c= 2.
3600 144
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For the second case the sliding mode
controller, as calculated in appendix (B),
is
u = —45 = sgn(s) }
s=(x—%4)+25*(x—x4) (33)

The controller will be able to regulate the
error to the origin if it initiated in the
following positively invariant set:

Q={x e R*|s(t)| < 0.875,[x — x4] <
0.035} (34)

The simulation results for the position and
the velocity when the state starting at
(x,x) = (0.035,0) are shown in figure
(6). In this figure the position and the
velocity track the desired response after a
period of time not exceeding 0.12 second.

= - G Pt

=

oy vasSen
—
—
—
S

'\ //A \ \//\\

(b)
Figure (6) Servo actuator response for the
initial condition (e,%) = (0.035,0) a) The
position vs. time b) velocity vs. time.

As for the sliding mode controller in (31),
the sliding mode controller in (33) will
create a positively invariant region (34)
such that if the state initiated inside this
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set, it will be regulated to the origin. This
situation is confirmed in figure (7) for
three different starting points including
the case of figure (6).

{

)
‘l‘m

113
k1

i

3t
&
st
F1S

(©)
Figure (7) Error phase plot for different
initial conditions a)(e,%*) = (0.0350) b)

(e.%) = (-0.035,1.75) c) (e.2)=
(0,—0.875).

If it is required to remove the
chattering that exists in the system

response for the second case, we again
replace the segnum function by the arc tan
function. In this case we replace the gain
k = 45 by the following quantity:

k=45%x125=57, =125
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Then, we obtain

u=-— (%) tan~1(141 * s)

(35)
The sliding mode controller in (35) creates
a positively invariant set equal to the set
given in (34), but in this case the
controller will not regulate the error to the
origin. Indeed, the controller will regulate
the error to enter the 2" positively
invariant set that was given in (32).
Mathematically, the 1% and the 2™ sets in
(34) and (32) are two positively invariant
sets created by the sliding mode controller
in equation (35) but with a different set
level (see reference [1] for the definition
of set level), namely

AaCQ

As in figure (7), the phase plane plot
for the initial condition (e,%) =
(0.035,0)is plotted in figure (8) but
without chattering around the switching
manifold due to replacing the segnum
function in equation (33) by the
approximate form in (35). Accordingly,
the state will enter a smaller positively
invariant set and then reach the w limit set
as in case one.

e vy
. s
$ 2 'y
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Figure (8) the phase plane plot when using
the controller in (35) a) full phase plot b)
small plot around the origin showing the
oscillation behavior.

Finally, the chattering behavior is
removed due to a continuous control
action, where the continuity is revealed in
figure (9) with a magnitude that lies
between +25 N.m after a period of time
not exceeding 0.05 second.

L T )

(b)

Figure (9) The control action vs. time a)
plot for 1 second b) plot for 0.05 second.

7-Conclusions

The positively invariant set for a second
order affine system that uses a sliding
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mode controller has been derived. The
size of the invariant sets are found
functions to the initial condition and
consequently to the controller gain and
design parameters. The derived sets have
been used to calculate the sliding mode
controller gain for the servo actuator. The
simulation results prove the invariant
property of the derived set and the
effectiveness of wusing them in the
calculation of the sliding mode controller.
The ability of the approximate sliding
mode controller, a continuously and
differentiable controller, has been verified
when used to attenuate the effect of a
nonsmooth disturbances (the friction) that
acts on the servo actuator system. The
controller maintains the maximum error
(the difference between the actual and the
desired state) very close to zero and
according to the permissible error value
specified previously.
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Appendix (A)

To design the approximate sliding
mode controller we need, first, to calculate
h as it is given in (6):

f(e) + e,

g(e)

—F-T B,
max|( ; L)—xd+/1€2|

min G)

h = max
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= max|F| + max|T,| + (maxJ)
* max|¥ 4|

+ A (maxJ) * max|e,| (A-1)

From the set Ag, the following bounds are
estimated:

max|e,| =26 and,
max|x| = max|e,| + max|x;]| =26 + 1

The term max|x| enables the calculation
of max|F| as follows:

25+1)2

max|F| = 1.2 {Fsoe_(T

_(2&)2
+F,, <1 —e \ % > +0,(26 + 1)}
<1.2(F,, +0,(25 + 1))

where F,, F.,,and o, are the nominal
friction parameter values also, we
multiply their values by 1.2 to take into
account the uncertainty in  system
parameters as assumed previously. In
addition, we have

max|/| = 1.2 x J,and min|J| = 0.8 J,

again J, is the nominal moment of inertia
value and finally the load torque is
bounded by

IT,| <Ty,,,,, =127,

Therefore, h becomes a function to the
slope of the switching manifold 4 and the
boundary layer §.

In sliding mode controller design, we
are mainly concerned in calculating
suitable value for the gain k after a proper
selection to the switching function s(x)
(by proper we mean that the origin is an
asymptotically stable after the state
reaches the switching manifold s(x) = 0).
Now, if we set the permissible error and A
as in the following

T
€per. = 0.05 deg = 36% rad,

A=25

Positively Invariant Sets in Sliding Mode Control Theory
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then from (24), we have

T
== |ell < eper.

0= A per. =177

Accordingly, to find the gain k, we first
compute has follows:

max|F| < 1.2(F,, + 6,(25 + 1))
= 20.84
> h=2084+24+024+«12n+0.24

T
* 25 % ZM = 3255

and then for § = 1.25, we get
k=ax*x125+%3255=42, a>1
Also, from equation (20), y equal to

_ 144t T 141
T
Finally, the sliding mode controller to the
servo actuator is

84
Ugpprox. — — ? tan_1(141 * S)

s=(x—2%4)+25*(x—xg4) (A-2)

The sliding mode controller will be able to
prevent the state leaving the positively
invariant set As. That means the error
(x — x4) is less than the permissible limit
specified earlier.

Appendix (B)

In this case we consider the same desired
position and velocity as in equation (29)
with the following initial condition

x = 0.035rad, x =0 rad/sec.
= e(0) = (e;,e,) = (0.035,0)

Also, consider the same switching
function as in case one (s = e, + 25e¢,).
Then, accordingly, the invariant set is
given by
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e =
{x € R?:0 < s(t) <0.875,le; (1) <
0.035} (B-1)

In addition we have

le, (t)] <1.75 = max|x| = max|e,|
+ max|x,| =2.75rad/sec.

And then we can calculate max|F| as in
the following:

max|F| < 1.2(E,, + 275« g,) = 22.2
Thus, as in the first case, h is equal to

h=222+24+024+%12n
+0.24 x 25 % 1.75 = 44.15
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The sliding mode controller gain from
equation (6) is taken equal to

k=45>h

Finally, the sliding mode controller for the
second case is given by

u = —45 = sgn(s)

s=(x —x4) +25* (x — xy) (B-2)
If the state initiated inside the positively
invariant set as given in (B-1), the sliding
mode controller will regulate the error
state to the origin irrespective to the
uncertainty and  the  non-smooth
components in the servo actuator model.
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