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ABSTRACT 
       The presence of polarization mode dispersion (PMD) vector leads to differential group delay 

(DGD) among the polarization components, while the presence of polarization dependent loss (PDL) 

vector leads to attenuating one of the components and increases the other by a magnitude determined 

by PDL value. The study of each phenomenon individually does not give a proper description of the 

physical nature of the optical fiber system, because these two phenomena arise together at the same 

time. In this paper, we examine the combined PMD and PDL to generate random vectors at the 

concatenation sections as well as the total PMD vector. The derivation of the complex PMD vector 

formula of  single section and concatenation sections leads to explain the properties of DGD and 

orthogonality of principal states of polarization (PSPs). However, new recursive formulas were found 

to the complex PMD vector, which are applied to illustrate the related random quantities. 
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 لاصةالخ
( فوو  تشتي وو   ) وو     ا  م توو  DGD(  وويظإ إ ووخ  وولزمش   لتووشت       وو    PMDإن وجوو ظ هوو تشت  نوو ا ستووا  ) وو               

(  وويظإ إ ووخ  وو تم  إكووط  تشتي وو   ) وو      وة وو ظت   تشتقووة  ذزووش  وك وو    تووة توو   PDLوجوو ظ هوو تشت ز وو مت تا تووطت  ) وو       
ن بنوو ة ت   ووة لأوو   ذزووش  ) اا وو  و وو   ت   ووق     ي اووة    مل  ا ووة   ظوو ا     وو    ق ووشإا )ن ت  وو   ظوو تشتإ إن ظم  ووة تووة هوو تشت 

(     موط ت هاو ع لأنو  ا ة زولا  PDL( و  PMD  ظ تش م    لان تا  وف  س س    قاإ فو  تو     ق وم  وت  ز قو م ظتوه   ظو تش م   
ت  ع و كط و اطظ تو    ت و طع   ت    و ة يويظإ إ وخ فاوت ز و ا   ولزمش (   تا ط  PMD  ت  طع   ت     ةإ إن  ش   ق   غة ت هه  

(   تا ووط PMD(إ  ووت إاهوو ظ  وو غة جطيووطت  ت هووه  PSPs( توو  ف فاووت  ا تطاووة كوو )ع  ) وو       ذ   وو ة  DGD  لتووشت       وو    
 و   إ طيق      ح      ع   ان  ا ة   ت ا  ة  ا     ق مإ

1. Introduction 
 It is well known that at high data rates (typically >10 Gbit/s) polarization 

effects can severely impair optical communication system performance. Conventional 

polarization effects include polarization mode dispersion (PMD), which causes the 

differential group delay (DGD) between the principle states of polarization (PSPs), 

and polarization dependent loss (PDL), which causes polarization dependent 

attenuation of the propagating signal [N. Gisin and B. Huttner,1997; N. Gisin et al, 

2000]. DGD is a time delay at a discrete frequency between the fastest and slowest 

modes of an optical signal. This randomly varying delay causes optical pulses to 

broaden and hence bit errors. PMD is the mean of DGD over all frequencies [B. 

Huttner et al, 2000]. State of polarization (SOP) change is caused by change of PMD 

and PDL [I. Yoon and B. Lee, 2004]. PMD is caused by birefringence on a fiber’s 

core/cladding breaking the cylindrical symmetry [J. Gordon and H. Kogelnik, 2000]. 

The PMD describes the polarization dependence of the time delay of an optical pulse 

as it propagates along the fiber. High amounts of DGD can cause pulses to overlap in 

an optical communication system [C. D. Poole and R. E. Wagner,1986].  
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The PDL on a linear scale is defined as the ratio between the maximum and minimum 

attenuation coefficient over all polarization states. While this quantity can be 

measured by using scrambling and recording the maximum and minimum attenuation 

it is usually measured using the Jones matrix or Muller matrix method [L. Chen L et 

al, 2007; M. Shtaif and O. Rosenberg, 2005]. PDL describes the polarization 

dependence of the optical attenuation for different states of polarization and can occur 

concurrently with PMD in fibers [Y. Li and A. Yariv, 2005; G.P. Agrawal, 2005]. 

PDL is a varying insertion loss arising from the dependence of a component’s 

transmission coefficient on the SOP [M. Shtaif and O. Rosenberg, 2005].  

In a complex system with; optical fibers, couplers, filters, multiplexers/ de-

multiplexers, variable optical attenuators, erbium doped optical amplifiers, and 

add/drop multiplexing switchers, the combination of PMD and PDL will lead to a 

complex PSP vector [G.P. Agrawal, 2005; D. S. Waddy et al, 2003]. The combined 

PMD-PDL interaction can further degrade the system performance. Due to the 

interference between the fast and slow modes, the interaction between these effects 

will make an optical system more complicated than PMD or PDL alone. It may result 

in anomalous dispersion and causes additional signal distortion [M. Wang et al, 2003]. 

It is known that this interaction causes the fast and slow PSP direction to become non-

orthogonal [C. Xie and L. F. Mollenauer, 2003]. This non-orthogonality is related to 

the imaginary part of the PSP vector or Differential Slope Atenuation (DSA) [S. Yang 

et al, 2005].   

In this paper, a new recursive formula is presented to determine the total PMD vector 

as a function of the local random vectors to the concatenation sections. Also, we are 

illustrated many treatments that may be used to study the related behavior of the 

random quantities in single mode fiber.  

 

2. Basic Treatments 

Linear transmission of light from the input to the output of an optical link can always 

be expressed in the form 

(1)                                                                                     )()( twTws   

where w  is the light frequency, t  and )(ws  are the input and output polarization 

Jones vectors and )(wT  is the transmission matrix. Unlike the familiar case 

accounting only PMD, where the transmission matrix  is unitary, here )(wT  is a 

general matrix with no significant limitations. In principal, an optical system with 

polarization effects can be modeled as a concatenation of N  segments. Each segment 

j  have the PDL and PMD effects that describe by PDLjT  and PMDjT , respectively, 

which are defined as [B. Huttner et al, 2000] 

(3)                                                      )2/sin().ˆ()2/cos(

 (2)                                                           )2/sinh().ˆ()2/cosh(
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where PDLjT  is a Hermitian matrix, i.e. 
†

PDLjPDLj TT  , which have the real eigenvalues  

2/je


. Note that, in this representation PDL matrix, the polarization component of 

field that is parallel j


 experiences a gain je


, but the anti-parallel component is 
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attenuated by je


. The vector jjj  ˆ


, which is pointing in the direction of the 

least attenuated state of polarization and is called PDL vector, stands for the jth PDL 

segment with value expressed in dB by [G.P. Agrawal, 2005] 

 (4)                                                  )(||20)/(10)( 10minmax10 eLogTTLogdBPDL j  

where  1
max

T  and 2

min

 eT  are the maximum and minimum transmission 

intensities through the system, The matrix jPMDT   is unitary, i.e. 
-1

 MD

†

 jPjPMD TT  . The 

vector j


 represents the local PMD vector and 


 is the vector of Pauli spin matrices 

whose three components are [9] 
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Note that, for any three-dimensional vector m


, the product 


m  is defined as 

332211  mmm  , which is a complex 2 2  matrix.  

The frequency domain evolution of the state vector may be determined by 

differentiating of Eq.(1) and using the fact sTt 1  to yield 

 (6)                                                                       1 sTT
w

s
w





  

Note that, since ITT 1
 then the differentiation leads to 011  

ww TTTT . But, 

111)(   ww TTTT , such that 
111 )(   TTTT ww . In general, any 2 2  matrix M  may 

be expanded in the form 


 aIaM o  with 2/)(Mtraceao   and 

2/)( Mtracea 


 . Using this property, we may write 


 aIaTT ow

1
 and 




 aIaTT ow

11)( . However, the equalization of 
1TTw  and 

11)(  TTw  will 

make 0oa . That is; 
1TTw  is a traceless matrix, which is a similar to the case of 

pure PMD. Accordingly, one may be demonstrated 

  (7)                                                                          
2

T  1- 


 W
i

Tw   

for some complex vector W


. The vector 


iW  is always called the complex 

PMD vector. Simply, 


 and 


 vectors represent the PMD and PDL, respectively. 

The DGD is WW


 Re , while Differential Slope Attenuation DSA is defined as 

WW


 Im . It can be shown that the eigenvectors of the matrix 


 WTiTw

12  

are the output principal states p  of the system (with the PSP definition according 

to the first order frequency-independent), no matter whether the PDL is zero or not. 

The eigenvalues of 


W  are  , which in turns out to be a complex number in 

systems with PDL. Formally,   ppW 


. The eigenvectors are orthogonal in 

systems without PDL because the matrix 


W  is Hermitian, whereas the Hermitian 

property is lost and in turn the orthogonality is not hold anymore in presence of PDL. 

This means that the PSPs in Stokes space   ppp 


ˆ  are no longer antipodal. 

Moreover, owing to the traceless of  
1TTw , its two eigenvalues can be written as 

)(  i .  



 
 

 2568 

Using the definitions 


iW  and WW


 , one may be found 

(8)                                                    )sincos(  immWW 


 

where                        

(9f)                                                                                     2Λ2Ω2|W|

(9e)                                                         2Λ)(2Ω2)2Λ2(Ω2|χ|

(9d)                                                                                         sinρ mη

(9c)                                                                                        cosρ mτ

(9b)                                                                       )
2Λ2Ω

Λ2Ω
(1tan

2

1
ρ

(9a)                                                            4 2Λ)(2Ω2)2Λ2(Ωm
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Using the definitions   ppp 


ˆ  and   ppW 


, one may be found [M. 

A. Reimer, 2007] 

(10)                                                  ]   [
||||

2
ˆ

22






 

 W
p  

 

The angle between the PSP’s vectors in Stokes space, which represents the 

orthogonality, may be found using Eq.(10) as  

(11)             
])cos2()([

]cos  2)cos([4
ˆˆcos

2222222

2222222









  pp  

 

where   represents the angle between 


 and 


. The largest pulse spreading is 

defined as [B. Huttner et al, 2000] 

 (12)                                                                    
1

 

2

1 22

max








   

 

where the overlapping factor   is defined as 

 (13)                                                                    
||||

||||
22

22











W

W




 

 

Depending on Eqs.(11)-(13), there are many important results that may be specified as 

follows: 

If 


 and 


 are parallel or anti-parallel, then 0


 and 
22 |||| W


. In turn, 

222 )|/(|)  (cos W


  , 0 , and  max . That is; the parallel and anti-

parallel cases will present a different orientation of the PSPs without holding the 

orthogonality.  

If 


 and 


 are orthogonal, then 0


, 0  and 
22  . Consequently, 

222 /)2 (cos  . That is; the DAS will be zero and the DGD will be 
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maximum. Moreover, if  we take 0|| 


, then the simplest case that makes 

( 1cos  ), i.e.  /ˆ


p  which are orthogonal, will be deduced. 

 The absence of PMD effects will make 0


, 0 , and 0  and consequently 
0ˆ p , which is a trivial case that means no PSPs states. 

 

3. The Complex PMD Vector  

According to Gisin and Huttner (see Eq.(11) in Ref. [N. Gisin and B. Huttner,1997]), 

PDLPMDTTT   that will make 2/1 


 iTTw  for 1N . This means that the PDL 

effects are not contained in the result. In this model, we are adopted the form 

PMDPDLTTT   that makes 2/ 11   PDLPDLw TiTTT 


 for 1N .  

 

3.1 Isolated Section Model 

For single section, depending on the result 2/ 11   PDLPDLw TiTTT 


, using Eq.(7) 

and the fact 
2/1 


  eTPDL , yields 

 

 (11)      )]2/sinh().ˆ()2/[cosh( ))](2/sinh().ˆ()2/[cosh(        
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 
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Using the identities [5] 
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rearrangement the result, and separating the real and imaginary parts, one may be 

obtained  

 (14)                                                           )ˆ()2/sinh()2/cosh( 2

 (13)                       ˆ)ˆ( )2/(sinh2 ))2/(sinh)2/((cosh 222











 

 

Simply, one can be determined || 


 and || 


as follows 

(16)                                                                     sin)2/cosh()2/sinh(2

(15)              )2/(sinh2cos)2/(sinh)2/(cosh2)2/(cosh 4224








 

 

where   is the angle between the local vectors 


 and 


. Again, for each section 

there are a local complex vector W


 that may be determined depending on 
PDLT  and 

PMDT . In other words, W


 for each section does not depend on the other sections 

effect, but the total W


 after N  sections results from the contribution of all 

transmission matrices of the previous sections. 

Accordingly, the following facts for the physical parameters of the individual sections 

may be pointed. Generally, 1) 0


, 2) 
22  , 3) 0 , 4) the 

eigenvalues are real and 2) 1sinsinhˆˆcos 22    pp . That is; the 
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orthogonality is hold at each section if 0  or ) , 0(   . As such, the individual 

PDL effects will be discarded if no PDL or 


 and 


 are parallel or anti- parallel. 

Also, if 0  or ) , 0(    then   and 0 , such that the DGD will not 

change, i.e. newold   . However, all fiber properties depend on the geometrical 

relation between the local vectors 


 and 


 of each section.  

 

3.2 Concatenation Sections Model 

For N  concatenation segments, T  takes the form 

  (17)             ................... 1122111221 PMDPDLPMDPDLPMDNPDLNPMDNPDLNNNN TTTTTTTTTTTTTT  

 

 

Now, the derivative and inverse of T  are illustrated as 
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The frequency derivative of each PMDjT  may be computed using Eq.(3) to show   

 (20)                                                                                                   ).(
2
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i
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Substituting Eqs.(18) to (20) into (7), yields  
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where for each isolated section, we have 1)(  PDLjjPDLjj TTW 


. Moreover, Eq.( 

21)  may be simplified further using the assumption 111 .......   jNNoj TTTTT  to get  

(22)                                                                                              )( 1

1

1

1







   jj

N

j

jtot TWTW 


Each term in the last equation represents 
1TTw  for one or more sections. Therefore, 

each term represents a traceless matrix, which can be written as 


ja . Here ja


 

computed as 2/))( ( 1

11



  jjjj TWTtracea 


. As such, the total PMD vector may be 

expressed as 

(23)                                                                   ))( (
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1
 1

1
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j

j

N

j
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Also, Eq.(21) may be reformed to obtain the following recursive relation 
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 (24)                                                                               )( 1

1

)( 

  NNNN

N TWTWW 


  

 

where )( NW


 is the PMD vector of the total N segments, whereas NW


 is the PMD 

vector of the N-th  segment only. As an example to determine )( NW


, it is clear that: 

 0)0( W


, 1

)1( WW


 , 
  

 ])()( [
2

1
 1

212

1

2122

)2( 


  TWTTWTWW
 

 

and so on, where the identities in Eqs.(12) will be used to extract W


 from 


W . It is 

important to note that, the diagonal elements in the terms 

])()( [ 1

1

1

1 
 





  NNNNNN TWTTWT  are identical. Eqs.(23) and (24) represent 

new recursive formulas of the complex PMD vector, which give the idea about the 

amount of difficulties to obtain a closed form of output PMD vector of the pulse 

propagates through optical fiber.  

 

4. Results and Discussions 
We are used Eq.(23) to calculate the parameters that are effected during evolution of 

light through an optical fiber. At simulation, we are used 100000 fibers, each with 

long 100 km and varying Dp (PMD) and Dα (PDL).  Each fiber will be divided to 100 

sections where the random matrices for each section is generated using the relations at 

Eqs.(2) and (3). The present results represent the average over the 100000 fibers. It is 

important to note that, the average is the nearest to the practical behavior more than a 

single simulation, where the larger number of fibers will make the results to be very 

accurate. 

Fig.(1) represent the orthogonality of PSP of a system with varying Dp and Dα. 

According to Eq. (11) the PSP of a system are not necessarily to be orthogonal any 

more, in other words, the angle between two PSPs in stokes space is not necessarily 

180o, our simulation results in Fig.(1) show that. In case of very low PDL value (blue 

curve in each subfigure) the angle is almost 90o (in jones space), with an increasing 

rate of PDL, more and more the PSP well not to be orthogonal any more, the angles 

may reach down below 45o in same regions, so in this Fig. we can see the variation of 

PMD will be induced a very small change in the probability of orthogonality. 

Fig.(2) represent the probability density function (pdf) for the real DGD of the system 

with varying PMD and PDL, we can see in this Fig. the real DGD  is Maxwellian 

distributed just in systems without any PDL, in system with very high PDL the 

distribution of the real part DGD may change reasonably with increased possibility of 

high DGD values and the distribution closely to be Gaussian Maxwellian with 

increasing PMD and PDL, so in this Fig. we can see in subfigure when high PDL the 

pdf of zero DGD will be increasing. The statistics of the real part of DGD depend on 

the values of Dp (PMD) and Dα (PDL) but PMD effected on real DGD more than 

PDL. 

Fig.(3) represent the probability density function (pdf) for the imaginary part of DGD 

or we can called DSA of the system with varying PMD and PDL, this Fig. show the 

DSA is (sech2) distributed when PMD and PDL are small values, but when increasing 

the values of PMD and PDL its clearly that the pdf of DSA well be change, so DSA 

depend on both PMD and PDL. 

Finally, the PSPs are orthogonal at PDL=0, while the  presence of any PDL value will 

eliminate the orthogonality. The amount of orthogonality deviation depends on the 
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PDL value, where the larger PDL causes the smaller  . In other words, decreasing 

PDL will make the PSPs near the anti-parallel. Generally, the presence of PMD 

causes DGD and peak shifting but the PSP's orthogonality will maintain. On the other 

hand, the impact of PDL will increase the mean value of DGD (more than the case of 

no PDL) and does not reserve the PSPs orthogonality. In turn, this will cause 

distortion in the resulted pulse shape and consequently the degree of polarization will 

be reduced. All changes are subject to increase the number of sections (length) and 

PDL value. Fluctuations in all curves become smoother by increasing the number of 

optical fibers used in the simulation.  

 

5. Conclusions 
In conclusion, the proposed treatments to study the randomness behavior in presence 

of PMD and PDL gave good results. Where it is possible to simulate the optical fiber 

through the knowledge of PDL, pD and the generated local vectors to infer the 

fluctuations of  , eff ,  , 


 and cos  through evolution. In general, we can 

work close to the case of orthogonal PSPs  if PDL is very small, whereas the change 

of PMD does not affect the orthogonality.  
 

 

 
Fig.(1):  Orthogonality of PSP of a system with varying PMD and PDL, where the 

three curves (blue, red and green) represent the orthogonal probability of PSP for 

PDL=(0.92, 1.84 and 2.76)dB respectively 
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Fig.(2): pdf for real DGD of a system with varying PDL and PMD, where the three 

curves (blue, red and green) represent the pdf for DGD for Dp=(0.1, 0.2 and 

0.3)ps/sqrt(km)  respectively 

 
Fig.(3): pdf for DSA of a system with varying PMD and PDL, where the three curves 

(blue, red and green) represent the pdf for DSA for PDL=(0.92, 1.84 and 2.76)dB 

respectively 
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