
Journal of Babylon University/Pure and Applied Sciences/ No.(1)/ Vol.(20): 2012

 10

Speed Enhancement of Snort Network Intrusion
Detection System

 Safaa O. Al-Mamory
College of Computer Technology, University of Babylon

Abstract
Network Intrusion Detection System (NIDS) is a security technology that attempts to identify

intrusions. Snort is an open source NIDS which enables us to detect the previously known intrusions.

However, Snort NIDS has several problems one of them is the efficiency problem. We suggest using

distributed environment in order to enhance it. We achieved this goal by enhancing the Snort’s string

matching engine through using a LAN of computers, where each computer in the LAN matching a subset

of the monitored attacks. The experimental results show that it is possible to improve Snort’s efficiency

using distributed environment.

ةالخلاص
فتوح برنامج سنورت هو برنامج م. ان اكتشاف الهجومات في شبكات الانترنت تستخدم مجموعة تقنيات تحاول معرفة الاختراقات الامنيه

قد ل. مع ذلك، فأن برنامج سنورت يعاني من مجموعة مشاكل من ضمنها هي مشكلة السرعه". المصدر لاكتشاف الهجومات المعروفه مسبقا
نورت من قمنا بذلك من خلال تحسين محرك مطابقة السلاسل التابع لبرنامج س. خدام المعالجه الموزعه لزيادة سرعة السنورتاقترحنا است

 ة الطريقهالنتائج العمليه اثبتت كفاء. ان كل حاسبه في هذه الشبكه تقوم بمراقبة جزء من الهجومات. خلال استخدام شبكة حاسبات محليه
 .لك، فأن عملية اختبار السنورت اصبحت اسهلاضافة الى ذ. المقترحه

 Introduction
The study of Network Intrusion Detection System (NIDS) has become an important

aspect of network security. Snort is an open source NIDS which enables the research

community to easily do experiments. It uses the misuse detection method which uses a set

of signatures to detect previously known attacks. Unfortunately, it has several weaknesses

like providing unmanageable amount of alerts, vulnerability to flooding attacks, etc.

In this paper, the problem of efficiency enhancement of Snort NIDS is considered.

We suggest using distributed processing to solve this problem. Every node in distributed

environment will be responsible for detecting a partition of the overall monitored attacks.

By distribute attacks’ signatures across several computers (like a LAN of computers, as

can be seen in Figure 1) we can enhance the attacks’ detection speed.

The experimental results have shown that using a LAN of computers is enhancing

Snort’s efficiency and detection. In addition, three string matching algorithms are

considered which are Kunth Morris Pratt (KMP) algorithm, Karp-Rabin algorithm, and

Boyer-Moore algorithm. Experimentally, Boyer-Moore algorithm has been proved to be

the best among these algorithms in distributed environment.

 11

Figure 1. The position of the distributed Snort NIDS

This paper is organized as follows: Section 2 surveys the related work. The string

matching algorithms that are considered in this paper have discussed in Section 3. Section

4 discusses how the efficiency of Snort NIDS can be enhanced. Section 5 presents the

experimental results. Finally, Section 6 concludes this paper.

 Related Work
In this section, we will review a part of the existing methods for enhancing the

efficiency of Snort NIDS. These methods can be classified into one of the following: (a)

reducing the number of rules, (b) enhancing the string matching algorithm, (c) reducing

the monitored packet volume, (d) using faster computer, (e) turning off preprocessors, (f)

using parallel computer, (g) using distributed environment, (h) using load balancing

hardware. Depending on the selected method, we have different advantages and

disadvantages. For example, using a parallel computer will be too expensive. In this

paper, we have merged the solutions of class (b) and class (g).

The first direction is to improve the speed of matching process by using ad-hoc

techniques. One straightforward idea in this direction is to put the rules with the similar

criteria in the same group. During detection, the common constraints of a rule group need

only be checked once. Kruegel et al. (Kruegel, 2003) have used machine learning

clustering techniques to improve the matching process. They used decision trees to

optimize the rules-to-input comparison process (Kruegel, 2003).

As another direction, NIDS load-balancing hardware is available that evenly

distributes traffic to a group of sensors. This ensures that no single sensor will be

overwhelmed with traffic. The load balancer can support up to eight sensors monitoring

the same network. For a load balancer to be used in an NIDS, setting it must support

stateful mirroring. Stateful mirroring ensures that a sensor that is tracking a session

continues to receive the same session data as the load balancer divides up traffic. If the

load balancer were to randomly distribute packets, streams would be broken up and

NIDS would be severely hampered. For this reason, it is imperative to have stateful

mirroring technology present in any load balancer considered. The major disadvantage of

load balancing is its cost. A load balancer with a gigabit tap can easily be more expensive

than Snort sensor group utilizing it (Koziol, 2003).

Journal of Babylon University/Pure and Applied Sciences/ No.(1)/ Vol.(20): 2012

 12

 Snort’s String Matching Engine
In this section, we present three string matching algorithms. Kunth Morris Pratt

(KMP) algorithm will be presented in Subsection A. Subsection B presents Karp-Rabin

algorithm. Boyer-Moore algorithm has been presented in Subsection C. We have selected

these algorithms because they are the most popular algorithms in the field of string

matching.

The component of Snort NIDS appears in Figure 2. Snort NIDS receives packets from

the network, then it triggers an alert for any suspicious activity. As can be seen from

Figure 2, the detection engine is the central component of Snort NIDS. The detection

engine depends on string matching algorithms to achieve its goal. Therefore, in the squeal

of this section, we will study the behavior of three string matching algorithms.

A. Kunth Morris Prat Algorithm
Knuth et al. (Knuth, 1977) have proposed a string matching algorithm that turns the

search string into a finite state machine, and then runs the machine with the string to be

searched as the input string. KMP algorithm uses information about the characters in the

searched string to determine how much to ‘move along’ that string after a mismatch

occurs. This can be implemented by associating each element position in the searched

string with the amount that can be safely moved forward. If there is a mismatch in a

certain position, then the search can be moved forward by the amount associated with that

position. KMP algorithm achieves a running time of O(n + m), where n is the length of

text and m is the length of pattern (Fide, 2006).

Figure 2. Snort Components Overview (Beale, 2003)

B. Karp-Rabin Algorithm

Karp and Rabin (Karp, 1987) have proposed a string matching algorithm that searches

a pattern within a text using hashing. The main idea is to use a hash function to convert

every substring in the text to a numeric value (hash value). The algorithm exploits the

fact that if two strings are equal, their hash values are also equal. However, the same hash

value can be assigned to different substrings. So, if the hash values are the same, then it is

necessary to verify that the substrings actually match, which can take a long time for long

substrings. Therefore, it is important to come up with a good hash function to keep the

 13

average search time good. For text of length n and pattern of length m, its average case

running time is O(n + m). However, the worst case performance is O((n − m + 1) m)

(Fide, 2006).

C. Boyer-Moore Algorithm

The detection engine in Snort NIDS depends on Boyer-Moore string matching

algorithm. The Boyer-Moore algorithm (Boyer, 1977),(Cormen, 2002) is one of the early

algorithms and is the most widely used algorithm for string matching. It is based on two

heuristics: bad character heuristic and good suffix heuristic. The novel aspect of the

Boyer-Moore algorithm and the reason for its effectiveness is that character matching is

performed right-to-left. The bad character heuristic shifts the search string to align the

mismatching character with the rightmost position at which the mismatching character

appears in the search string. If the mismatch occurs in the middle of the search string,

then there is suffix that matches. The good suffix heuristic shifts the search string to the

next occurrence of the suffix in the string. For example, given a single pattern of length n

to match, the input string is looked ahead by n characters. If the character at this point

does not match with the pattern, the search pointer is moved ahead by n + 1 characters

without inspecting the characters in between. If there is a match, the previous characters

are compared. The Boyer-Moore algorithm shows a sub-linear performance in the

average case (Fide, 2006).

 Efficiency Enhancement Of Snort Nids
The main idea of this paper is the using of distributed environment to enhance the

efficiency of Snort NIDS. To achieve this goal, we have used a LAN of computers (as a

distributed environment) to run Snort NIDS. Snort NIDS has a set of rules representing a

set of known attacks. Snort should match these rules against flow of packets. If a

matching has been found, then an alert should be triggered. The following definitions

state the main idea.

Definition 1: Let A be the set of attacks that Snort NIDS should monitor, where A={A1,

A2, …, An}. The set A can be partitioned to disjoint subsets such that A={S1, S2, … , Sm}

where S1={A1, A2, …Ai}, S2={Ai+1, Ai+2,…, Aj}, …, Sm={Ak, Ak+1, …, An}.

The considered criteria in partitioning attacks can vary. We can cluster them

according to attacks’ type (like FTP attacks, web attacks, etc.), attacks transport layer

protocols (TCP attacks vs. UDP attacks), etc. The definition of any node in the (used)

distributed environment is as follows.

Definition 2: Snort Nodei is any node (or computer) in distributed environment that have

to monitor Si (which appeared in Definition 1) of the set A.

Now, we are ready to describe the pseudo code describing in Figure 3. As we can

see in the figure, the pseudo code has two parts which are network configuration part and

packet flow monitoring part. According to network configuration, the number of Snort

Nodes should be specified and given to variable K (line 2). Then, Snort NIDS will be

installed on K Snort Nodes as in line 3. Hereafter, every Snort Node will have subset of

signatures Si (line 4). With respect to packet flow monitoring (line 5-11), every Snort

Nodei will monitor packet flow with Si and will issue an alert if any suspicious activity

will be noticed.

Journal of Babylon University/Pure and Applied Sciences/ No.(1)/ Vol.(20): 2012

 14

Figure 3. The pseudo code of the working procedure

There are two variations of the deployment of Snort’s signatures in distributed

environment. In the first one, the same copy of Snort’s signatures can be used in several

nodes. This deployment is used to monitor the network in different locations (for

example, before the firewall, after the firewall, before the router, in a DMZ). We can say

that this deployment give us global view of attacks because it is used to monitor the

network from different points of view. In the second variation, Snort’s signatures are

distributed over several nodes as mentioned in Definition 1. This variation gives us a

local view of attacks because it focuses on solving the problem of flooding Snort. Table 1

shows a comparison between different deployments of Snort signatures (the comparison

is not exhausted).

Table 1. The comparison between different deployments of Snort’s signatures.

Signatures’ Type Single-PC Multi-PC

Snort with Complete

Signatures

Advantage

 Give local view of attacks.

Disadvantage

 Vulnerable to flooding

attacks

Advantages

 Give global view of attacks.

 High availability

Disadvantages

 Vulnerable to flooding attacks

 High volume of generated alerts.

Snort with Subset Signatures

Advantages

 Fast processing.

 Immune against flooding

attacks.

Disadvantage

 Low detection rate.

Advantages

 Give global view of attacks.

 High availability.

 High detection rate.

 Immune against flooding attacks.

 Experiments And Results
In this section, we describe the experiments conducted to evaluate the proposed

system. The proposed system was tested on an Intel processor 2.2 GHz Core 2 Duo with

1 GB of RAM running Windows XP. A LAN of nine computers was used in our

Input: Packet Flow, # of Snort Nodes

Output: Set of detected attacks (if any)

Begin

1. // Network configuration part

2. K= Number of Snort Nodes

3. Setup the Snort NIDS on K nodes

4. Install signature set Si on Snort Nodei, i i ≤ k
5. // Packet flow monitoring; this part is in every Snort Node

6. While(true)

7. Snort Nodei monitors packet flow with Si, i i ≤ k

8. If any detected attacks then

9. Issue an Alert

10. End if

11. End while
End

 15

evaluation. In addition, Snort NIDS (Roesch, 1999), an open-source signature-based

NIDS, has been used here as a tool to be enhanced. We have used Java Builder 6 as a

programming language and have used Snort NIDS version 2.6.1in our experiments.

The string matching algorithm that is used in the search engine of Snort NIDS is

Boyer-Moore algorithm. However, three different string matching algorithms were used

in our experiments (KMP algorithm, Karp-Rabin algorithm, and Boyer-Moore algorithm)

in order to check the efficiency and the behavior of these algorithms in the distributed

environment. These algorithms have different behavior with respect to the length of the

pattern as shown in Figure 4. As can be noted with Boyer-Moore algorithm, the longest

the pattern to be searched for, the minimum execution time is. In addition, the other

algorithms have not been affected by the length of the pattern.

Figure 4. The relation between length of pattern and execution time.

Furthermore, we have changed the size of the file to be searched in while the length

of the pattern was 10 characters for the three algorithms. This can be seen in Figure 5

where all the three algorithms are affected by the file size but the super algorithm was the

Boyer-Moore algorithm. The worst algorithm was Karp-Rabin algorithm while the

behavior of KMP algorithm was acceptable.

Journal of Babylon University/Pure and Applied Sciences/ No.(1)/ Vol.(20): 2012

 16

Figure 5. The relation between file size and execution time.

After applying the three algorithms in a distributed environment which is composed

of a LAN of nine computers having the same hardware properties, different behavior has

been noted from these algorithms. Nine computers have been used here because the LAN

in our laboratory contains only these computers work properly. In addition, the main

important fact is that we have done the experiments with more than one computer.

Figure 6. The relation between number of PCs and execution time.

 17

The achieved speedup and efficiency are measures of the quality of a parallel

implementation. The speedup achieved by a parallel algorithm running on P processors is

defined as the ratio of the execution time of the parallel algorithm on a single processor

and the execution time of the parallel algorithm on P processors. The efficiency is equal

to the speedup divided by P. Therefore, the definitions for the parallel speedup S(n,P) and

the parallel efficiency E(n,P) are described in Equations 1 and 2 (Dirk, 1995),

respectively.

 …….(1)

 ……(2)

where n denotes the problem size, T(n,1) and T(n,P) denote the execution times of the

algorithm on one and P processors respectively.

To compute the parallel speedup and parallel efficiency of the considered algorithms,

we have use Equations 1 and 2 respectively. The obtained results for the parallel speedup

are depicted in Figure 7 while Figure 8 shows the computed parallel efficiency for these

algorithms. As can be seen in Figures 6, 7, and 8, the most benefit algorithm from

distributed environment was Karp-Rabin algorithm. However, the efficiency of Boyer-

Moore algorithm and KMP algorithm is also enhanced. These results prove our claim that

is: “the efficiency of Snort NIDS can be enhanced using distributed environment.”

Journal of Babylon University/Pure and Applied Sciences/ No.(1)/ Vol.(20): 2012

 18

Figure 7. The relation between number of processors and Speedup

Figure 8. The parallel efficiency of three string matching algorithms

on various numbers of processors

 19

 Conclusion
Snort is an open source NIDS which enable us to detect the previously known

intrusions. We have suggested to use distributed environment in order to enhance it. We

achieved this goal by enhancing the Snort’s string matching engine through using a LAN

of computers, where each computer in the LAN matching a subset of the monitored

attacks. It is possible to improve Snort’s efficiency using distributed environment. In

addition, Snort’s testability has been enhanced.

References
Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. (2002). Introduction to

Algorithms, 2nd Edition, The MIT Press.

Dirk Roose, Rafael V. Driessche, (1995). “Parallel Computers and Parallel Algorithms

for CFD: An Introduction,” in the AGARD REPORT R-807 as Special Course on

Parallel Computing in CFD.

Donald Knuth, James H. Morris, Vaughan Pratt. (1977) “Fast Pattern Matching in

Strings,” SIAM Journal on Computing, 6(2), pp.323–350.

Jack Koziol, (2003). Intrusion Detection with Snort, Sams Publishing.

Jay Beale, James C. Foster, Jeffrey Posluns, Brian Caswell, (2003). Snort 2.0 Intrusion

Detection, Syngress Publishing, Inc..

Kruegel, C. ; Toth, T. (2003)“Using Decision Trees to Improve Signature-Based

Intrusion Detection,” In Proceeding of the 6th International Workshop on the Recent

Advances in Intrusion Detection (RAID’2003), LNCS V. 2820.

R. S. Boyer, J. S. Moore, (1977). “A Fast String Searching Algorithm,”

Communications of the ACM, 20(10):762–772.

Richard M. Karp and Michael O. Rabin, (1987). “Efficient Randomized Pattern-

Matching Algorithms,” IBM Journal of Research and Development, 31(2):249–260.

Roesch, M, (1999). “Snort-lightweight intrusion detection for networks,” In Proceeding

of the 1999 USENIX LISA Conference, pp. 229–238.

Sevin Fide, Stephen Jenks, (2006). “A Survey of String Matching Approaches in

Hardware,” .

