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Abstract

In this paper, Particle Swarm Optimization-feedforward Neural Network (PSONN) and Genetic
Algorithm-Neural Network (GANN) are proposed to enhance the learning process of ANN in
term of convergence rate and classification accuracy. They have been tested and compared and
the results applied in pattern classification. The experiments show that both algorithms produce
feasible results in terms of convergence time and classification percentage. At the end of the
evolutionary process of GANN for optimal structure, not only the best network structure for a
particular application but also the trained network with few numbers of epochs is provided. A
Hardware Design of ANN platform (HDANN) is proposed to evolve the architecture of ANN
circuits using FPGA-spartan3 board (XSA-3S1000 Board). The HDANN design platform creates
ANN design files using WebPACK™ ISE 9.2i, and converted into device-dependent
programming files for eventual downloading into an FPGA device by using GXSLOAD program
from the XSTOOLS programs.
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1-Introduction

Artificial Neural Networks (ANNSs) exhibite
remarkable properties, such as: adaptability,
capability of learning by examples, and ability
to generalize. One of the most used ANN
models is the well-known Multi-Layer
Perceptrons (MLPs). The training process of
MLPs for pattern classification problems
consists of two tasks, the first one is the
selection of an appropriate architecture for the
problem, and the second is the adjustment of
the network connection weights. Extensive
research work has been conducted to tackle
this issue. Global search techniques, with the
ability to broaden the search space in attempt
to avoid local minima, has been used for
connection weights adjustment or architecture
optimization of MLPs, namely Particle Swarm
Optimization (PSO), Evolutionary Algorithms
(EA), and Genetic Algorithm (GA) [1].

Reprogrammable systems have provided
significant performance improvements for
many types of applications. Many modern
FPGAs have the ability to be reprogrammed
in-system, in whole or in part. This has led
some researchers to create dynamically
reconfigurable computing applications within
one or more FPGAs in order to create
extremely  high-performance  computing
systems. The technology of reconfigurable
computing is still in its infancy, however, due
in large part to the high cost, in terms of power
and configuration time, of dynamically
reprogramming an FPGA [2].

Thus, there is great interest in implementing
neural networks in reprogrammable systems,
both because of the speed benefits, as well as
because the reprogrammability of the FPGAs
can support the reconfiguration necessary to
program a neural network [3].
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2-Artificial Intelligent Systems

The Artificial Neural Network (ANN),
Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO) are examples of Al
techniques [4]. Each of these techniques has
demonstrated some success at solving simple
Al problems [3].

An Artificial Neural Network (ANN) is an
information processing paradigm that is
inspired by the way biological nervous
systems process information. The
Backpropagation (Bp) algorithm is commonly
used learning algorithm for training ANN. Bp
algorithm is used in ANN learning process for
supervised or associative learning. During
training, the network tries to match the outputs
with the desired target values [5].

The intelligent techniques, such as Genetic
algorithm (GA) and Particle Swarm
Optimization (PSO), have been developed
rapidly [4]. Genetic algorithm was introduced
by John H. Holland in 1960’s where GA was a
probabilistic optimization algorithm. GA is a
family of computational models inspired by
evolution. The original idea came from the
biological evolution process in chromosomes.
GA exploits the idea of the survival of the
fittest where the best solutions are recombined
with each other to form new better solutions.
There are three processes in GA which are
selection, crossover and mutation [6].

PSO is a simple concept adapted from nature
decentralized and self-organized systems such
as bird flock and fish schooling [7]. The PSO
was introduced by Kennedy and Eberhart 1995
as a population based stochastic search and
optimization process. It’s a population-based
algorithm in which individual particles work
together to solve a given problem.

The population (or swarm) and the member
called particle is initialized by assigning
random positions and velocities then the
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potential solutions are flown through the
hyperspace [8].

3- Programmable Logic Devices (PLDs)

Programmable  Logic  Devices PLDs
(Programmable Modules) are modules that
have been developed to be customizable for
particular functions at the last stage of
fabrication. PLD can be programmed, erased,
and reprogrammed many times, allowing
easier prototyping and design modification [2].
In the mid 1980s a new technology for
implementing digital logic was introduced, the
Field Programmable Gate Array (FPGA).
FPGAs were capable of implementing
significantly more logic than PLDs, especially
because they could implement multi-level
logic, while most PLDs were optimized for
two-level logic. One common use of the FPGA
is the prototyping of a piece of hardware that
will eventually be implemented later into an
ASIC. FPGAs have been increasingly used as
the final product platforms. Their use depends,
for a given project, on the relative weights of
desired performances, development, and
production costs [9].

4- Design _and Implementation of ANN
using GA and PSO

One of the more intriguing possibilities is
that of combining a neural network with other
Al systems, like GA and PSO, to enhance the
learning process in terms of convergence rate
and classification accuracy.

Genetic Algorithm (GA) has been used to
determine optimal value for BP parameters
such as learning rate and momentum rate and
also for weight optimization. Particle Swarm
Optimization (PSO) is chosen and applied in
Feedforward neural networks to enhance the
learning process in terms of convergence rate
and classification accuracy. Two programs
called Particle ~ Swarm  Optimization
feedforward Neural Network (PSONN) and
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Genetic Algorithm Neural Network (GANN)
have been proposed.

5- The Proposed Genetic Algorithm-Neural
Network (GANN)

To guide ANN learning, GA is employed to
determine the best number of hidden layers
and nodes, learning rate, momentum rate and
weight optimization. With GA, it is proven
that the learning becomes faster and effective.

The flowchart of GANN for weight optimization
is shown in Figure (1). In the first step, weights are
encoded into chromosome format and the second
step is to define a fitness function for evaluating
the chromosome’s performance. This function
must estimate the performance of a given neural
network. The function usually used is the Mean
Squared Errors (MSE). The error can be
transformed by using one of the two equations
below as fitness value.

Fitness = i (1)
MSE
or
Fitness = .- (2)
1+ MSE

In GANN for optimum topology, the neural
network is defined by a “genetic encoding” in
which the genotype is the encoding of the
different characteristics of the MLP and the
phenotype is the MLP itself. Therefore, the
genotype contains the parameters related to the
network architecture, i.e. number of hidden
layers (H), number of neurons in each hidden
layer (Nu), and other genes representing the
Bp parameters. The most common parameters
to be optimized are the learning rate (n) and
the momentum (o). They are encoded as
binary numbers. The parameter, which seems
to best describe the goodness of a network
configuration, is the number of epochs (ep)
needed for the learning. The goal is to
minimize the ep. The fitness function is:
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Fitness = L ---(3)
ep
or
Fitness = ... (4)
1+ep
The flowchart of GANN for optimum

network architecture is shown in Figure (2).

3-layer ANN is used to do the classification
of three examples as shown in Figure (3). The
parameters of GANN training algorithm are a
one-point crossover with probability Pc=0.8
and mutation operator with probability
Pm=0.05. The MSE is equal to 10° and the
maximum number of generations (epochs)
equal to 50. The fitness function is defined by
equation (2). After several runs the genetic
search returns approximately the same result
each time as the best solution despite the use
of different random generated populations and
a different population size (for each example).
Figures (4), (5), and (6) show the curves of
MSE against the number of iterations of
training for both GANN and Bp algorithms for
each example respectively. These Figures
show the training of the network by using
GANN training algorithm for each example,
reaching the lowest value of MSE with a very
few number of generations as compared with
the results from using Bp algorithm. The
learning by wusing GANN algorithm is
independent of the value of n and o.
Conversely, Bp algorithm fails if unsuitable
values of n and o are chosen. GANN training
algorithm avoids local minima by searching in
several regions. It has no restrictions on the
network structure because it doesn’t require
backward propagation of an error signal.

In GANN for optimal structure, the initial
population is evaluated, which includes a
certain number of Bp training cycles. The
maximum number of training cycles may be
set relative to the size of the network. The
fitness of an individual is defined by equation
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(4). The number of individuals in the
population has been fixed equal to 10. The
operators are the crossover with Pc=0.8 and
mutation with Pm=0.05. The value of the
minimum error (MSE) has been set to 10°. It
has been necessary to train the neural networks
for 100, 100, 1000 epoch for each example
respectively. The results of this algorithm for
the three examples are summarized in Table
(2). It can be seen that the best network for
each example can be obtained in a small
number of generations with low number of
epoch for training with Bp as compared with
the old networks. At the end of the
evolutionary process, not only the optimal
network architecture for a particular
application but also the trained network is
provided.

6- The Proposed Particle  Swarm
Optimization - Feedforward Neural
Network (PSONN)

PSO is one of the latest techniques that can
be fitted into ANN. A swarm is made up of
particles where each particle has a position and
a velocity. The idea of PSO in ANN is to get
the best set of weight (or particle position)
where several particles (problem solution) are
trying to move or fly to get the best solution
[10].

In PSONN, the position of each particle in
swarm represents a set of weights for the
current epoch or iteration. The dimensionality
of each particle is the number of weights
associated with the network. The particle
moves within the weight space attempting to
minimize learning error (or Mean Squared
Error-MSE or Sum of Squared Error-SSE).
Changing the position means updating the
weight of the network in order to reduce the
error of the current epoch. In each epoch, all
the particles update their position by
calculating the new velocity, which they use to
move to the new position. The flowchart of
PSONN algorithm is shown in Figure (7).
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The acceleration constants C; and C, are set
equal to 2, the number of particles is equal to
15, and the MSE is equal to 10°. r;=0.8, r,=
0.2, ®=0.9 and the maximum number of
iterations (epochs) equal to 6000. Figures (8),
(9), and (10) show the curves of MSE against
the number of iterations for PSONN training
algorithm for each example respectively.

It has been noticed that the training of the
network by using PSONN algorithm reaches
the lowest value of MSE with less number of
iteration (epoch) as compared with the results
from using Bp algorithm. The PSO can avoid
getting into the local optimal solutions because
PSO has the probabilistic mechanism and
multi-starting points (it’s a global optimizer).

On the other hand, GANN is faster than
PSONN with less accuracy for each example
as shown in Table (2). Both algorithms are
converged using the minimum error criteria.

For the correct classification percentage, it
shows that PSONN result is better than
GANN. GANN significantly reduces the error
at a small number of iteration compared to
PSONN. For overall performance, the
experiments show that both algorithms
produce feasible results in terms of
convergence time and classification
percentage.

7-The Proposed Hardware Design of ANN
platform (HDANN)

Hardware implemented ANNs have an
important advantage over computer simulation
ANNSs because they fully exploit the parallel
operation of the neurons, thereby achieving a
very high speed of information processing.
The proposed Hardware Design of ANN
platform (HDANN) is a circuit design
platform built to evolve the architecture ANN
circuits using FPGA hardware. Therefore, the
system must have software that can be
downloaded into an FPGA.

The basic hardware and  software
components of the proposed HDANN are

93

HARDWARE IMPLEMENTATION OF AN ANN
TRAINED BY GA AND PSO BASED ON FPGA

shown in Figure (11). It consists of a computer
and FPGA-spartan3 board (XSA-3S1000
Board).

After down-loading the design into the
board, a Dc function generator has been
applied to the input-pins of the ANN design
while the output has been measured by an
oscilloscope. Figure (12) shows these output
data when the input to the network is applied.

It shows that the experimental result is the
same as the simulation result shown in Figure
(13) for example2.

8-Conclusions

Based on the experiments performed in this
study, it can be concluded that GANN for
training has proved to be superior to Bp
algorithm in both accuracy and speed of
learning because GAs avoid local minima by
searching in several regions. GANN for
training is independent of the parameters that
the Bp depends on. Tests show that GAs
obtain best weight vectors quickly for each
example at the same efficiency.

The optimal structure, including the number
of neuron in the hidden layer, learning rate,
and momentum rate, is found by using GANN
for designing an optimal ANN structure. The
GA is used to find a network structure that is
best able to classify data from a specific
situation with a small number of epochs.

PSO is a simple optimization algorithm with
less mathematical equations that can be
effectively applied in ANN. The results of
PSONN have shown that the PSO is an
efficient alternative to ANN training as
compared with Bp algorithm. On the other
hand, GANN is faster than PSONN with less
accuracy for each example.

PSO is similar to GA in the sense that they
are both population-based search approaches
and they both depend on information sharing
among their population members to enhance
their search processes using a combination of
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deterministic and probabilistic rules. Both are
Global optimizer algorithms. PSO is more
computationally efficient (uses less number of
function evaluations) than GA. The results
show equal effectiveness but superior
efficiency for PSO over GA.

HDANN platform has the ease of
reimplementation due to the parameterized
modules as well as the state of the art for the
chosen FPGA platform. It possesses the speed
of hardware while retaining the flexibility of
the software implementation due to the
reprogramming ability of FPGA. It has the
potential to create ANN circuitry for Al
applications.
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Figure (1) Flowchart of GANN weight optimization.
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Figure (2) Flowchart of GANN for optimum network architecture.

Figure (3) The tested examples:

(a)examplel(3patterns of (2x2 pixels). (b) example2:

4-patterns of (3x3 pixels). (c) example3: 10-patterns
of (5x5 pixels.)
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Figure (4) Training MSE with epoch for examplel:
(a) with Bp algorithm. (b) with GANN.
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Figure (5) Training MSE with epoch for example2:

(a) with Bp algorithm. (b) with GANN.
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Table (1) The results of GANN for optimum structure D
for each example.
Figure (7) The flowchart of PSONN
Examples Exallﬂple Exalzﬂple Exalaﬂple a|g0rithm_
No. of generation 5 5 8
No. of epoch for old network 50 100 544
No. of epoch for new network 20 52 50
n 0.11 | 059 | 0.74
o 0.63 | 0.62 | 0.83
No. of neurons in the hidden layer (old) 3 4 20 w
No. of neurons in the hidden layer (new) 5 8 16 B

a 10 15 20 25
epoch

Figure (8) Training MSE with epoch for
examplel by using PSONN algorithm.
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Figure (9) Training MSE with epoch for example2 by
using PSONN algorithm.
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Figure (10) Training MSE with epoch for example3 by
using PSONN algorithm.

Table (2) the comparison results between GANN and

PSONN algorithms.
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_,AVA"JE’

(b)
Figure (11) The Hardware Design of ANN platform
(HDANN) system: (a) FPGA board (b) HDANN system.

GANN PSONN
Examples a b c a b c
Learning iteration 5 8 8 23 58 116
Error Convergence 4,008 e® 1.0001 e® 3.0009e® 9.75¢”7 7.86¢7 9.95¢”7
Classification (%) 93.2% 96.24 % 92.83 % 99.98 % 99.99 % 98.42 %
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Figure (12) the output data when the input to the
ANN is applied: (a) NuO (b) Nul (c) Nu2 (d) Nu3.
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Figure (13) The simulation results of the ANN circuit of example2.
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