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Abstract 
         This paper deals with free vibration and buckling behavior of non-uniform Euler-Bernoulli beam 

under variation of tapered parameter and degree of flexural bending by using Finite Element Method 

and linked with Matlab Program. The results obtained were compared with those results given in the 

literatures and it is found that the natural frequency and buckling load decrease with increasing the 

tapered parameter and degree of flexural stiffness of tapered beams. 

 الخلاصة
برازال  سدزتد ة ر زر سمت بزة بتم زر س لسزد الاسزتد ل  ل ر زة  -حث يهتم بدراسة الاهتززا  الحزر لسز الا الااب زلع  ل تبزة ال  زربهذا ال    

, أخزر  لتلاب. المتلئج التز  تزم الحلزال ه  هزل  ارازن سزج اتزلئج سلزل ر برالسج الب ل البحد ة لصرمبلستخدام ال  لجدلءة الااحملء الأس
 لجدلءة الااحملء ل  تبة البدتد ة. الأسلل د بلن التر   لحبد الااب لع يقد بز ل ة س لسد الاستد ل  ل ر ة 

 
Nomenclature  

Symbols               Meaning  

mx              mass distribution per unit length  

EIx             flexural stiffness per unit length 

wx             displacement in z direction  

q
T
            deflection vector  

Ni              interpolation factors 

)(iN        shape function 

l

x
         non –dimensional length of beam element  

U               potential energy 

Ke          elastic stiffness  

T             kinetic energy  

me          mass matrix  

V            strain energy 

            a critical  bucking load 

Po              value of axial compression force 

Kg             geometrical stiffness matrix 

rm          tapered beam for mass 

rs              tapered beam for stiffness  

ß          non- dimensional natural frequency 

n         Number of element 

i         Number of node 

l         length of beam  

ωn      natural frequency 

 

1-Introduction 
       Tapered members are widely used in the modern construction industry, because 

of their (i) structural efficiency, which in turn may lead to significant material savings, 

(ii) ability to meet architectural and functional requirements and (iii) competitive 

fabrication costs. However, a designer can only take full advantage of the benefits of 

beam tapering provided that he is equipped with reliable and efficient methods of 



 

analysis, which (i) lead to accurate predictions of the tapered member structural 

behavior and, at the same time, (ii) do not involve a computer effort prohibitive for 

routine applications.. The strength of laterally unrestrained beams is frequently 

governed by the lateral buckling (or flexural-tensional buckling) failure. 

      The vibration and bulking problems of non-uniform beams have been extensively 

studied by several investigators. Several cases of tapered beams with different end 

conditions were obtained by Mabie and Rogers ,while Laura treats various cases of 

non-uniform beams with different conditions of end restraints. A direct solution for 

the transverse vibration of Euler–Bernoulli wedge and cone beams was obtained by 

Naguleswaran, while Abrate obtains the exact solution for the vibration of non-

uniform rods and beams. Lee et al. were studied the analysis of non-uniform beam 

vibration by a green function method in the Laplace transform domain. Brown was 

studied the lateral buckling load of a tapered beam by finite difference analysis. In this 

method, the effect of tapering could not be completely taken into account in the 

expressions of nonlinear strains, which may lead to incorrect lateral buckling loads. 

Ronagh et al. was found the errors in lateral buckling loads caused by this method 

cannot be eliminated merely using fine mesh configuration in the finite element 

analysis. Ronagh et al. and recently Andrade and Camotim were investigated the 

lateral buckling of tapered beams employing the FE method, based on their total 

potentials presented. 

     Si Yuan et. were studied the exact dynamic stiffness method for non-uniform 

Timoshenko beam vibration and Bernoulli Euler column bulking while Jung et. deals 

with free vibration problems of non-uniform Euler-Bernoulli beam under various 

supporting conditions. Zang Lei. was presented a new theory for the lateral buckling 

of wet-tapered I-beam while Vaidotas Sapalau studies a theoretical and numerical 

analysis of tapered beam- columns subjected to a bending moment and axial force. 

Aniosio A. was studied the lateral torsional buckling of singly symmetric web-tapered 

thin –walled I beam by using FEM. 

       In this study a finite element method is introduced to solve the vibration and 

buckling of non-uniform beam with clamped-free boundary condition to obtain 

natural frequencies and buckling loads.        

2- Theoretical Analysis 
     A schematic of mass m(x) and flexural stiffness per unit length EI(x) is shown in 

fig(1), W(x) is the displacement in Z direction. In the present work, is a considered 

Euler-Bernoulli beams for analysis of out-of-plane bending vibration. The following 

function is used in the analysis to represent deflection which  is given by  Si Yuan 
3

4

2

321)( xaxaxaaxW 
                                                                                    (1) 

The deflection vector of the elemental finite element is  

 

][ 2211  VVqT                                                                                                 (2) 

 

After application of the boundary conditions of clamped- free to calculate the 

interpolation functions ( 4321 ,,, NNNN ) to describe the distribution of displacement. 

Eq.(1) can be written as in finite element formulation, 

 

24231211)(  NVNNVNxW                                                                              (3) 

Where 
32

1 231)(  N  
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)2()( 32

2   LN                         shape factors  
32

3 23)(  N  
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Where, 
L

x
 , is the non-dimensional length of beam element (element coordinates). 

The potential energy of the beam element is given by  Si Yuan : 

dxtxWxEIU

L

])),()[((
2

1

0

2

                                                                                        (4)                                                                    

Eq.(4)  can be written in matrix form as  

qkqU e

T

2

1
                                                                                                                 (5) 

Where, ek , elastic stiffness matrix. 

dxNNxEIk

L

jie 



0

)(                                                                                                 (6) 

Where,  
2

2
"

d

Nd
N i

i   

The kinetic energy of the beam element is 

dxxWxmT

L

2

0

])()[(
2

1


                                                                                              (7) 

Eq.(7)  can be written in matrix form as  

qmqT e

T

2

1
                                                                                                                 (8) 

Where, em , mass matrix 


L

jie dxNNxmm
0

)(                                                                                                     (9) 

The strain energy V denotes the work down by a critical load ( oP )  

Given by the equation 

dxWpV

L

 
0

2

0 ][                                                                                                       (10) 

Where 0p is a value of axial compression force. 

Eq.(10)  can be written in matrix form as  

qkqV g

T

2

1
                                                                                                               (11) 

Where, gk , geometrical stiffness matrix 






L

jiog dxNNPk
0

                                                                                                    (12) 

Where,  
d

Nd
N i

i 
'  

Mass and stiffness matrices of each beam element are used to form global mass and 

stiffness matrices. The dynamic response of a beam for a conservative system can be 

formulated by means of Lagrange’s equation of motion in which the external forces 



 

are expressed in terms of time- dependent potentials, and then performing the required 

operations the entire system leads to the governing matrix equation of motion: 

 

0][  qKPKMq eoe                                                                                          (13) 

 

The above equation represents the solution of two relate problems, they are given by  

Si Yann 

 :-  

1- Free vibration                            0][ 2  qMKe                                                 (14) 

2- Buckling behavior                    0][  qKPK goe                                                (15) 
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3- Results and Discussion  
     Three case of mass and stiffness distribution were studied. In the first case linear 

mass and linear stiffness distribution, the second the mass is linear and stiffness is 2
nd

 

order. And third, the mass is linear and stiffness is 4
th

 order. 

Case(1): [Linear mass, Linear stiffness] 

)1()( mo rmxm   

)1()( so rEIxEI   

Case(2):[Linear mass, second degree stiffness] 

)1()( mo rmxm   
2)1()(  i

so rEIxEI   

Case(3):[Linear mass, forth degree stiffness] 

)1()( mo rmxm   
4)1()(  i

so rEIxEI   

Where ( om ) parameter for mass distribution per length ,at x=0, ( oEI ) parameter for 

stiffness  distribution  of flexural rigidity, at x=0, and  ( mr ), ( sr )are the tapered beam 

for mass and stiffness and (i) is super index refer to the order of non linearity for both 

mass and stiffness distribution , respectively. 

 

m(x),EI(x) 

L 

b 

x 
h(x) 

Fig (1)A: Cantilevered tapered beam with 

 rectangular Cross-section            

                        

W(x) 

Normal to x-y plane 

B: element of beam 

  2 nodes  4- DOF 
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For all cases, value of  ( mr ) and ( sr ) are equals and vary from ( 10 ) step 0.25 to 

obtained its effect on the natural frequency and corresponding buckling loads for five 

modes only. 

  Table (1), (2) and (3) show an important comparison of non-dimensional natural 

frequency (ß) and critical buckling load of a uniform cantilever beam with results 

from Jurg et al. Si Yuan et al. and Zhang Lei. 

Table:(1) Comparisons of non-dimensional natural frequency (   ) 

of a uniform cantilever beam. 

Mode No             Present work                 Jung                  Si Yuan 

   1                    3.5155                         3.5160                 3.5161 

   2                    22.0336                       22.0345               22.0345 

   3                    61.6963                       61.6972               61.6972 

   4                    120.9018                       -------               120.9017 

   5                    199.8575                        ------                199.8573     

 

Table: (2) Comparison of critical buckling load of a uniform cantilever beam.(λ) 

Mode No                 Present work                   Zhang Lei 

 

1                          2.4673                         2.4682    

   2                          22.2057                       22.2055 

   3                          61.6837                       61.6835 

   4                          120.8966                    120.8965    

   5                          199.8592                    199.8590   

 

Table(3): Comparison of non-dimensional natural frequency and critical buckling load 

of tapered cantilever beam. 
 Tapered  

Parameter        Mode No          (Non-dimensional Natural Frequency)
1/2

             (Critical Buckling Loads)
1/2  

 
                                          Present work       Jung              Present work     Si Yuan 

 

95.0

8.0





s

m

r

r
       1                     1.6768          1.6742                0.9712          0.9705                   

                       2                    4.1978          4.1969                2.1937           2.9131 

                       3                    7.0244          7.0232                4.8562           4.8557 

                       4                    9.8332          9.8314                6.7987           6.7982 

                       5                   12.6428        12.6422               8.7412           8.7408 

 

 

5.0

5.0





s

m

r

r
        1                    1.8585           1.8580                1.3352            1.3347 

                      2                     4.6525           4.6523                4.0058            4.0050 

                      3                     7.7853           7.7847                6.6764            6.6761 

                      4                     10.8998        10.8990               9.3470            9.3465 

                      5                     14.0122          -------               12.0176          12.0171 

All the frequencies and buckling load predicted agree very well with the published 

results. 



 

Figs (2,3), (4,5) and (6,7) present the non dimensional natural frequency and critical 

buckling loads  for the first , second  and third case respectively. From the first sight it 

was observed that the tapered ratio has a great effect on the vibration characteristics of 

the beam. 

     In general, it was noted that the natural frequency and corresponding critical 

buckling loads decrease with increasing in the taper ratio ( mr ) and ( sr ) for all modes, 

its magnitude are different from mode to other. 

      In other words, natural frequency of the 2
nd   

mode (as example) for different 

values of tapered ratio are smaller than that corresponding for 3
rd 

, 4
th

 ,and 5
th

 modes, 

respectively. 

     The band width of effectively is increased with increasing the modes number due 

to the increasing in the natural frequency and buckling loads when the mode number 

is increased also. 

    In addition, since the natural frequency is a structured property (means that its 

value is the same at each point in the structure), therefore, its value is largely depends 

on the effective stiffness and mass at same point. This leads to that natural frequency 

in the first case is greater than that corresponding to the second and third case, 

respectively. due to effect of super index (i) which reduces the stiffness contribution 

to obtain the frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (2): Variation of non-dimensional frequency with 

tapered parameter for case (1) 
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Fig (3): Variation of critical buckling load with 

tapered parameter for case (1) 
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Fig (4): Variation of non-dimensional frequency with 

tapered parameter for case (2) 

Fig (5): Variation of critical buckling load with 

tapered parameter for case (2) 

Fig (6): Variation of non-dimensional frequency with 

tapered parameter for case (3) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4-Conclusions 
     In this paper the finite element method has been further extended to vibration and 

buckling of non-uniform Euler-Bernoulli beam from the results, some of the 

conclusions can be drawn as below   

1- The non-dimensional frequency and critical buckling load predication obtained for 

the uniform and tapered beams are compared with the corresponding values 

mentored in the literature and found to agree very well. 

2- The natural frequency and buckling load decrease with increasing of the tapered 

parameters. 

3- The degree of the flexural load effect on the natural frequency and buckling load 

was decreased with the increasing in the degree of flexural bending stiffness. 
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