Evaluation of Reliability for Sulaimania Distribution Network

Asso Raouf Majeed, IEEE member

Electrical Engineering Department Sulaimania University drassomajeed@hotmail.com Abdulrahman M. Rashed, Electrical Eng. Sulaimania Technical Institute meer57@hotmail.com

Abstract

An effective reliability program for assessment and planning distribution networks is impossible without the collection, recording, analysis of the data and information obtained through the testing and operation of the different equipments and elements of the distribution system, as well as without the recording, retrieval, and use of information gained through experience with all manner of components, systems, machines, environments user stresses, and human errors.

The main objective of this paper is to study the different outages of the feeders of five main substations in Sulaimania City, namely Rizgari, Malkandy, Shaheed, Industrial, and Azmar.

Data were collected for five years, these data are classified and analyzed in order to calculate the most important reliability indices, such as μ , λ , u, A, R, Q.....*etc* for the different distribution feeders and reliability indices concerned substations such as SAIFI, SAIDI, CAIDI,etc. Data collection methodology is suggested, so that to establish a reliability data base system, for facilitating of achievement reliability studies.

الخلاصة:

أن أعداد برنامج فعال للوثوقية لغرض تقييم و تخطيط شبكات التوزيع غير ممكن بدون جمع و تسجيل وتحليل كافة البيانات والمعلومات التي يتم الحصول عليها خلال أختبار و تشغيل مختلف الأجهزة و مكونات منظومة التوزيع , بالأضافة الى تسجيل وأعادة البيانات والمعلومات التي يتم الحصول عليها من الخبرة الميدانية المتعلقة بالأجهزة والمكائن والمنظومات وحتى حوادث الخطأ الناتج بسبب المشغلين.

ان الغاية الأساسية لهذا البحث هو دراسة مختلف التوقفات الخاصة بالمغذيات لخمس محطات توزيع ثانوية في مدينة السليمانية وهي محطات رزكاري, ملكندي, شهيد, الصناعية, و أزمر .

تم أقتراح منهجية خاصة بجمع البيانات لغرض تأسيس منظومة قاعدة بيانات لأنجاز دراسات الوثوقية.

NOTATION

- A availability
- R reliability
- U unavailability
- λi failure rate of element i
- μi repair rate of element i
- fi frequency of element i
- Pi probability of element i

ī

unit number i is down

Subscript S denotes to scheduled

Subscript F denotes to force

NOMENCI ATUDE IL Endrony: 10

NOMENCLATURE [J. Endrenyi, 1980]:

Availability:" The proportion of time, in the long run, that is in, or ready for, service".

Reliability:" The probability of a device or system performing its function adequately for the period of time intended under the operating conditions intended".

Forced outage: "an outage result from emergency conditions directly associated with component or unit requiring that unit be taken out of service immediately, either automatically or as soon as switching operations can be preformed".

Scheduled outage: "an outage that results when unit is deliberately taken out of service at selected time, usually for purpose of construction, preventive maintenance, repair, or reserve".

SAIFI : System Average Interruption Frequency Index ; SAIFI = Σ Ni . $\lambda i / \Sigma$ Ni SAIDI: System Average Interruption Duration Index ; SAIDI = Σ Ui Ni / Σ Ni CAIDI: Customer Average Interruption Duration Index ; CAIDI = Σ Ui Ni / Σ Ni. λi

I. Introduction

The Medium Voltage 11 KV network is considered as the backbone of the distribution system. A unique feature of the MV network is that it extends to every geographic locations of the system. Sulaimania Governorate is divided into Five regions fig.(1), each of these regions has its domestic. and non-domestic. demand, perhousehold consumption and its own electrification level Table (1). The growth rate estimation of the consumers are given in Table (2). it indicates an increase of about 3.5% [Y. H. Kareem, and A. R. Majeed, 2006] [Mohamed A. Hussein, 2009].

Table (3) shows information about losses, Voltage levels and general information of the different 11 kv feeders for Rizgari substation. Most of the problems that can be notices from the collected data about the distribution system are noted below:

- 1. Considerable number of feeders outside the city areas are affected by Poor voltage level. In some feeder the voltage drop during the peak demand is about 20 30%.
- 2. Inadequate capacity of existing substations and lines . There is no Adequate capacity in the network to meet the present and futures demands.
- 3. Most of the existing 132 kv and 33kv substations are loaded by the firm capacity levels and some are in fact over loaded .
- 4. Conductors of distribution lines have been fully loaded and some sections are over loaded .
- 5. Poor Reliability of 33 kv supply to 33/11 substation and for conductors of distribution lines. Poor voltage levels below the allowable limits .
- 6. Some of the 11 kv feeders are having excessive feeding lengths . This has caused high level of losses in these feeders . power losses in some of the feeders are as high as 15-20%
- 7. There is no proper system available for assessment and monitoring of technical and non technical losses in the system .
- 8. No efforts have been made to educate the consumers to curtail of wastage of electrical energy.
- 9. There are no schemes available to encourage efficient use of electricity and to introduce Demand –Side management measures .

Fig. (1) Regions of Sulaimania Governorates.

FIG. (2) SULAIMANIA CITY DISTRIBUTION NETWORK

Region	Num. of Substation	Num. of Consumer	Domestic Demand MVA	Bulk Demand MVA	Total Demand MVA	Demand / consumer kw/ con	Demand %	
Sulaiman	10	86,714	176.2	61.1	237.3	1.7	62%	
ia center								
central	04	17,018	28.3	5.4	33.7	1.4	9%	
East	02	12,207	12.4	2.2	14.6	0.9	4%	
North	06	20,840	27.8	16.8	44.6	0.8	12%	
west/sout	05	35,678	44.0	7.0	51.0	1.0	13%	
h								
Total	27	181,457	288.7	92.5	381.2	1.4	100%	
h Total	27	181,457	288.7	92.5	381.2	1.0	13%	

Table (1) Electricity Demand in Sulaimania Governorate

Table (2) Consumer Growth rates

Region	2005 - 2010 %	2010 - 2015 %	2015 - 2020 %			
Sulaimania center	4.3	4.1	3.7			
Central	2.9	2.9	2.7			
East	2.9	2.9	2.7			
North	3.6	3.2	3.1			
West /south	3.5	3.2	3.1			
Total	3.6 %	3.5 %	3.3 %			

Table (3) ; Technical Information, Loading and Losses in the 11 kV Feeders ofSulaimania Substations.

No.	Substation	Feed	%	Conduc	P. Total	Q. Total	Pow	Q.Total	
		er Name	Line	tor Km	Demand	Dement	er	Loss	
			loading		MW	MVAR	Total	(KVAR)	
							Losses		
1	Draoni S/S	F 1	104	2 702	1 2660	2 8066	(KW) 140	195	
1	Kzgali 5/5	F-1 E 2	07	5.792	4.3009	2.8000	57	76	
		г-2	9/	/.425	4.0555	2.5549	3/	/0	
		F-6	104	4.404	4.3693	2.7636	/6.8	103	
		F-9	112	5.137	4.7027	2.955	55.3	73.7	
		F-10	80	4.656	3.3833	2.1468	69	92	
		F-11	92	3.542	3.8744	2.4434	58	77.3	
2	Shaheed	F-18	92	4.158	3.8771	2.4448	57.6	76.7	
	S/S	F-23	78	4.946	3.2684	1.0018	90	60	
		F-27	71	7.552	3.0022	1.9041	60	80	
3	Malkandi	F-33	94	4.211	3.9322	2.5037	92.3	123	
	S/S	F-34	97	4.457	4.0938	2.5924	76	101	
		F-35	94	3.515	3.9341	2.4851	64.5	86	
		F-36	105	4.182	4.4185	2.8136	104	139	
		F-38	105	3.293	4.4016	2.7811	73.13	97.41	
4	Azmer S/S	F-42	79	7.095	3.3085	2.1839	187	248	
		F-48	84	4.239	3.5421	2.2342	53.47	71.2	
5	Industry	F-52	63	4.978	2.6511	1.6938	70.34	93.7	
	S/S	F-54	65	7.857	2.7541	1.2817	102	135	
		F-55	102	4.414	4.3122	2.7851	157	209	
		F-56	80	3.519	3.3425	2.1147	60	80	
		F-58	96	7.565	4.0427	2.5645	81.5	109	
6	Azadi S/S	F-61	100	3.434	4.1804	2.6516	84	118	

II. Data collection and system failures:

For the purpose of achievement a comprehensive assessment of the performance of the distribution network the daily registered data for five substations in the main city of Sulaimania were collected for five years. The data classified for forced outages and programmed outages as shown in fig. (3). Then these are analyzed in order to find the main reliability indices for the different feeders and substations as clarified in the flowchart of fig. (4).

Fig.(3) Failure Classification

Fig. (4) Flowchart for data collection Procedure and evaluation of reliability indices.

III.Case study

We consider Rizgari substation as a case study for the purpose of reliability evaluation of the substations and feeders, since it is considered one of the most important substations that supply the city center.

The schematic diagram of Rizgari substation is shown fig. (5). Reliability block diagram is given in fig. (6).

FIG. (5) SINGLE LINE DIAGRAM OF 132/33/11 KV RIZGARI SUBSTATION.

FIG. (6) RIZGARI SUBSTATION RELIABILITY BLOCK DIAGRAM

Table (4) gives frequency and duration of the outages for the different feeders of Rizgari Substation and for five years, From these information reliability indices such as mean time to failure MTTF, mean time to repair MTTR, Availability ,Reliability , ...etc , are calculated [R. Billinton, 1982] ,[R. Billinton, R. N. Allan, 1991], [R. Billinton, and R. N. Allan , 1984], [J. E. Biegel ,1971] and [Roy Billinton and Satish Jonnavithulla, 1999], see table (5)

	F1	-1 (1)	F	1-2(2)	F	1-3(3)	F	2-1(4)	F	2-2(5)	F	2-3(6)	F	3-1(8)	F	3-2(9)	3(F3- 10)	
	Fr	Dr	Fr	Dr	Fr	Dr	Fr	Dr	Fr	Dr	Fr	Dr	Fr	Dr	Fr	Dr	Fr	Dr	
	59	1.78	69	0.83	64	3.33	30	1.14	48	1.74	50	1.35	23	0.53	23	0.53	23	0.73	3
	399	24.7	196	5.85	430	26	309	18.8	427	24.7	316	17	320	19.6	296	16.6	372	21.3	3
	67	1.74	108	3.73	66	1.7	27	0.73	43	0.73	25	0.57	20	0.6	38	1.1	58	1.8	
	49	0.96	208	5.5	30	0.58	16	0.22	10	0.27	10	0	14	0.28	22	0.21	6	0.11	l
	40	0.89	121	4.02	32	1.43	8	0.08	19	0.32	5	0.9	4	0.02	5	0.03	13	0.32	2
		Tabl	e (5) l	Feeder	Reli	ability	Indi	ces of	Rzga	ri Sub	statio	n for	Perio	d of C	One Yo	ear			
Feed	Tota	al	Total	MTTF	' N	1TTR	Ava	ilability		Un	Fai	lure	Repa	air	Reliabi	lity	Un		Freq. of
er	Ts		(Td)						avai	lability	ra	ite	rat	e			reliabil	ity	interrupt
No	(day	/s) ((days)																
Fdr	363.	26	1.74	5.422	0.0	25597	0.90	952329	0.	0048	0.18	3444	38.50)57	0.8315	569	0.1684	13	67
1-1	0000	_ 0		01.22	010	20071	0.7752525		0.0010		0.10111								0,
Fdr	361.	27	3.73	3.345	0.0)34555	0.9	98978	0.0	01022	0.29	9894	28.95	544	0.741	6	0.258	4	108
1-2																			
Fdr	363	.3	1.7	5.505	0.0)25575	0.9	95342	0.0	0466	0.18	1668	38.82	235	0.8338	378	0.16612	223	66
1-3																			
Fdr	364.	27	0.73	13.49	0.0	027037	0.99	9 80000	0.0	0199	0.07	4108	36.9	89	0.9285	559	0.07144	105	27
2-1 E-1	264	27	0.72	0 471	0.0	16076	0	008	0.0	0100	0.11	9044	58 00)41	0 0004	56	0.1112/	122	12
Far 2-2	304.	21	0.75	8.4/1	0.0	1109/0	0	0.998 0.0		10199	0.118044		36.9041		0.000030		0.1113433		43
Fdr	364.4	43	0.57	14.57	0	.0228	0.998438		0.00156		0.0686 43		43.85	596	0.933698		0.066	3	25
2-3																			
Fdr	364	.4	0.6	18.22		0.03	0.9	998356 0.001		0016	0.054488 33.33		333	0.946594		0.053405		20	
3-1																			
Fdr	363	.9	1.1	9.576	0.	02894	0.9	96986	0.003013		0.10442		34.54546		0.900843		0.0991569		38
3-2																			
Fdr 3-3	363	.2	1.8	6.262	0.3	310344	0.9	95068	0.	0049	0.15	5969	32.22	222	0.8524	106	0.1475	93	58

Table(4) Frequency and Duration of Rzgari Substation Feeders for Five Years

In table (6) Reliability at the bus bars is calculated in general for two type substations; one of them has two sectional bus bars and the other has three sectional bus bars as in fig. (6). It is clear that bus bars of the second type is more reliable for different assumed component reliabilities. Generally system reliability increases with increasing the component reliabilities see fig, (7).

Table (6) Reliability of Substation Bus bars of two different structures

Component Reliability	Substation with two sectional Bus bar	Substation with three Sectional Bus bars						
	Bus bar Reliability	Bus bar Sections 1&3 Reliability	Bus bar Section 2 Reliability					
0.9	0.981	0.98829	0.9963902					
0.92	0.9877121	0.9926957	0.9981172					
0.94	0.9930161	0.9960061	0.9991871					
0.95	0.995125	0.997284	0.9995246					
0.96	0.996839	0.9982795	0.9997542					
0.97	0.9982271	0.9990485	0.9998951					
0.98	0.9992081	0.9995846	0.9999688					
0.995	0.9999501	0.9999748	0.9999994					
0.997	0.9999821	0.999991	0.99999985					
0.998	0.9999919	0.9999959	0.9999999					
0.999	0.999998	0.999999	0.99999995					
0.9995	0.9999994	0.9999997	0.99999999					
0.9999	1	0.9999999	1					

Fig. (7) Relationship Between Component Reliability & Reliability at Bus bars.

1- Reliability of the feeders at the end load point

The Reliability at load point for the different feeders for the five substations in side the city of Sulaimania is calculated and plotted as shown in the figures (8), ...(12)

Fig. (8) Industrial substation reliability load point for different feeders

Fig. (9) Azmar substation reliability load point for different feeders

Fig. (10) Malkandy substation reliability load point for different feeders

Fig. (11) Shaheed substation reliability load point for different feeders

Fig. (12) Rizgari substation reliability load point for different feeders

V: Reliability distribution indices of Rizgari Substation

In the field of distribution systems other indices are normally used such as SAIFI (System Average Interruption Frequency Index), SAIDI (System Average Interruption Duration Duration Index) and CAIDI "Customer Average Interruption Duration Index" and these are calculated from the reliability data given in table (5)

Fig. (13) Rzgari Substation Reliability Indices for five years

VI: General Discussion and Conclusions:

Reliability study and evaluation is an important part of electric power distribution network analysis .By a detailed reliability index analysis, the weak points in system design can be detected and ways for their corrections can be determined.

In this study we conclude the following:

1. Most of the interruptions and weak points in distribution system of Rzgari substation and its network is in the over head lines, this is due to (Network ages,

Excessive of feeder length, Over load, Improper distribution of load among the feeders, no proper and regular maintenance.

- 2. The reliability and availability for the overhead feed decreased due to respectively high number of interruptions or failure rates.
- 3. Reliability can be improved due to the structural design of the substation i.e. substation with three sectional bus bars more reliable than that of the two sectional bus bar arrangements. This is because of reduced rate of failure and reduced mean outage time in case of failures or in case of scheduled outages.
- 4. Reliability of the whole distribution network were poor during the second year of the study because of the high rate of failures in the network. In the third year the system is improved by maintaining the system and the reliability improved and stabled during the fourth and fifth year of the study.

.As a summary of the result of the work it is found that the reliability and availability of the outgoing feeder increased, when:

- 1. The reliability of the electrical components is increased.
- 2. Choosing the suitable design structure for the substation.
- 3. The location of the load point near the feeding source points.

4. Decreasing the repair time by providing qualified repairing teams, with sufficient tools and spare parts.

VII. References

- J. E. Biegel, 1977, "Determination of Tie Sets and Cut Sets for a System Without Feedback", IEEE Transactions on Reliability, Vol. R-26, No.1,
- J. Endrenyi, 1980., Reliability Modeling in Electric Power systems, A Wiley& Sons,
- Mohamed A. Hussein, 2009, Technical Evaluation and Planning of Sulaimania Distribution Systems by Using GIS, MSc. Thesis
- Roy Billinton, 1982, Power System Reliability Evaluation, Gordan and Breach Science Publishers, Seventh
- R. Billinton, R. N. Allan, and L. salvaderi (editors), 1991, "Applied Reliability Assessment in Electrical Power Systems", IEEE press, New York, NY,
- R. Billinton, and R. N. Allan , 1984. "Reliability Evaluation of Power Systems", Pitman Advanced
- Roy Billinton and Satish Jonnavithulla, 1999 March, "Calculation of Frequency, Duration, and Availability Indexes in Complex Networks", IEEE Trans. on Reliability, vol. 48, no. 1, pp. 25-30.
- Y. H. Kareem, and A. R. Majeed , 2006 ," Monthly Peak-load Demand Forecasting for Sulaimany Governorate Using SARIMA", IEEE PES Transmission and Distribution Conference and Exposition Latin America, Venezuela.