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Abstract 
  
Cantor fractal linear array, with ‘101’ generator from second stage of growth, is 
analyzed here with two types of current amplitude excitation coefficients 
(Dolph and Fractal). The Koch fractal dipole element with 2nd iteration and 
θ=60o will be used here as the array elements. Kaiser-Bessel window will be 
used as the generating function, to calculate the fractal amplitude excitation 
coefficients. The benefit from using fractal antenna element in the design of 
fractal antenna array will be clearly deduced from the results. The radiation 
pattern and impedance were calculated by using software package MATLAB 
version 7.6 (R2008a) and software package 4NEC2 respectively. 
 
Keywords: Fractal antenna array, Fractal antenna element, fractal amplitude 
excitation coefficients, 2nd iteration Koch dipole fractal element. 
 

 الخلاصة
  

ِ نمطي ھندسي متكرر  ّ صورة ف ، ب Cantorصَ ّ َّلُ ھنا بإثنان ' 101'الخطي ل َ ُح ْ النمو، م ن ِ ِ م ِ الثانیة ْ المرحلة ن ِ ِ م د ّ مول
 ِ ِ الحالیة ِ الغزارة ِ معاملاتِ إثارة ْ أنواع ن ِ صورة نمطي ھندسي متكرر ).دولف وصورة النمطي ھندسي متكرر(م

 ِ ِ و Koch dipoleعنصر ِ الثاني θ =60بالتكرار
∘

  َّ ف ُ مستعمل ھنا كعناصر الصَ ون ُ كَ ی َ  Besselنافذة قیصر . س
ِ صورةَ النمطي ھندسي متكرر ِ غزارة ساب معاملاتِ إثارة ِ ُ مستعملة كوظیفة التوَلید، لح ون ُ تكَ َ ْ . س ن ِ المنفعة م

 ِ ِّ  ھوائيإستعمال عنصر ِ صَف ِ النمطي ھندسي متكرر في تصمیم ِ النمطي ھندسي متكرر  ھوائيصورة صورة
تسَتنتجُ بشكل واضح  ِ  منسَ ِج ِ برامج نم. النتَائ با بإستعمال مجموعة ِ س ط الإشعاعَ والمعاوقة الكھربائیةَ حُ

MATLAB  7.6نسخة (R2008a)   4 ومجموعة برامجNEC2 على التوالي. 

*Electrical and Electronic Engineering Department, University of Technology, Baghdad-IRAQ 
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1. Introduction  
    
The objective of fractal antenna synthesis is 
to obtain a multiband behavior in which the 
radiation characteristics are held constant at 
several frequency bands [1]. A 
comprehensive overview of recent 
developments in the field of fractal antenna 
engineering with particular emphasis placed 
on the theory and design of fractal arrays 
are found in [2]. An efficient recursive 
procedure for evaluating the impedance 
matrix of linear and planar fractal arrays is 
exploited in [3]. In this paper, Cantor linear 
fractal antenna array with 101 generator and 
second stage of growth will be simulated 
with second iteration Koch fractal elements. 
The system has a total of 4 active elements. 
Uniform, Dolph and fractal current 
amplitude excitation coefficients will be 
used to feed the antenna array elements. 
The design frequency is chosen to be 
2250MHz and minimum spacing between 
elements is assumed to be ݀ =  .4/݋ߣ
Finally, the driving point impedance for the 
array elements for all current amplitude 
excitations stated above and different 
resonant frequencies will be introduced.  
 
2. Cantor fractal antenna array theory 
   
Cantor fractal array can be formed through 
the repetitive application of a generating 
sub-array.  
A generating sub-array is a small array at 
scale one (P=1) used to construct larger 
arrays at higher scales (P>1) [1]. The array 
factor can be expressed in the general form 
[2].   
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Where  
(ߖ)݌ܨܣ    = Array factor associated with 
the generating sub-array. 
         δ    = Scaling (Expansion) factor. 
=   ߖ           .(ߠ)ݏ݋ܿ ݀ ݇ 

 
The generating sub-array in our case has 
three uniformly spaced elements with the 
center element removed, i.e. 101. The array 
factor with this representation is 
      
(ߖ)ܣܩ     =  (2)     (ߖ)ݏ݋2ܿ
 
Substituting (2) in (1) and choosing δ=3 
results in the following expression for 
Cantor fractal linear array                                        
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If the array elements were point sources, the 
array will operate at n resonant frequencies 
according to the following equation  
 
  ƒ௡  =  ƒ୭/ δ୬             (4)                         
 
   Where n is the band or iteration number 
(n=0, 1, 2…) 
 

3. Koch curve fractal antenna 
 
The Koch curve fractal geometries were 
originally introduced by the Swedish 
mathematician Helg Von Koch in 1904 [4]. 
It is among the first antennas based on a 
fractal geometry designed as small sized 
antennas with multiband characteristics [5]. 
The Koch curve is generated by starting 
with a straight line ‘initiator’ with an 
indentation angle of =0°.Then, the straight 
line is divided into three equal parts and the 
middle part is replaced by two linear 
segments with the same length at angle 
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=o ‘generator’. The process is repeated for 
these four line segments until the required 
curve is obtained, as shown in figure (1). 
This will produces the other iterations of 
standard Koch curve. 
The length of the nth iteration of the Koch 
dipole ܮఏ,௡ 

with indentation angle ߠ is 
given by  

  o
n

n L)
cos1
2(L ,  

     (5) 

 
With ܮ଴ is the length of the linear dipole 
(initiator) which remains constant through 
the iterations with the same end-to-end 
length. ܮఏ,௡s is increased with each iteration 
, and called the total curve length.   
 
Fractal dimension, another important fractal 
property, is a measure that can only be 
applied to fractal objects. It can be 
calculated by applying the following 
equation [6]. 
 

   
)/1log(

)log(
r

NFD       (6) 

     
  r is related to the indentation angle by the 
following relation [7]. 
 
  )cos1(2 r        (7) 
 
Since there are four identical copies ( N =4) 
of the original geometry that are scaled 
down by a factor of 3 (r =3), then 
 
   26186.1

)3log(
)4log(
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4. Fractal amplitude distribution 
 
Fractal amplitude distribution was 
originally used to obtain a self-similar 
fractal radiation with Koch and Weierstrass 
fractal arrays [8]. A unified approach to the 
design of multiband arrays via the synthesis 
of fractal radiation patterns was introduced 
[9]. 
Here, it is assumed that the Cantor fractal 
array is composed of two uniformly spaced 
sub-arrays with ܫ௣௡ feeding currents at each 
sub-array. Then, the contribution of these 
currents will be added to obtain the final 
fractal amplitude excitation coefficients. ܫ௣௡ 
can be calculated as follows 
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ƒ (ω) is the desired generating function 
(Kaiser-Bessel window in this case), P is 
the number of stages used in the 
construction of the Cantor fractal antenna 
array, δ is the scale factor, and γ is the 
current amplitude parameter. Kaiser-Bessel 
window function can be expressed as 
follows [5] 
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                  0                Otherwise  
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   Where  
      Δ = first-null beam width. 
      Io (χ) = modified Bessel function of the 
first kind of order zero and argument χ. 
      ∝ = Kaiser independent factor.                                        
An optimization is made to choose these 
design parameters as follows (δ=3, γ=0.9, 
Δ=1.4, α=50).                 
     
Substituting (11) in (10) yields the 
following equation for the fractal amplitude 
distribution with Kaiser-Bessel generating 
function. 
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 So,  
  Ipn = [I1, I2+I1/(δ * γ), I2/(δ * γ)+I1/(δ * γ) 2,  
   

                      I2/ (δ * γ) 2] 
 
5. Design of Koch curve dipole fractal 
wire antenna 
Second iteration dipole Koch fractal 
antenna with 60° indentation (rotation) 
angle will be designed around a design 
frequency of 750MHz with feed point 
located at the center of the geometry shown 
in figure (2).    
 
From the method of moment, the 4NEC2 
software package will be able to compute 
real and imaginary parts of the input 
impedance. The resulting input impedances 
are listed in table (1). 
 
Since the designed Koch fractal antenna is 
of second order, it has only two resonant 
frequencies (545 MHz, 1580 MHz), where 
at these frequencies the input impedance is 
approximately (50+j0) Ω. 

 

6. Proposed model design 
   
 Second iteration (P=2) Cantor fractal linear 
antenna array with 4 active second order 
Koch fractal elements will be designed 
3  ݐܽ × ௘݂௟௘௠௘௡௧= 2250MHz design 
frequency. The array is symmetrically fed 
with uniform and non-uniform current 
amplitude feeding coefficients (Dolph and 
Fractal). The total array length (L) is 2o 
(26.6667cm) as shown in figure (3). 
 
The input impedance is calculated for each 
array element for the purpose of impedance 
matching using MoM based antenna 
software package (4NEC2 software) with 
uniform and non-uniform current amplitude 
excitation coefficients at each resonant 
frequency and the results are shown in table 
(2).  
The normalized array factor plots for 
uniform, Dolph and fractal current 
amplitude excitation coefficients are 
calculated from equation (3) with different 
resonant frequencies resulting from 4NEC2 
simulation as shown in figure (4). 
The results of the radiation properties (D, 
SLL and HPBW) for the proposed model 
are listed in table (3). 
 

7. Conclusions 
     
From the above analysis the following 
points can be concluded: 

1. The number of resulting resonant 
frequencies at all models is greater 
than the number of resonant 
frequencies of the fractal element 
and fractal array together, where 
some of these resonant frequencies 
are close to each other. 
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2. Multiple groups of resonant 
frequencies appear with each current 
amplitude feeding coefficients type, 
where the radiation pattern and input 
impedance are approximately the 
same at each group of frequencies. 

3. The best field pattern is obtained 
with all current amplitude feeding 
coefficient types when the resonant 
frequencies are around the element 
resonant frequencies and equal 
approximately (4.8 to 6) times the 
first resonant frequency of the 
element.  

4. The proposed model with Uniform 
and Dolph current amplitude feeding 
coefficients is the best design model, 
since it has a large number of 
frequency groups that are matched 
between radiation pattern and input 
impedance. 

5. SLL is reduced when the resonant 
frequencies are less than the array 
design frequency since the distance 
between array elements will be less 
than one wavelength. The SLL is 
increased when the resonant 
frequency becomes higher than the 
array design frequency since the 
distance between array elements will 
be higher than one wavelength. 
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Table (1): Resonant frequencies and their impedances 
 

Resonant 
frequency 

(MHz) 

Impedance (Ω) 

545 43-j0.94 

954 1555-j3.58 

1580 61+j1.82 

 
 
 
Table (2a): Input impedance for array elements with Uniform amplitude feeding coefficients 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Array Resonant 
Frequency 

(MHz) 

Impedance (Ω) 

Z1Driving Z2Driving 

574 94.94-j0.4 135.56-j8.87 
590 100.6+j12.61 145.6-j0.03 
1540 142.43+j0.22 111.4-j8.46 
1556 157.7+j6.17 121.87+j0.41 
1618 228.66+j0.56 171.84+j27.9 
1720 240.95-j97.76 339.29-j0.89 
2452 114.06-j10.34 125.3+j0 
2476 124.07+j0.05 139.48+j8.64 
2592 232.52+j21.1 241.31-j0.51 
2622 259.13+j0.95 267.36-j26.45 
3186 58.48-j0 59.09-j15.19 
3216 66.69+j17.46 64.44-j0.07 
3630 279.18-j0.07 271.68+j74.49 
3790 289.91-j26.28 375.29+j0.79 



 
 
IJCCCE, VOL.1, NO.1, 2010                                                      Cantor Fractal Linear Antenna Array with Koch 
                                                                                                      Fractal Elements 
 

91 
 

Table (2b): Input impedance for array elements with Dolph amplitude feeding coefficients 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Table (2c): Input impedance for array elements with Fractal amplitude feeding coefficients 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Array Resonant 
Frequency 

(MHz) 

Impedance (Ω) 

Z1Driving Z2Driving 

572 92.71-j0.78 135.93-j11.3 
592 147.29-j1.47 148.59-j0.43 
1536 138.18-j0.13 109.67-j1.25 
1558 159.08+j8.58 123.91-j0.42 
1624 236.09+j0.15 177.01+j26.43 
1720 248.43-j98.76 331.59+j0.16 
2454 116.73-j8.74 124.45-j0.21 
2474 125.34-j0.29 135.95+j7.44 
2594 227.31+j17.95 241.91+j0.55 
2620 257.49+j0.59 265.38-j21.53 
3188 58.84+j0.46 59.45-j13.4 
3214 63.8-j1.28 64.23-j0.27 
3632 278.3+j0.28 273.89+j73.12 
3790 290.14-j25.59 375.03+j0.08 

Array Resonant 
Frequency 

(MHz) 

Impedance (Ω) 

Z1Driving Z2Driving 

571 119.91-j1.81 121.02+j0.5 
593 119.72-j0.54 133.91+j13.37 

1534 145-17.91 101.78-j0.22 
1718 160-j90.39 397.91-j2.07 
2484 102.78-j0.14 163.97+j13.84 
2644 282.58+j1.33 279.59-j72 
2562 166.17+j45.68 229.66-j0.08 
3229 73.18+j33.98 65.38-j0.3 
3604 289.98-j0.05 245.93+j85.33 
3798 289.06-j33.51 381.42-j0.34 
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Table (3a): Radiation properties for the proposed model with Uniform amplitude feeding 
coefficients 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table (3b): Radiation properties for the proposed model with Dolph amplitude feeding 
coefficients 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Array Resonant 
Frequency (MHz) 

Radiation Property 
D 

(dB) 
SLL 
(dB) 

HPBW 
(deg.) 

574 3.1700 -∞ 56.5627 
590 3.2507 -∞ 55.3118 

1540 3.7179 -0.5661 24.8470 
1556 6.0727 -5.0938 19.0778 
1618 3.4223 0 22.8328 
1720 5.0725 0 13.5624 
2452 8.6091 -11.8828 13.772 
2476 8.7273 -13.0690 13.7390 
2592 9.0645 -19.2355 13.4838 
2622 9.1176 -20.2110 13.3834 
3186 9.4884 -11.7106 10.8653 
3216 9.8032 -13.9707 11.4974 
3630 7.7823 0 -------- 
3790 7.3362 0 13.6680 

Array Resonant 
Frequency (MHz) 

Radiation Property 
D 

(dB) 
SLL 
(dB) 

HPBW 
(deg.) 

572 3.1628 -∞ 56.6704 
592 3.2372 -∞ 55.5138 

1536 6.3583 -6.4333 19.7250 
1558 6.0618 -5.0471 19.0596 
1624 4.4217 -0.9383 16.9476 
1720 5.065 0 13.5844 
2454 8.6081 -12.0134 13.8118 
2474 8.7059 -12.9989 13.7848 
2594 9.0546 -19.3718 13.5124 
2620 9.1005 -20.4364 13.4342 
3188 9.4692 -11.6539 10.8886 
3214 9.3677 -10.3941 10.7324 
3632 7.7396 0 -------- 
3790 7.2915 0 13.8826 
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Table (3c): Radiation properties for the proposed model with Fractal amplitude feeding 
coefficients 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

  

 
 

Figure (1): Koch curve geometry construction 
 
 
 
 
 

Array Resonant 
Frequency (MHz) 

Radiation Property 
D 

(dB) 
SLL 
(dB) 

HPBW 
(deg.) 

571 3.2579 -∞ 55.2378 
593 3.3882 -∞ 53.7608 

1534 4.3253 -2.3313 22.2140 
1718 5.2345 0 13.4746 
2484 8.8356 -11.6240 13.4924 
2644 9.061 -14.8512 13.3100 
2562 9.2078 -17.5557 13.0750 
3229 9.3702 -9.2185 10.3084 
3604 7.9958 0 ------- 
3798 7.5678 0 12.3038 
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Li=20cm 
Figure (2): 2nd iteration Koch curve dipole antenna 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 02L  
 
 
 
 
 

Figure (3): Cantor fractal linear antenna array with Koch fractal elements 
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0.5λo λo 
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   (a) Uniform amplitude feeding coefficients 
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(b) Dolph amplitude feeding coefficients 
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(c) Fractal amplitude feeding coefficients 
Figure (4): Array factor plots for proposed model  

 
 


