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Abstract- Due to the continuous growth of user traffic demands, there is a need to cope with the increased processing
and storage requirements. The increased number of connected end devices causes a problem with carrying the
generated loads efficiently. Edge and cloud computing and storage are real solutions to overcome the limitations of
end devices on many prospective including computation capabilities, storage capabilities, and power consumption.
Terminal devices offload their overflow tasks to the cloud for processing, analysis, and storage. This paper aims to
improve computation offloading from edge nodes to the cloud in Internet of Things networks by making efficient
decisions using an adaptive offloading algorithm. Offloading is controlled by a processing time offloading threshold
value, which is determined automatically by edge nodes based on their traffic intensity and adaptively increased or
decreased in loads. The proposed algorithm had been programmed and simulated; experimental evaluations show
that the proposed adaptive offloading algorithm minimizes the edge mean response time by up to 58% and the
cloud mean response time by up to 25% compared to the existing fixed, pre-defined offloading threshold value.

keywords: Edge-Cloud network, computation offloading, adaptive offloading algorithm.

I. INTRODUCTION

Most Internet of Things (IoT) networks generally consist of three main layers, as shown in Fig. 1. The lowest layer is

the end device layer, which contains sensors that are responsible for collecting data from the environment and actuators

to perform the necessary actions. These devices send the gathered data to the upper layer for processing and storage. The

middle layer is the edge layer, which may be servers, routers, access points, or any other suitable heterogeneous device.

These devices are relatively limited in their processing and storage capabilities. This layer connects the end device layer

with the uppermost layer, which is a cloud layer. The cloud layer is made up of several servers and data centers that are

capable of super-processing, storage, and analysis [1]. The end devices usually communicate with their edge nodes through

a local network, while the edge nodes communicate with the cloud through the Internet [2].

Edge and cloud computing are widely used in many applications, for example, healthcare centers, augmented reality

(AR), traffic management systems, caching and processing for improved networking, and smart homes and cities [3], [4].

Offloading, on the other hand, is defined as the transfer of computations from the resource-limited node to the resource-

rich node to improve application performance and power efficiency [5]. In an IoT network, offloading may happen from an

end device to an edge node, from an edge node to another edge node, or from a cloud node. Offloading decisions can be

either local, which are made regarding the condition of the current node, or global, which are made regarding the condition

of the whole system. The global offloading decision can be further classified into active, proactive, and hybrid [6].

The main advantages of offloading are: reducing cost on the end device; increasing the end device‘s battery lifetime;

supporting new applications that may require more computation and storage capabilities; improving overall performance;
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and leading to greatercustomer satisfaction. Regarding security, offloading can increase security when user data is stored

on the cloud, as this leads to less data transfer through the network; in another type of application, offloading may lead to

more send and receive of data through the network, and that will decrease security [7].

Figure 1: IoT System Architecture.

Response time is defined as the time difference between the moment when all data is collected for offloading decision-

making and the moment when the consumer receives the required result [2]. The main purpose of computation offloading

is to reduce the response time of tasks by reducing processing delay to improve the quality of service (QoS) [4].

This work aims to improve computation offloading from the edge to the cloud in IoT networks by making efficient

offloading decisions. The goal is to minimize the mean response time of tasks and balance the load between edge nodes

and the cloud. The challenge is determining which tasks should be performed at the edge and which should be offloaded

to the cloud.

The rest of the paper is organized as follows: Some related studies are mentioned in Section II, the proposed model is

explained in Section III, the implantation details and simulation results are in Section IV, the obtained results are discussed

and compared in Section V, and finally, Section VI concludes this work.

II. LITERATURE SURVEY

Many techniques and algorithms for computation offloading in the Edge-Cloud system have been presented in recent

research. Optimization methods, fuzzy logic, machine learning, and deep learning approaches, as well as model-based

approaches like queueing theory and game theory, are all used for computation offloading. In [8], a multi-queue model was

proposed to study the impact of two offloading policies, namely the locality-first policy and the probability-based policy.

Analytical solutions for task average response time and energy consumption are obtained, and extensive simulation results

proved the accuracy of the proposed model.

In [9], an online offloading policy is proposed to solve the fog node selection problem for both single-user and multi-

user scenarios. Each fog node was modeled as an M/M/1/K Markov model, and the sequential decision-making problem
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was formulated as a Restless Multi-Armed Bandit (RMAB) problem. The upper bounds on performance were calculated

analytically and then validated using numerical experimental results. .

In [10], authors proposed the performance evaluation and optimization of a cloud-fog-Edge computing infrastructure

using queueing theory. In particular, a Markov queueing system model is proposed for offloading considering task deadline

expiration. In addition, a computational resource allocation approach is proposed and validated by comparing analytical

and simulation results.

The genetic algorithm (GA) was used in [11] to find the best task allocation, while queuing theory was used to model

the service time and the queuing time. The proposed offloading algorithm is compared to another optimization method,

Particle Swarm Optimization (PSO). Their experiments show that the GA-based offloading algorithm performs better than

both the round-robin offloading and PSO-based offloading algorithms.

n [12], the authors presented a novel approach using fuzzy logic algorithms, considering application characteristics,

resource allocation, and resource heterogeneity. Their experiments show that different offloading decisions for latency-

sensitive applications may lead to various service times for tasks due to communication type and computational resources.

In [13], an autonomous computation offloading framework is proposed to cope with the large dimension of the offloading

decision-making problem. Different simulations have been conducted, including those using deep neural networks, multiple

linear regression, the hidden Markov model, and the proposed deep learning-based hybrid model. Simulation results show

that the proposed deep learning-based hybrid model suits the problem with near-optimal accuracy regarding offloading

decision-making, latency, and energy consumption.

In [14], authors used the queueing theory to model a Fog-Cloud architecture to simulate the traffic delay and formulate a

non-linear multi-objective optimization problem to reduce the execution delay, energy consumption, and remote execution

cost. Moreover, the stochastic gradient descent (SGD) algorithm was proposed to find the optimal trade-off between the

offloading objectives. Simulation results show the effectiveness of the proposed system.

In [15], the authors used the queueing theory to develop a queueing model, in which offloading decisions are made based

on the required processing time for each task. Offloading is controlled by a fixed, pre-defined processing time threshold.

This paper proposes an adaptive offloading algorithm that automatically chooses the perfect offloading threshold value,

depending on the current load.

III. PROPOSED MODEL FOR OFFLOADING

The proposed network consists of N edge nodes covered by a single cloud node. The cloud node has m identical

virtual servers. Each edge node covers a specific geographic area and generates tasks in a Poisson process exponentially

distributed with an average of 1/λ. Each task is generated with its own processing time that is exponentially distributed

with an average of 1/µ. The edge node‘s CPU processes tasks at a rate of µ tasks per second, while the cloud node‘s virtual

server processes tasks at a rate of kµ tasks per second, where k is the speedup factor, that is, how often the processing

speed increases.

The edge node takes an offloading decision based on the required processing time of each task. If task processing time

is greater than the current threshold value τ , then the task will be offloaded to the cloud for processing; otherwise, if it is
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equal to or less than τ , it will be processed at the edge node. That leads to the fact that service time in the cloud and each

edge node will have a truncated exponential distribution, i.e., a general distribution and not an exponential distribution.

Thus, the queuing systems at each edge node and the cloud will be M/G/1 and M/G/m, respectively.

Offloading threshold τ divides the exponential curve of the service time into two truncated exponentials, as shown in

Fig. 2.

Figure 2: Offloading threshold τ divides the exponential curve of the service time into two truncated exponentials.

Let the first area under the curve be α, which is the probability that the task will be processed at the edge node. The

second area under the curve will be β, which is the probability that the task will be processed at the cloud, and can be

obtained:

α = µ

∫ τ

0

e−µtdt = 1− e−µτ (1)

β = µ

∫ ∞

τ

e−µtdt = e−µτ (2)

Let λE be the arrival rate at each edge node, and let λC be the arrival rate at the cloud that covers all N edge nodes.

Based on the Poisson process’s splitting property, λE and λC are both Poisson processes and can be obtained:

λE = αλ (3)

λC = Nβλ (4)
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Based on the above equations, the threshold value controls the percentage of tasks offloaded or processed locally at the

edge nodes. In mathematical models, the traffic intensity A can be estimated as the product of the arrival rate and the mean

service time [16]. Therefore, the traffic intensity of the M/G/1 queueing system at the edge node is:

AE = λEE [SE ] (5)

where E[SE ] is the expected mean service time of the edge node; note that E[SE ] is also indirectly affected and controlled

by the offloading threshold value. This paper proposes a system with an adaptive offloading algorithm that allows edge nodes

to continuously calculate the most suitable offloading threshold based on the current arrival rate. The selected offloading

threshold guarantees that traffic intensity remains constant or within its specified acceptable range while the arrival rate

increases or decreases. Fig. 3 illustrates the offloading model proposed.

Figure 3: Offloading proposed system model.

IV. IMPLEMENTATION AND RESULTS

The proposed technique is programmed using the C++ programming language, and the work environment was the latest

version of the Microsoft Integrated Development Environment (IDE), Microsoft Visual Studio 2022, Version 17.1. Several

experiments were simulated to prove the effectiveness of the system. Each experimental value has been recorded and

verified after a simulation run that is equivalent to more than 34 days in real time (3 million seconds) to collect enough

tasks to determine an accurate mean of response times.

Experiment: (1) Impact of increasing the arrival rate on a system with a fixed offloading threshold value (without

the adaptive offloading threshold algorithm):
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To test the behavior of the system, the proposed system is simulated with a fixed offloading threshold value τ = 500,

while the arrival rate λ varies from 0.00001 to 0.00026 task/second. The system included N = 800 edge nodes; each edge

node has a CPU with a processing rate of µ = 0.002 task/second; all edge nodes are offloading tasks to one cloud that

includes m = 5 virtual servers; each virtual server speeds up the processing 20 times faster than the edge node CPU, i.e.,

k = 20. The results are shown in Fig. 4, where WE represents the edge mean response time and WC represents the cloud

mean response time. Note that both curves are rising continuously, and around 63% of tasks are offloaded to the cloud,

and the rest, 37% of them, are processed at the edge node, based on (1) and (2).

Figure 4: Results of Experiment (1).

Experiment (2): Impact of increasing the offloading threshold value on a system with a fixed arrival rate:

To evaluate the impact of changing the offloading threshold value, the proposed system is simulated with a fixed arrival

rate of λ = 0.001 task/second, while the offloading threshold value varies from 100 to 1200. The system included N = 800

edge nodes; each edge node has a CPU with a processing rate of µ = 0.002 task/second; all edge nodes are offloading

tasks to one cloud that includes m = 5 virtual servers; each virtual server speeds up the processing 20 times faster than

the edge node CPU, i.e., k = 20.

The result is shown in Fig. 5; note that the impact of τ is very strong on the mean response times, especially WE . Table

(1) shows the related percentage of offloaded tasks at each value, based on equations (1) and (2).

TABLE I
PERCENTAGE OF OFFLOADED TASKS FOR EACH VALUE OF EXPERIMENT (2)

τ 100 200 300 400 500 600 700 800 900 1000 1100 1200
α 18.13 % 32.97 % 45.12 % 55.07 % 63.21 % 69.88 % 75.34 % 79.81 % 83.47 % 86.47 % 88.92 % 90.93 %
β 81.87 % 67.03 % 54.88 % 44.93 % 36.79 % 30.12 % 24.66 % 20.19 % 16.53 % 13.53 % 11.08 % 9.07 %

α is the percentage of tasks processed at the edge node, and β is the percentage of tasks processed at the cloud (offloaded);

for each offloading threshold value of Experiment (2).
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Figure 5: Results of Experiment (2).

Experiment (3): Impact of increasing the arrival rate on a system with the proposed adaptive offloading threshold

algorithm:

To prove the effectiveness of the proposed adaptive offloading threshold algorithm, we simulated a system with the same

values as in the experiment (1): a system with N = 800 edge nodes; each edge node has a CPU with a processing rate of

µ = 0.002 task/second; all edge nodes are offloading tasks to one cloud that includes m = 5 virtual servers; each virtual

server speeds up the processing 20 times faster than the edge node CPU, i.e., k = 20; the offloading threshold is calculated

automatically by the edge node depending on the current arrival rate λ, which is increased gradually from 0.00001 to

0.00026 task/second.

The traffic intensity of the edge node AE is supposed to remain constant between 0.0060 and 0.0055 to prevent long

queues in the edge node and to maintain the WE in an acceptable range. The offloading threshold will be chosen within a

specified domain with a minimum and maximum value; in this experiment, the minimum value is set to 100, the maximum

value to 800, and the precision to 5.

The results in Fig. 6 show a decay in both mean response time curves, despite increasing the arrival rate. Table 2

illustrates more experimental details. Fig. 7 shows the traffic intensity AE with adaptive offloading threshold algorithm in

Experiment (3).

TABLE II
OFFLOADING THRESHOLD VALUES FOR EACH ARRIVAL RATE OF EXPERIMENT (3)

λ 0.00001 0.00003 0.00005 0.00007 0.00009 0.00011 0.00013 0.00015 0.00017 0.00019 0.00021
τ 800 645 465 370 315 280 250 230 215 200 190
α 79.81% 72.47% 60.54% 52.29% 46.74% 42.88% 39.35% 36.87% 34.95% 32.97% 31.61%
β 20.19% 27.53% 39.46% 47.71% 53.26% 57.12% 60.65% 63.13% 65.05% 67.03% 68.39%
AE 0.00238 0.00554 0.00596 0.00594 0.00593 0.00599 0.00586 0.00587 0.00593 0.00585 0.00591
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τ is the current offloading threshold, α is the percentage of tasks processed at the edge node, β is the percentage of

tasks processed at the cloud (offloaded), and AE is the traffic intensity of edge node; for each arrival rate of Experiment

(3).

Figure 6: Results of Experiment (3).

Figure 7: Traffic intensity of the edge node with adaptive offloading threshold in Experiment (3).

V. DISCUSSION

In the results of Experiment (1), Fig. 4, note that both WE and WC curves are almost horizontal or slightly rising,

offloading threshold is fixed regardless of the arrival rate, and around 63% of tasks are offloaded to the cloud, while the

rest, 37% of tasks, are processed at the edge node.

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0 65

www.ijict.edu.iq
http://creativecommons.org/licenses/by/4.0


www.ijict.edu.iq

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 6, Issue 2, August 2023

ISSN:2222-758X
e-ISSN: 2789-7362

To deal with the limited processing and storage capabilities of the edge nodes, the proposed adaptive offloading algorithm

controls the mean response time by maintaining the traffic intensity of the edge node almost constant (within the pre-specified

range; i.e., AE never exceeds 0.0060), as shown in Fig. 7. This prevents long queues at the edge node and maintains the

WE at an acceptable low value.

In the results of Experiment (3), Figure 6, where the proposed algorithm is used, the WE curve starts at a high value,

around 298 seconds, because τ is high; then it decays because the edge node starts to decrease τ , so it has more tasks that

require less processing time, i.e., more short tasks. Concerning the WC curve, it also starts at around 65 seconds because

τ is high, so the cloud processes only the time-consuming tasks, i.e., a few long tasks; then it decays because it has more

tasks but with shorter required processing times. At the end, the WC curve raises slightly; because τ becomes very low,

and the cloud handled most of the load.

From the results above, the proposed adaptive offloading algorithm in the third experiment, at λ = 0.00021, minimizes

the WE by up to 58% and the WC by up to 25% compared to the results of the first experiment with a fixed offloading

threshold value.

VI. CONCLUSIONS

The proposed model is simulated with an adaptive offloading algorithm that allows edge nodes to continuously determine

the most suitable offloading threshold based on the current arrival rate. The traffic intensity value is supposed to remain

constant, or within its specified acceptable range, while the arrival rate increases or decreases. Experimental evaluations

show that the proposed adaptive offloading algorithm minimizes the edge mean response time by up to 58% and the cloud

mean response time by up to 25% compared to the existing fixed, pre-defined offloading threshold value.
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