IJCCCE, VOL.11, No1, 2011

Proposed Design and Implementation of a Schematic FPGA-BASED
Binary Arithmetic Multiplier?

Dr. Yazen A. Khalil?

Abstract

This article presents a proposed design and implementation of an 8-bit Arithmetic
Multiplier based on FPGA (Field Programmable Gate Array). The design is implemented a
schematic FPGA way using CPLD (Complex Programmable Logic Device) development
board SN-PLDE2. The development board contains an FPGA device EPF8282ALC4-4
(5000 gates account) of Altera FLEX8000 family (Flexible Logic Element MatriX) with
the other necessary peripherals. The proposed design is achieved under MAXplus2 V10.1
software for FPGA programming. The designed arithmetic multiplier is tested using an
experiment board (SN-PLDE3A). The results show both efficient usage and high
performance including the accuracy and the fast operation.

Keywords
Arithmetic Multiplier, FPGA, FLEX

QA
alaainly (8-bit Arithmetic Multiplier) SsAS) (olus Caclial 124855 s e Loranad Alall o8 a8
Lhbadll 43kl abhdtiuly sl 388 L4 (FPGA) Llia dga pll ALWAH cil) gl 48 ghuaa il
AN G sl A shias g 9ay @Al5 (PLD) Ao ymall dgihaiall 5 3¢a¥) 4 shie da 5l aladinly (schematic)
O Aae pll AL Lghic 44 5 5000 (e OsSiall (EPF8282ALCA-4) &8 1 (Altera) g 55 (e Llia daa all
bl Aadiuly el asealll S aly gAY 4yl clialdl s FLEX8000 ilile
dalIL dsalall g (SN-PLDE3A) 4adll da ol aladinly aeaill sl o5 ,(10.1) Llaa¥ (MAXplus2)

A puall 5 282 @l Ly) oo Jladll aladioaV) iliall < jedal s A)l

! This paper was presented in the Engineering Conference of Control, Computers and Mechatronics Jan. 30-31/2011,
University of Technology.
2 University of Koya - College of Engineering

106

IJCCCE, VOL.11, No1, 2011

1. Introduction

The process of a binary multiplication
with paper and pencil is illustrated in
Figure (1). The multiplicand is multiplied
in turn by each digit of the multiplier.
These partial products are then added with
due consideration for the differing
numerical significance of each digit of the
multiplier. Each partial product is either
identically zero or -equal to the
multiplicand, depending on whether the
multiplier digit is 0 or 1 respectively [1,
2].

d3 d di do

1 0 1 0 Multiplicand
X 1 1 0 1 Multiplier
Partial product
0 0 0 0 0 0 0 0 jytany
1 0 1 0 do=1
Shift 0 O 0 0 d1=0 .
Partial
Prod.
Shift 1 0 1 0 d2=1
Shift + 1 0 1 0 d3=1

1 0 0 0 O 0 1 0 Final Product

Figure (1) Binary Multiplication Example

2. The Proposed Design

As shown in Figure (1), the binary
arithmetic multiplication process needs
binary multiplication, shifting, and addition
processes. Therefore; the main parts of the
proposed design should involve a 8-bit full
adder (8BADD), an 8-bit multiplier shift
register constructed with two 4-bit shift
registers, an accumulator (MUL8SACC)
constructed with four PIPO shift registers,
pulse generator and a control pulse

Proposed Design and Implementation of A Schematic
BASED Binary Arithmetic Multiplier

generator. All above parts will be detailed
in the following sub-sections. The
complete proposed design is shown in
Figure (2).

o o

produc

e

" T
| P 1108
mul8ace
i [i
L ok au il

;;;;;

Y

Y

%ZJI

17

Y

multiplica

. =

gt i

b \

I a1

i

olkkey

e >

st o Trer Ll s 3w I

S PuLse START Lo—

—neLr

I

I '

1w

control pulse gen.

Figure (2) The Proposed Design of 8-b

The 8-bit multiplicand (b0-b7) is fed to the
adder input (XO0-X7). The accumulator
output (Q8-Q15) is fed to the adder input
(YO0-Y7). With the LD control signal, the
adder output (S0-S7) and its carry out
are loaded to the inputs (D8-D15) of the
accumulator (MULSACC). The 8-bit
multiplier (a0-a7) is parallel-loaded into
the multiplier shift register.

The pulse generator (clkkey)
generates a starting pulse to drive the 8-
bit multiplier. The control pulse generator
is used to generate the control pulses for

107

I

oWy)

i

i}

it

IJCCCE, VOL.11, No1, 2011

the multiplication process. The following
sections will give the details of each part
mentioned above.

2.1 Multiplier Shift Reqgister

This part is constructed with two 4-bit
shift registers as shown in Figure (2). Its
main job is the serial shift process of the
multiplier bits to determine whether the
load signal to the LD input of
MULBACC is generated or not
according to the following AND process.

LD(acc) = Multiplier bit . LD(control signal)

For 1 multiplier bit leads to pass the LD
signal to load adder output into the
accumulator.

2.2 The 8-bit Full Adder (8ADD)

This part is constructed with two 4-bit
adders. Each one of these 4-bit adders
involves four ordinary full adders as shown
in Figure (3). Its job is to implement the
required addition process of the partial
products till is reachs the final product.

2.3 Accumulator (MULBACC)

The accumulator part of this design consists
of four 4-bit PIPO shift registers and its
control logic circuit as shown in Figure (4).
It has two main jobs; the first one is to
accumulate (temporary storage) the partial
products after each multiplication process
with the multiplier bit. The second one is
the one bit shifting process that is required
after each multiplication process as
described in Figure (1), [1, 3].

108

Proposed Design and Implementation of A Schematic
BASED Binary Arithmetic Multiplier

: 4add
"""" g e |
....... R :
"""" s o 1 M BT 8 3
"""" e[NN W 1 T s
....... e o I P GRS
"""" e e 1L VNN T 1 T s S
....... e T
"""" e 1 SR O
....... e
2L
CaEm
— &1 N
e R
i " e o p It YR
WEOT s | v Elp

Figure (3) 8-bit full adder (BADD)

IJCCCE, VOL.11, No1, 2011

TR

0t
nelk ".,[E.lT T

g w‘-E' o
o 12 :

[——

P

S ",'F'lT

pipo4 :

eLK

HELR

B o

dld o

M3 o

gz 4T

eLK

HELR

o
vl
Tt

P I —

pipod4

cLK

HELR

T

pipo4

cLK

HELR

Lo
S
50 ;

o1

D3

ae—
al -
az—=
T
az—

— b=
32

Figure (4) Accumulator

The 4-bit shift register (pipo4) that is used
in the accumulator is shown in Figure (5)

O NPT SE e
L Gureu

Proposed Design and Implementation of A Schematic
BASED Binary Arithmetic Multiplier

o S—_

o -

i

B e o

Figure (5) 4-bit Shift register

2.4 The Pulse Generator (clkkey)

Figure (6) shows the pulse generator
(clkkey) that generates a starting pulse
to drive the 8-bit multiplier. Figure (7)
shows its timing diagram. Initially, all
flip-flop outputs are cleared. If a START
signal (logic 1) is applied to the KEY
input, the flip-flop outputs Q1=1 and
Q2=D2=Q1. KEY=1 on the rising edge
of clock pulse no. 1. On the rising edge
of clock pulse no. 2, the Q1 output
remains at 1 and the Q2 output returns
to 0 because D2= Q1 . KEY=0. Hence, a
pulse appears at the Q2 output.

109

IJCCCE, VOL.11, No1, 2011

clock
mput ¢

] 1
EFY=D1=0 | " KFY=D1=1 KEY=D1=0
J | !
! 1
L
Ql :
1 1
| 1
D2- QL KEY |
Q2
Pulse output ; i

Figure (7) Timing diagram of clkkey

2.5 The Control Pulse Generator

The control pulse generator shown in
Figure (8) is used to generate the control
pulses for the multiplication process. The
START pulse comes from the PULSE
output of clkkey. On the rising edge of the
third clock pulse, a logical high appears at
the DONE output and flip-flop output, and
arrives at the EN and CLRN (clear) inputs
of the divide-by-16 counter to start
counting. The DONE output holds at high
for the succeeding clock pulses until the
17" clock pulse arrives. During this
counting period, the counter output
changes from 0000 to 1111; load

Proposed Design and Implementation of A Schematic
BASED Binary Arithmetic Multiplier

operation (LD=1) performs at every even-
numbered clock pulse, and shift operation
(SH=1) performs at every odd-numbered
clock pulse. Therefore, 16 clock pulses are
needed for an 8-bit multiplication.

From the logic diagram shown in Figure
(8), the Boolean equations for SH and D
are given by:

D=START&Q0+Q&Q00& 01 & 02 & Q3
SH=Q&Q0
LD = Q& Q0

F=

o

g

ki B o
ek a—
—eLERR g2—— :

—EN

: counter :

co—

=T

Figure (8) Control pulse generator

When the START pulse appears at the
start input, the Q output is clocked to a
logical 1, which drives the 4-bit
synchronous binary counter to counting
up: After 16 clock pulses,
Y=Q0&Q1&Q2&Q3=0. The Q
output returns to 0 to terminate the
counting. The timing diagram of the
control pulse generator is shown in Figure

(9).

110

IJCCCE, VOL.11, No1, 2011

123 456 78 9101012134156 1518

CLK

1 2 345 6 78910 111213141516 17
Q0

START
D-STARTA{Q+Q4{0080 1802603)

¥-(Q0601892503)-1
oNE-) |
SH=050
LD=&Q0

Figure (9) Timing diagram of the Pulse
generator

The 8-bit multiplier has eight shift-
and-add cycles. Each cycle is divided into
shift and addition operations [4]. During

ax2workicpldexiprimit - [mulB.gdf - Graphic Editor]
Ven Synbel s gtors Wi Hilp

W =

i, o
ity

nuiace

ppppp

]
|
H

1 | Eeowlovs a o)« E
882 g

[

ppppp

frrrrrsrinveryey
EEITEETIFIEREENTE

15 5

0oon

LA

listart [z

[Bosgnaminpe., |) vassobs1-oy

Figure (10) the proposed Design as
appear in maxplus2 software

Proposed Design and Implementation of A Schematic
BASED Binary Arithmetic Multiplier

shift operation, both the multiplier a0-a7
and the partial product Q0-Q15- are shifted
by one position. If the multiplier bit at DO
is 1, addition operation is then performed.
The shift operation is performed at every
odd-numbered clock pulse when Q0=1 and
SH=1, the addition operation is performed
at every even-numbered clock pulse when
Q0=0 and LD=1. During this operation, the
adder output S7-SO is loaded into the
accumulator D8-D15.

3. Experimental Test

e Implement the proposed design with
the software MAXPIlus2 V10.1, as
shown in Figure (10) and save it as
graphic editor file format (.gdf).

e Compile the design and assign FPGA
pins to 1/O devices. As shown in Figure
(12).

e Download the design into the CPLD /
FPGA development system CIC-310
with appropriate downloader software
(DNLD82.exe) by using the RS-232
COM Port as shown in Figure (12), this
done by the aid of the Altera applications
note for FPGA devices [5].

111

1JCCCE, VOL.11, No1, 2011 Proposed Design and Implementation of A Schematic
BASED Binary Arithmetic Multiplier

4. Conclusions

%‘ e384 Arithmetic Binary Multipliers can be

implemented in FPGAs, providing both
efficient usage and high performance. The
Altera FLEX8000 family is particularly
well suited for this application. There is a
range of options available to the user when
designing multipliers: speed, area, accuracy
and the design method.

During this design and implementation, the
following points can be concluded:

‘i) Poptrpblm s B |
(ELH

toart:

Figure (11) Compiler window e The Altera development tools and
the FLEX8000 devices can
effectively create multipliers to meet
the individual requirements.

CPLDEXP - Sinosoinc _
File ‘View Options Help ° The advantage Of the prOgrammab|e

logic over fixed-function logic is
estance that the devices use much less board

MULS | ’
i | ! space for an equivalent amount of
| Del | &, logic.
| et | “| e e With programmable logic, designs
|

ik Gy | can be readily changed without
rewiring or replacing components.

e A logic design can generally be
implemented faster and with less
cost with programmable logic than

Figure (12) Downloader window with fixed-function ICs.

e The proposed design can be used to
build the decimal multipliers.

d;}maxiwurk
SEEPROM: iles:

Ready 2 Events in ComQue

e Set the input values of the multiplicand
a7-a0 and the multiplier b7-b0. Apply
clock pulses by pushing and releasing the
pulse generator equipped with the
development system and recording the
partial products and the final product and
checking its validity.

112

IJCCCE, VOL.11, No1, 2011

References

[1]

[2]

3]

[4]

[5]

Floyd T. L. , 2006, “Digital
Fundamentals”, ninth edition, Pearson
Prentice Hall, Page(s) 628-648.

Neto H. C. and Vestias M. P. , 2008
“Decimal Multiplier On FPGA Using
Embedded Binary Multipliers”, Field
Programmable Logic and Applications
International Conference, Page(s): 197
—202.

Beuchat J. L. and Muller J. M. , 2008,
“Automatic Generation of Modular
Multipliers for FPGA Applications”,
IEEE Transactions On Computers,
Vol. 57, No. 12, Page(s): 1600 — 1613.

Beuchat J. L. and Muller J. M., 2004,
“Modulo m Multiplication-Addition:
Algorithms and FPGA
Implementation,” Electronics Letters,
vol. 40, no. 11, pp. 654-655.

Altera Application Note 306, for
FPGA devices, July, 2004.

113

Proposed Design and Implementation of A Schematic

BASED Binary Arithmetic Multiplier

