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Solving The Stochastic Lagrangian Averaged Navier-Stokes
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Abstract:

The research aims to develop space-time estimation based on finite
elements with the aim of solving the stochastic (LANS-a) Navier-Stokes
equations with the multiplicative random effect and incompressible fluid
turbulence, under conditions within a limited, non-periodic boundary. The
polyhedral (or polygonal) domain of Rd, d € {2,3}. For a fully discrete
numerical scheme, the convergence analysis is studied and divided according
to the spatial scale a into two cases, i.e. we first assume through the space
partitioning step size that a is controlled such that It disappears when passing
to the maximum, and then when « is constant, we present an alternative
search.

Keywords: Stochastic Navier-Stokes, Stochastic Lagrangian averaged
Navier-Stokes, Euler method, Finite element.

Introduction:

Navier-Stokes equations are used to analyze the velocity field in fluid flow,
in the basics of fluid mechanics, in topics of mass conservation, momentum
and continuity equations, as well as in fluid mechanics applications such
as aerodynamics and turbos. These equations were firstly introduced and
presented by Navier in 1822, then they were more completed by Stokes

in special cases. Beside the mass conservation equation, the Navier-Stokes
equations make the number of equations and unknowns equal and the
problem could be solved theoretically. These equations are one of the most
important fluid mechanics equations that are used in modelling of different
phenomena related to fluid dynamics.In  fact, Navier-Stokes equations
present a mathematical model of nonlinear device of the motions, flows
and fluids dynamics (both liquids and gases). These second order equations
are nonlinear which are the most complex equations existing in fluid flow,
that there is no exact answer in most models. To illustrate the significance of
these equations, it is sufficient to state that Euler's and Bernoulli's equations,
the most practical equations in the fluids motion, are derivatives of these
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equations which are obtained with a set of theories and simplifications. These
equations can be applied to simulate and solve the flow fields of various
practical problems, such as the flow in turbomachines, the flow around the
drift and the wave impact on them, as well as the fuel and burning
flow in internal and external combustion engines. Thus far, different types
of these equations have been introduced. The thin shear layer Navier-Stokes
Is an example of these types of equations, a mathematical expression
that actually expresses the physical conduct of a compressible fluid flow in
the developing region of internal flows. To determine the heat transfer
coefficient or the friction coefficient of compressible fluid flow inside a
nozzle, the velocity and temperature variables in the vicinity of the wall can
be obtained by solving these equations.The linear momentum equation form
as

dp
F=—
dt

5YS

whose derivative is the material derivative operator and F be the force acting
on the fluid mass and P be the linear momentum. The integral form of this
system is as

P= fsﬁb’dm

By writing the integral form of this equation for a control volume and their
summation, we will have:

a
ZFW =—j Vpdv+j V,V.fidA
EE 1 cs

Here v is the components of the control volume. This equation can be used in
many problems of fluid mechanics in the case of limited control volume.

for a system with mass ém, the following differential form of the
linear momentum equation is obtained.
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d(Vém)
F=——-
dt

where §F is the resultant of force acting on the mass ém. If we keep dm
constant, we can write the equation as follows:

oF =6 ad
= O —
dt
Now, the velocity material derivative or dV/dt shows the calculated element

acceleration, which is always indicated by a So we have:
oF =dma

which is a simple representation and repetition of Newton's second law. Now,
according to the relation between acceleration and velocity field
aF — d dlﬁ_ﬂ_ av aV ai  av
= THE— muﬁ'kvﬁ"'WE'l'E
In addition, the forces acting on a surface element can be divided into two
categories, surface forces and mass forces. Mass forces are caused by
gravity. Surface forces are divided into two parts, perpendicular force to
the surface and tangential force to the surface. If we represent volume
forces with the symbol dFb, according to Newton's second law we will have:

dFy = dm.g

where g is the acceleration of gravity, however for the surface forces
represented by the symbol of dFs, the perpendicular and tangential
components can be introduced according to the Figure 1

As can be seen in Figure 1, dFs is divided into three components, dFn is
perpendicular to the dA surface, dF1 and dF2 are parallel to the surface.
The normal stress can be calculated as follows:
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_ o dE
Tn = Ao dA

and also the shear or tangential stresses which are produced by dF1
and dF2 on the surface are represented as follows:

Figure 1: Surface force and its decomposition in an element

The same analysis can be done in three-dimensional space and obtain txy,
txz, and tyz. So, to calculate the surface force acting on the element along
the x-axis, we will have:

deryy ﬂf}rx T2y
dF,, = + + dxdyd
= ( dx dy @ dz reyaz

April (2024) Gl O { IR | v =24y N S
32



pgaugd! (yg pially 6:4‘-“4‘ S| palad! pl

(A padl pglad! Jlwo (2 dupuslas d ) Ao ) DS 3 0)

(PeAg ehacg (25 30 (10 ) (ol Cimedly) ylandt s ity
2024 /473029 sal

1y, doy, 014
an,—( Ep + dy + 32 dxdydz

1y, 01y, d0,
dFH_(ax + dy + EP dxdydz

And finally, in all three directions of the 3D coordinate system

dF, = dF,,i + dF,,J + dF, K

dF = dF, + dF,
dF, =dma,
dF, =dma,
dF, =dma,

And the mass of the fluid element with the help of density is as follows:
dm = p dxdydz

The general form of the differential equation of motion in fluids is obtained
by putting these formulas in the relationship between mass and forces in
Newton's second law as follows:
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Oty doyy 0Tz dv  dv  dv dv
= )

pg}'+ﬂx+ﬂy+ﬂz_

Pg: + +

OTyz 07Ty, N 00z (Eiw dw dw ﬂu-r)
dx dy Oz ]

Discretization of the Problem

we will first describe the finite elements method algorithm for solving
the Navier-Stokes equation of the stochastic Lagrange averaged which
was introduced , and then we will describe the results obtained regarding the
convergence method.

To solve the problem of Navier-Stokes stochastic Lagrange averaged,
we will discretize in both time and space dimensions.

Time Discretization

Suppose M € Nx and set k= {tl}: [=0to M

Is an equidistant partition of the interval [0, T], where t0:=0, tM :=T and
k .= TIM are the time-step length, equal length step is not mandatory, but
it helps in simplifying calculations. To build the time-step method, we
define kmas a closed interval [tm—1, tm] form € {1, ..., M}.

Spatial Discretization

For simplicity, suppose that This a quasi-uniform triangulation of the
domain D c Rd, d = 1,2, whose maximum diameter is h >0 and

D= U K
KETy

We represent the vector field space of maximal polynomials of degree n € N
on an arbitrary set O with the symbol Pn(0) = (pn(0))d. Let's assume for n1,
n2e N\{0}

April (2024) Gl Ao ¥ ) i A s e
34



pgaugd! (yg pially hjd‘-“d‘ S| palad! pl

(A pall pghadl Jlims (2 doslas V| A A AUS i §0)

(PeAg ehacg (25 30 (10 ) (ol Cimedly) ylandt s ity
2024 /473029 sal

Hy, = {z, € HE N [C°(D)]?| znlx € P, (K), VK € T},
Ly = {qn € LE(D)| Gnlk € P, (K), Yk €T},
Wy = {2, € Hy| (div 2z, q,) = 0, Yqy, € Ly}

Be the spaces related to the finite elements functions. For fixed nl, n2e
N\{0}, we assume that (Hh , Lh) applies to the discrete inf-sup condition,
which means, there is a constant B > 0 independent of the mesh size h
that

(div zy, qp)
sup = Bllgnll 2, Yqn € L.
zpetp\{0}  IVZp|lp2

Let z € .2 be. We also represent the orthogonal projection operator in
L2 by IIh: I.2— Vh, which is determined by the unique solution of the
following equation.

(z—Mypz, ) =0, Vo, EVy

For z € HO1, Ah: HO1— Vh discrete Laplace operator is shown and with
unique solution of

(A"z,@p) = —(Vz,Vep), Yo, € V),
For z € HO1N Ws,2 there exists a positive constant C independent of h that

1
Z hil[Di(z - 1'_-"f'.:,:-"a'j||||Lz < Ch¥||z|l 2z, 2<s<n+1
=0

where n is the degree of polynomials in Sh .

Also suppose that Sh holds the following inequality.

(discrete differential filter) Suppose v is a vector field mentioned the discrete
differential filter is represented by u € Vh and it is given by:

a’(Vity, Vepy) + (g, @n) = (v, @p), Yoo, € Vy

Additional information is provided in the fourth chapter of the reference
(Merdan and Manica, 2007) and we will only review some properties here.
Suppose v = vh € Vh and u h € Vh is its differential filter, then
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i vy = i, — a’A™,, and Vv, = Vi, — a®VAMi, almost everywhere on D

. - - 2 -
ii.  (Vuw,Viip) = VTRl : + a®llAM x|l -

We start with an initial point U° € H,,, for each m € {1,...,M} a quadruple stochastic
process (U™ V™ IT™, ™) € Hy, X H X Ly X Ly, holds for all (@, Ay,4,) € Hy X
H; x Ly, % Ly in a P-almost surely in the following relations
(V™ = V™1, @) + kv(FV™, V) + kb(U™, V™1, @) = k(T™, div @)
= k{f (tm-1 U™™), 0) + (9 (-1, UM 1) AW, @),

*Wm, ) = (U™, ) + a2(VU™, V) — (IT™, div ),
°(div U™, A,) = (div V™, 4;) = 0,

Where A, W = W(ty) — W(tyey) forallme {1,..,M}.

Mode a < Ch

Consider a = 103

h, h =0.03 and k =10"-3

we choose two different time values in the interval [0, T] and plot the
obtained solution in these two times, side by side.

In this way, the differences in the behavior of the solutions are shown.
As expected, it is observed that the LANS-a and NSE solutions are similar
with a minor variation. The reason for this minor variation is that here we
are dealing with approximate computations, and generally the discretizatios
step of the space h cannot be too close to zero, so this tiny variation cannot
be omitted. In this case, code execution will be expensive.
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(¢) Velocity field of LANS-a attime r = 0.586  (d) Velocity field of NS at time 7 = 0.586

Figure 1: Numerical results obtained for the velocity field at two different
times for LANS-a and NSE problems .
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(a) LANS-a pressure at r = 0.161 (b) NS pressure at r = 0.161

(¢) LANS-a pressure at r = 0.586 (d) NS pressure at r = 0.586

Figure 2: Numerical results obtained for pressure at two different times for
LANS-a and NSE problems

Mode a> L >k/h

To check this case, we set a =1, h =0.03. We take k as a term according to
h, such as k =0.9h 2. It also maintains the condition a > Vk/h .

With one realization, the present case result is obviously well-behaved, that
means the terms of velocity field have higher smoothness. The stage of
speed variations in the interval [0.45 — €, 0.65 + €] is mentionable, € < 1 is
where the velocity value changes from its lowest to its highest possible
limit. In time less than t = 0.45 and more than t = 0.65, the velocity field
maintains almost a constant value
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() Timer =0.16] th) Time r = (0,386 (c)Timer=|

Figure 3: Velocity field for the LANS-a problem in the second mode and at
different times

'

(@) Time r = 0,161 (b) Time 1 = 0,586 (c)Timer=|

Figure 4: Pressure obtained for the LANS-a problem in the second state and
at different times

Here, we must point out that in both cases, the pressure is greatly affected by
the noise. If we

consider the obtained shape in terms of time, a random behavior will be
noticed in each time

node. This can be considered as the stochastic pressure presented in (Breit
and Dodgson, 2021)

in the two-dimensional case of the Navier-Stokes equations, a case where p
can be divided into

several terms, one of which can be in terms of W to form of Weiner process.
Conclusion

Here we briefly summarize the main results of this research:

Convergence of LANS-a to NS in 2D

Suppose d =2 and V0— v0 in L2

(2; L"2) when h — 0. we get that v in (2.11) applies P-almost surely, for
all t € [0, T] . In addition, by using a standard method, obviously see that
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v € L"2(12; C([0, T]; H)). For more details, you can check the reference
(Paradox, 1975).

Also, from the first part of Proposition 2, we have v € MFt2(0, T; V).
Convergence for LANS-a

If d € {2,3} and UO— u 0in L2

(2; H1) when h — 0,

we may need to explain the convergence of

E [| (VVk,h+, Voh)dtTO] in contrast to its continuous counterpart. For
this purpose, we define the elliptic simulation FEh: HOl1— Vh. This
corresponding simulation is defined by the unique solution of the
following problem: (VEh z, Voh ) = (Vz, Vph ), Voh € Vh .

The operator Eh appliestoall ze H2NVin AR Eh z=1I1 h Az

(H. Bessaih and A. Millet, 2021).

Therefore, itistrue for all the equations (3.2), (3.3), preposition 3.14 and
above relation (which is as follows).

[WF::E'FEE':P) = —(‘L:Eh.l'jlhEhfP) = —{‘L?E;I.Hhﬂliﬂ] = —[:‘I-?Elh.ﬂfﬁ']

As aresult, E [J;{W,Li Ftha}dr] converges to:

T T T
_E U (uantr).awjdr] - _E [ j {t?a{r].ﬂi'p}dt] - [E[ j (ua(t) + a?Aug (£), Ap)dt
1] ] ]
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