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Abstract 
This paper presents an application of a robust deadbeat controller for permanent magnet 
stepper motor. This approach has been considered in order to assure robust stability and 
performance (disturbance rejection, reference tracking) with the presence of system 
parameters uncertainty. The Particle Swarm Optimization (PSO) is used to tune the 
controller parameters by minimizing the cost function subject to H-infinity constraints. 
It is shown that the designed deadbeat controller presents simple, low order, and robust 
position control for a permanent magnet stepper motor. A two-phase motor is 
considered in this paper.   
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  الخلاصة
وتم استخدام ھذا النوع من .على منظومة محرك الخطوةالمتین  Deadbeat یقدم البحث تطبیق لمسیطر الـ

  .المسیطرات لتحقیق استقراریة وأداء للمنظومة بوجود التغیرات وعدم الثبات في معاملات المنظومة
لغرض ضبط وتنغیم معاملات المسیطر عن  "Particle Swarm Optimization (PSO) "كذلك تم استخدام  

ویستخدم ھذا النوع من المسیطرات لتصمیم . H-infinity)(لة الكلفة والتي تحقق شروط الـ طریق تصغیر دا
في  محرك خطوة ذو طورین  استخدم .مسیطر بسیط وذي رتبة واطئة وذات سیطرة متینة على محرك الخطوة

  .ھذا البحث
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1. Introduction 
The stepper motor is an electromagnetic 
actuator that converts digital pulse inputs 
to analog shaft motion outputs. It rotates 
by a specific number of degrees in 
response to an electrical pulse input; 
therefore the stepper motor is used in 
digital control systems. The stepper motors 
are relatively inexpensive and simple in 
construction, so they are widely used in 
our daily life. On the other hand, they are 
used in practical applications that require 
incremental motion such as printers, tape 
drives, hard drives in PC’s, machine tools, 
process control systems, X-Y records, and 
robotics[1]. 
 
The control system is one of the most 
important elements in stepping motor 
applications. The control systems of 
stepping motors are classified into open 
loop and closed loop schemes. In the open 
loop control scheme there is no feedback 
information of position to the controller 
and therefore it is imperative that the 
motor must respond correctly to each 
excitation change. If the excitation 
changes are made too quickly, the motor is 
unable to move to the new demanded 
position and consequently there is a 
permanent error in the actual position 
compared to the position expected by the 
controller. The timing of phase control 
signals for optimum open-loop 
performance is reasonably straightforward, 
if the load parameters remain constant. 
However, in the applications where the 
load varies significantly, the timing must 
be set for the worst conditions (largest 
load) and the control scheme is then non 
optimal for all other loads [2, 3]. On the 
other hand, if high accuracy is needed, the 
closed loop control scheme is 
recommended. In closed loop stepping 
motor systems the instantaneous rotor 
position is detected via a feedback sensor 

and sent to the control unit. The general 
block diagram of the closed loop scheme is 
presented in Figure (1).  
 
Two types of stepper motors are widely 
used, the variable reluctance type and the 
permanent magnet type. In this paper, the 
permanent magnet type is used. These 
types have higher inertia and therefore 
slower acceleration than variable 
reluctance types. They also produce more 
torque per ampere stator current than the 
variable reluctance [4]. 
 
As the controller algorithm is realized by 
software, there is a possibility of applying 
different and more sophisticated control 
algorithms. One of these algorithms is 
referred to as the deadbeat control 
algorithm, which ensures an accurate 
settling of the output signal during a finite, 
small number of sampling periods [5]. A 
deadbeat response is a response that 
proceeds rapidly to the desired level, and 
holds at that level with minimal overshoot. 
 
In this paper the robust deadbeat controller 
is designed using PSO to obtain a simple, 
low order and robust position controller 
for a permanent magnet stepper motor 
with the presence of system parameters 
uncertainty.   
 
2. System Mathematical Model 
In this section a mathematical model of the 
linear motor drive is developed. This 
linearized model is needed for the robust 
control technique used in this paper. 
Basically, the model of the permanent 
magnet stepping motor consists of two 
parts, an electrical and a mechanical part. 
The permanent magnet stepper motor 
dynamical model includes nonlinearities 
and contains some physical parameters. 
The values of physical parameters are not 
exactly known and can be subjected to 
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some variations, so the model is not very 
easy to handle for control synthesis. The 
model has two phases denoted by A and B. 
The rotor has (2Nr) magnetic poles, while 
the stator has a set of identical poles [3, 6].

 
 
The mechanical part of the permanent 
magnet stepper motor model can be 
expressed by [6]: 
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where J is the moment of rotor inertia (
2.mKg ), D is the viscous damping 

coefficient ( 1... radsmN ), C is the 
coulomb friction coefficient, BA ii ,  are the 
currents in windings A and B, rN is the 
number of the rotor teeth, Mn  is the flux 
linkage,   is the rotational angle of the 
rotor and   is the tooth pitch in radians 
and LT  is the load torque [3, 7]. On the 
other hand, the electrical part of a 
permanent magnet stepper motor model is 
described by voltage equations for the 
stator windings. 
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where V is the DC terminal voltage   
supplied to the stator windings (volt), L 
denotes the self-inductance of each stator 
phase (mH), M represents the mutual 
inductance between phases (mH) and r is 
stator circuit resistance (ohm). Thus, the 
complete model of the permanent magnet 
stepping motor consists of the rotor 
dynamic equation (1) and differential 
equations for current equation (2) and (3). 
Those equations are nonlinear differential 
equations. Since it is very difficult to deal 
with nonlinear differential equations 

analytically, linearization is needed. 
Linearization is made with aid of a new 
variable , which represents the 
deviation of the angle from the equilibrium 
position. The deviation is a function of 
time t and it is very small in magnitude. 
The equilibrium position of the stator [6] is

2
  .  

When the rotor oscillates about its 
equilibrium position, the currents in both 
motor windings will deviate from the 
stationary value oI by BA iandi   and the 
angular rotor position will be expressed by

 
2

. Then the nonlinearities 

expressed by sine and cosine functions in 
equations (1), (2) and (3) will be 
approximated with knowledge of 
trigonometric identities and when rN is 
small angle: 1)cos( rN  and 

 rr NN )sin( . Then, the linearized 
model can be expressed by [6, 8]:  
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The permanent magnet stepping motor 
transfer function is derived from equations 
(4), (5) and (6) with the aid of Laplace 
transform. The coulomb friction 
coefficient C is considered to be zero. The 
resulting form of the transfer function in 
two-phase excitation is: 
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o is the Laplace transform of the actual 
rotor position, i  represents the Laplace 
transform of the demanded position and s 
is the Laplace operator. Table (1) defines 
the model parameters and summarizes the 
nominal values of all parameters and their 
variations used in the controller design [6]. 
Figure (2) and (3) show the frequency and 
time response characteristics of the system 
with all parameters uncertainty (

MnDMLr ,,,, ).The poor stability and 
performance of the system is clear. 

 
3. Particle Swarm Optimization (PSO) 
Algorithm 
PSO is a powerful optimization method 
with high efficiency in comparison to 
other methods such as Genetic Algorithm 
(GA) and Harmony Search (HS). The PSO 
mechanism is initialized with a population 
of random solutions and searches for 
optima by updating generations. The 
potential solutions of PSO are called 
“particles”, which fly through the problem 
space by following the current optimum 
particles. Each particle keeps track of its 
coordinates in the space of the problem, 
which are associated with the best solution 
(best fitness) it has achieved so far. The 
best particle in the population is denoted 
by (global best), while the best position 
that has been visited by the current particle 
is denoted by (local best). The global best 
individual connects all members of the 
population to one another. That is, each 
particle is influenced by every best 
performance of any member in the entire 
population. The local best individual is 
seen as the ability for particles to 

remember past personal success. The 
particle swarm optimization concept 
involves, at each time step, changing the 
velocity of each particle towards its global 
best and local best locations. The particles 
are manipulated according to the following 
equations of motion        [9, 10]: 
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where k
iv  is the particle velocity, k

ix  is the 
current particle position, w  is the inertia 
weight, b

ix  and g
ix  are the best value and 

the global best value, rand is a random 
function between 0 and 1, 1c  and 2c  are 
learning factors. The PSO requires only a 
few lines of computer code to realize PSO 
algorithm. Also it is a simple concept, easy 
to implement, and computationally 
efficient algorithm [11]. 
 
4. Robust Deadbeat Controller 
A deadbeat response for linear control 
systems has the following characteristics 
[12]: 

i) Zero steady state error. 
ii) Fast response, that is, minimum 

rise time and settling time. 
iii) Overshoot less than 0.1%. 
iv) Undershoot less than 2%. 

 
When designing a system to obtain a 
deadbeat response, the closed loop transfer 
function that meets the deadbeat response 
is selected and then the controller transfer 
function is obtained. That is, the designer 
selects the system parameters to achieve 
the desired performance. For this reason, 
the design of a feedback system using 
deadbeat control leads to predictable 
system responses [12]. A method for 
designing robust deadbeat controller 
subject to H -norm constraints is 
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presented in this section. In this method, 
the PSO algorithm is used to tune the 
parameters of the closed loop transfer 
function selected by the deadbeat control 
algorithm. The tuning is done by 
minimizing the cost function subject to 

H -norm constraints to design a robust 
deadbeat controller for permanent magnet 
stepper motor system. 
 
In this paper the designed controller is 
used with the plant so that the following 
conditions must be achieved [13]: 

i) The nominal closed loop 
system is asymptotically stable. 

ii) The robust stability 
performance satisfies the 
following equation: 

1TWT                         (10)                                                                  
iii)  The disturbance attenuation 

performance satisfies the 
following equation: 

1


SWp                            (11)                                                                                                                

where TW  is the plant multiplicative 
uncertainty function and this function has 
been obtained by converting the structured 
(parametric) uncertainty into unstructured 
uncertainty. The obtained model of 
unstructured uncertainty is:  
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T  is the complementary sensitivity 
function of the system, which is defined 
as: 
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pW  is a stable weighting function and it 
has been selected as: 
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where   is the d.c. gain of the function 
which controls the disturbance rejection, 

  is the high frequency gain which 
controls the response peak overshoot, cw  
is the function crossover frequency, 1  
and 2  are the damping ratios of 
crossover frequency. S  is the sensitivity 
function of the system, which is defined 
as: 

1))()(1()(  sGsGsS pc                   (15)                                                                               
)(sG p  is the nominal plant. Equations (10) 

and (11) can be combined in one equation 
to be simultaneously satisfied, the 
combined equation is: 

1


SWTW pT                             (16)                                                                                                             

To achieve robust performance and to 
improve the time and frequency response 
characteristics of the system, a 
combination of H -norm specifications, 
time domain specifications represented by 
the performance index (ITAE) and 
frequency domain specifications 
represented by the system gain and phase 
margins has been used. The cost function 
can be expressed as: 

 
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where GM and PM are the system gain and 
phase margins and they are obtained from 
the resulting loop transmission, 

)()()( sGsGsL pc  and ft  is selected to 
be the settling time of the system. The 
PSO algorithm is used to minimize the 
cost function in equation (17) to achieve 
the robustness requirements using 
deadbeat controller. 
 
To determine the coefficients that yield the 
suboptimal and robust deadbeat response 
for the third order transfer function of the 
permanent magnet stepper motor system, 
the following third order closed loop 
transfer function has been selected: 
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The coefficients  , 1b , 2b  have been 
assigned the values using PSO algorithm 
to meet the requirements of robust 
deadbeat response by minimizing the cost 
function )(xh  in equation (17). In this case 
x  is a vector of the parameters to be 
obtained and it can be expressed as:  
 

 cwbbx 2121     (19)                                                                                         
The parameters used for carrying out the 
design of robust deadbeat controller using 
PSO are population size equal to 10, 
inertia weight factor 2w , 21 c , 

22 c , maximum iteration is set to 10 and 
finally, the number of function evaluations 
is 100. On the other hand, setting the 
number of iterations to 10 result in 
obtaining the best optimal cost function, 
where increasing the number of iteration 
did not improve the convergence of the 
PSO algorithm significantly. Then, the 
transfer function of the deadbeat controller 
can be obtained by: 
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Figure (4) shows the block diagram of the 
designed deadbeat controller. The obtained 
controller, )(sGc  and corresponding 
prefilter, F(s) and performance weighting 
function, )(sWp  are: 

)8.515(
10222.162.222612.0)(

52





ss

sssGc    (21)                                                                                    

442

552

10921.310496.17.724
10684.510214.11.106)(






ss
sssWp

   (22)                                                                              

10035.0
1)(




s
sF                              (23) 

                                                                                                                 
The PSO steps for obtaining the optimal 
parameters of the robust deadbeat 

controller and performance weighting 
function can be summarized as: 
 

1. Define the system model )(sG p . 
2. Define the structure of )(sW p . 
3. Define the structure of )(sGc , 

F(s). 
4. Initialize the individuals of the 

population randomly in the search 
space. 

5. For each initial x of the population, 
where x is the vector of the 
parameters to be optimised, 
determine the cost function in 
equation (17). 

6. Compare each value of equation 
(17) with its personal best ix . The 
best value among the ix  is denoted 

as g
ix . 

7. Update the velocity of each 
individual x according to (9). 

8. Update the position of each 
individual x according to (8). 

9. If the number of iterations reaches 
the maximum, then go to step 10, 
otherwise, go to step 5. 

10. Calculate equation (16). 
11. If the criterion in equation (16) is 

satisfied, then go to step 12, 
otherwise “No solution exists in the 
given search domain”, then go to 
step 3. 

12. The latest g
ix  is the optimal 

controller parameter. 
 
5. Results and Discussion  
The ability of the designed controller to 
meet the specified closed loop 
performance is demonstrated in this 
section. Figure (5) shows the resulting 
sensitivity function and it is clear that the 
sensitivity function lies below the inverse 
of performance weighting function, pW . 
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This means that the performance criterion 
was satisfied.  Figure (6) shows the 
resulting complementary sensitivity 
function compared with the multiplicative 
uncertainty function. From this figure, it 
can be seen that the complementary 
sensitivity has magnitudes less than the 
magnitudes of the inverse of the 
multiplicative uncertainty function, TW  
for all range of frequencies. This means 
that the performance criterion in equation 
(16) has been satisfied for the designed 
deadbeat controller and the robust stability 
and performance for the system have been 
achieved.  
 
Figure (7) shows the frequency responses 
of the uncertain system when the designed 
controller is applied, where a gain margin 
and phase margin of 29 dB and 4.66  
respectively have been obtained. This 
means that the system is always stable and 
the variation in the system model 
parameters has not affected. Therefore, the 
robust stability has been satisfied for the 
system using the designed deadbeat 
controller.  
 
The closed loop time response of the 
uncertain system with the designed 
deadbeat controller is shown in Figure (8). 
It can be seen that the controller can 
effectively track the reference and 
compensate the uncertain system with 
assuring high control performance of the 
system. Table (2) compares the 
performances of the classical Quantitative 
Feedback Theory (QFT) in [6] and the 
robust deadbeat controller designed in this 
paper. The table clearly shows the 
superiority of the robust deadbeat 
controller in terms of time and frequency 
response specifications. Moreover, it was 
found that the resulting controller by the 
robust deadbeat controller method using 

PSO is lower order than that obtained 
using QFT controller in [6].  
 
5. Conclusion 
An application of the robust deadbeat 
controller to a permanent magnet two 
phase stepping motor has been presented. 
It was shown that the robust stability was 
satisfied by applying the deadbeat 
controller with the presence of system 
parameters uncertainty. Also it was clear 
that the obtained controller is simple, 
robust and lower order and the achieved 
time response specifications are very 
desirable for this system. 
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PARAMETER MINIMUM 
VALUE 

NOMINAL 
VALUE 

MAXIMUM 
VALUE 

Stator resistance (r) ohm 29.7 33 36.3 
Self inductance (L) mH 4.86 5.4 5.94 

Matual inductance (M) mH 0.36 0.4 0.44 

Rotor inertia (J) 2.cmg  
 0.16  

Number of rotor teeth ( rN )  6  

Viscous friction (D) (N.m.s/rad)* 10^-5 1.215 1.35 1.485 

Tooth pitch (  ) rad   /12  

Stationary current ( oI ) Amper  0.15  

Flux linkage ( Mn ) 2.mT *10^-3 
1.08 1.2  1.32 

Table (1): The nominal model parameters and their range. 
 
 
 

Controller 
and Logic 
Sequence Drive 

Circuit 

 
Motor Load 

Sensor 

Figure 1: Block diagram of closed loop stepping motor. 
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Figure 2: Frequency response characteristics of 
the uncertain system without the controller. 

Figure 3: Closed loop time response characteristics 
of the uncertain system without the controller. 
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Figure 4: Block diagram of the designed robust deadbeat controller using PSO  
for permanent magnet stepper motor system.  
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Figure 6: The resulting complementary 
sensitivity function, T (dotted line) compared 
with multiplicative uncertainty, TW (solid line). 

Figure 7: Frequency response characteristics of 
the uncertain system with controller. 
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Figure 8: Closed loop time response characteristics 
of the uncertain system with controller. Reference 
(dotted line), Output (solid line). 
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Figure 5: The resulting sensitivity function, S 
(dotted line) compared with performance 
weighting function, pW (solid line). 
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Table (2): Comparison between QFT and Robust deadbeat controllers. 
 

Controller/Specifications Rise time (s) Settling time (s) Gain margin 

(dB) 

Phase margin 

(degree) 

QFT 0.04 0.015 5.1 47 

Deadbeat 0.02 0.01 29 66.4 

 


