## مجلة جامعة بابل / العلوم الصرفة والتطبيقية / العدد (٤) / المجلد (٢٤) : ٢٠١٦

## دراسة الخواص الطيفية والحرارية لجزيئيتي ( Se<sub>2</sub>Br<sub>2</sub>,Se<sub>2</sub>I<sub>2</sub> )

**هند احمد محمد** كلية التربية للعلوم الصرفة –جامعة بابل Abdalah\_33@yahoo.com

#### الخلاصة

تم في هذا البحث دراسة الخواص الطيفية والحرارية لجزيئتي(Se<sub>2</sub>Br<sub>2</sub>,Se<sub>2</sub>I<sub>2</sub>)،ودراسة منحني الجهد للأصرتين (Se-Br)، ودراسة منحني الجهد للأصرتين (Se-Br)، الا كانت طاقة الانحلال لجزيئة (Se<sub>2</sub>Br<sub>2</sub>) هي (AeV) ولجزيئة (Se<sub>2</sub>I<sub>2</sub>)، كذلك تم دراسة انماط اهتراز (Se<sub>2</sub>Br<sub>2</sub>) ، الا كانت طاقة الانحلال لجزيئة (Se<sub>2</sub>Br<sub>2</sub>) هي (Se<sub>2</sub>Br) مي (Se<sub>2</sub>Br)، كذلك تم دراسة انماط اهتراز (Se<sub>2</sub>Br<sub>2</sub>) ، الجزيئة (Se<sub>2</sub>Br<sub>2</sub>)، الجزيئة (Se<sub>2</sub>Br<sub>2</sub>)، الجزيئة (Se<sub>2</sub>Br<sub>2</sub>) مي (Se<sub>2</sub>Br<sub>2</sub>)، الجهد للأصرتين (Se<sub>2</sub>Br<sub>2</sub>) مي (Se<sub>2</sub>Br<sub>2</sub>)، المنت عند القد المعند (Se<sub>2</sub>Br<sub>2</sub>) مي (Se<sub>2</sub>Br<sub>2</sub>)، الجزيئة (Se<sub>2</sub>Br<sub>2</sub>) مع (Se<sub>2</sub>Br<sub>2</sub>)، كذلك تم دراسة انماط اهتراز (Se<sub>2</sub>Br<sub>2</sub>) مي (Se<sub>2</sub>Br<sub>2</sub>)، كذلك تم دراسة انماط المتراز (Se<sub>2</sub>Br<sub>2</sub>) مع (Se<sub>2</sub>Br<sub>2</sub>)، كذلك تم دراسة أن اعلى مدار جزيئي مشغول (HOMO) كان عند القيمة (Se<sub>2</sub>Br<sub>2</sub>)، كذلك تم دراسة أن اعلى مدار جزيئي مشغول (Se<sub>2</sub>Br<sub>2</sub>)، كان عند القيمة (Se<sub>2</sub>Br<sub>2</sub>) الجزيئة (Se<sub>2</sub>Br<sub>2</sub>)، الجزيئة (Se<sub>2</sub>Br<sub>2</sub>) مع (Se<sub>2</sub>Br<sub>2</sub>) مع (Se<sub>2</sub>Br<sub>2</sub>) الجزيئة (Se<sub>2</sub>Br<sub>2</sub>) الجزيئة (Se<sub>2</sub>Br<sub>2</sub>) الجزيئة (Se<sub>2</sub>Br<sub>2</sub>) الجزيئة (Se<sub>2</sub>Br<sub>2</sub>)، المال المعالية المحالية المحالية (Se<sub>2</sub>Br<sub>2</sub>)، المال المحالية الجزيئة (Se<sub>2</sub>Br<sub>2</sub>)، المال المحالية المحالية المحالية (Se<sub>2</sub>Br<sub>2</sub>)، الحالية المحالية المحالية المحالية (Se<sub>2</sub>Br<sub>2</sub>)، المالة المحالية المحالية المحالية المحالية المحالية المحالية (Se<sub>2</sub>Br<sub>2</sub>)، المالة المحالية المحالية المحالية المحالية (Se<sub>2</sub>Br<sub>2</sub>)، المالة المحالية المحالية المحالية المحالية (Se<sub>2</sub>Br<sub>2</sub>)، المحالية المحالية (Se<sub>2</sub>Br<sub>2</sub>)، المالة المحالية المحالية المحالية المحالية (Se<sub>2</sub>Br<sub>2</sub>)، المحالية (Se<sub>2</sub>Br<sub>2</sub>)، المحالية المحالية (Se<sub>2</sub>Br<sub>2</sub>)، المحالية المحالية (Se<sub>2</sub>Br<sub>2</sub>)، المحالية (Se<sub>2</sub>Br<sub>2</sub>)، المحالية (Se<sub>2</sub>Br<sub>2</sub>)، المحالية المحالية المحالية (Se<sub>2</sub>Br<sub>2</sub>) مع (Se<sub>2</sub>Br<sub>2</sub>) محالية (Se<sub>2</sub>Br<sub>2</sub>) (Se<sub>2</sub>Br<sub>2</sub>) محالية (Se<sub>2</sub>Br<sub>2</sub>) محالي (Se<sub>2</sub>Br<sub>2</sub>) محالية (Se<sub>2</sub>Br<sub>2</sub>) محالية (Se<sub>2</sub>Br<sub>2</sub>)

تم دراسة سلوك الخواص الثرموديناميكية مثل حرارة التكوين والانثالبي والانتروبي والسعة الحرارية وطاقة جـبس الحـرة للجزيئتين كدالة لدرجات الحرارة و عند مدى من درجات الحرارة K(100-100) وقد وجد أن قيم هذه الخواص تزداد بزيادة درجة الحرارة ماعدا طاقة جبس الحرة فأنها نتناقص بزيادة درجات الحرارة. الكلمات المفتاحية: الخواص الطيفية، الخواص الحرارية، جزئية، اهتزاز، بعد واحد.

### Abstract

In present work, we studied the spectroscopic and thermodynamic properties for  $(Se_2Br_2, Se_2I_2)$  molecules. This study included the potential of bonds (Se-Br, Se-I). The results showed that the spectral dissociation energy for $(Se_2Br_2)$  molecule which was(4eV) and for $(Se_2I_2)$  molecule was(3eV) and the vibration modes for the two molecules were studied. From the results, the high occupied molecular orbital (HOMO) calculated equals (-9.58248evV) and (-9.44205ev)for  $(Se_2Br_2)$  and  $(Se_2I_2)$ , respectively, also we calculated the total charge density and electrostatic potential in 2-D and 3-D.

The Thermodynamic properties behavior have been studied as a function of temperatures in the range (100-1000)K. The results show that the heat of formation, enthalpy, heat capacity and entropy are increasing with increase the temperature, while Gibbs energy was decrease with the increasing the temperature.

Keywords: Spectroscopic properties, Thermal properties, molecuer vibration, one dimention.

#### المقدمة

مبلة جامعة بابل / العلوم الصرفة والتطبيقية / العدد (٤) / المبلد (٢٦) : ٢٠٦



شكل (1): يوضح شكل القارب (Cis)(Cis) لجزيئة سيلينيوم-هاليد

اما الشكل الآخر لجزيئه السيلينيوم- هاليد فهو شكل الكرسي ( Chair form ) حيث يكون وضع الهاليـ د بشـكل (Trans) كما في الشكل (2). وبهذا تمتلك الجزيئة عزم ثنائي قطب وعندها يمكن ان تكون فعالة فـي منطقـة (IR)و هو الشكل الجزيئي الذي تم اعتماده عند حساب الخواص الطيفيـة كـالترددات لكـل نمـط اهتـزازي (Clyde *et al* 1983; Wood Wards and Hoffmann,1970).



شكل (2): يوضح شكل الكرسي (Chair form)(Trans) لجريئة سيلينيوم - هاليد

## مجلة جامعة بابل / العلوم الصرفة والتطبيقية / العحد (٤) / المجلد (٢٤) : ٢٠١٦

الجزء النظرى

ان تقلص وتمدد الأواصر الكيميائية التي تربط ذرات النظام الجزيئي يشبه الى حد ما سلوك النــابض الذي يخضع لقانون هوك(Hook • sLow)[(Wood Wards and. Hoffmann (1970)] ونتيجة لذلك يدعى نموذج الجريئة النتائية الذرة بنموذج المتذبذب التوافقي البسيط (Harmonic Oscillator Model) وان التـردد الكلاسيكي لهذا المتذبذب يعطى بالعلاقة [(Steel(1971), King(1964)] :

 $v_{vib} = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$  Joules ...... (1) . وهذه المعادلة تصف الحركة الاهترازية للجزيئة الثنائية الذرة،حيث kهو ثابت القوة وm تمثل الكتلة المختزلة

ان اهتزاز الجزيئات ليس في الحقيقة اهتزازا توافقيا بسيطا ،فعند تقلص الاصرة فان الذرات تقترب من بعضها وتزداد الطاقة كي تمكن الذرات من القيام بشغل ضد قوى التنافر كما ان مط الاصرة يؤدي الى ابتعاد الذرات عن بعضها مما يتطلب طاقة الى ان تصل الى نقطة تفقد عندها الاواصر مرونتها فتتفكك، وممكن كتابة معادلة الطاقة للمتذبذب اللاتوافقي المهتز باستخدام معادلة شرودنكر ومعادلة الجهد اللاتوافقي لمورس للحصول على المستويات الاهتزازية بدلالمة العدد الكمي الاهترازي كما لائتي [Gbori: Csonka and Krisztina Elias,(1996)]

E. =
$$(V+\frac{1}{2})\upsilon + (V+\frac{1}{2})^2\upsilon X_e - (V+\frac{1}{2})^2\upsilon X_e^2$$
 ..... (2)

V: العدد الكمي الاهتزازي ويأخذ القيم
 Xe ويكون ذو قيمة موجبة.
 يمثل التردد الكلاسيكي.

يعتمد طيف اهتزاز الجزيئات متعددة الذرات على القيم النسبية لعزوم القصور الذاتية ألرئيسية فلو اخذنا جزيئة عدد ذراتها N فان العلاقة 6-3N تصف الحركة الاهتزازية للجزيئات غير الخطية وهو ما يعرف بأنماط اهتزاز الجزيئة Mode of vibration وبذلك فان حساب مستويات الطاقة للجزيئات المتعددة الذرات تعطى بالعلاقة [(Kwok.(2007]:

$$\sum_{ij}^{3N} L_j(F_{ij} - \lambda G_{ij})$$
 ..... (3)  
حيث ان  $F_{ij}$  : يمثل عنصر مصفوفة ثوابت القوى  
 $G_{ij}$ : عنصر مصفوفة الكتل الذرية  
 $L_j$ : يمتل قيم معاملات الجمع الواصفة للاحداثي المهتز  
 $L_j$ : المهتز  
 $\lambda$ دالة القيم الذاتية وتعطى بالعلاقة [ Revanasiddappa &. Raghavendra, (2007) ]  
 $\lambda = 4\pi C^2$  .....(4)

حيث ان:

حيث ان:

cm-نسرعة الضوء ; التردد الاهتزازي التوافقي بوحدة'-cm

اما الجهد الكهروستاتيكي فيعرف على انه نسبة الطاقة الكهربائية للجزيئة الى مقدار شــحنتها،او انـــه طاقة الجهد للجزيئة،اما جهد الجزيئة الناتج مــن توزيــع الالكتــرون والشــحنات النوويــة فيعطــى بالعلاقــة [Samulski, 2001] :

$$-\int \frac{\rho(\mathbf{r})}{\mathbf{r}} d\mathbf{r} \cdot \frac{-\mathbf{r}}{\mathbf{z}_{A}}$$

$$V = \sum \frac{Z_{A}}{\mathbf{r} - \mathbf{r}_{A}}$$
....(5)

حيث ان: r:يمثل البعد بين النقطة والشحنة النقطية Z<sub>A</sub> ρ(r): كثافةالشحنةالنقطية بـ r<sub>A</sub>: نصف قطر الذرة

اما بالنسبة للخواص الثرموديناميكية حيث تتمركز الدراسة في هذا المجال على العلاقة الكمية بين الطاقة الحرارية والاشكال الاخرى من الطاقة ،فالانثالبي Enthalpy هي واحدة من دوال الحالة التي يمكن اعتبارها دالــــة للضــــغط ودرجـــة الحـــرارة وللطاقـــة الداخليـــة،وهي تعطــــى بالعلاقـــة التاليـــة [Samulski, 2001; ;Frisch,2009]

 $\Delta \mathbf{H} = \Delta \mathbf{U} + \mathbf{P} \Delta \mathbf{V}$ 

كذلك فان السعة الحرارية من الخواص الثرموديناميكية المهمة والتي يعبر عنها بأنها درجة الحرارة اللازمة لرفع درجة حرارة النظام درجة سيليزية واحدة وتكون على نوعين السعة الحرارية بثبوت الحجم والسعة الحرارية بثبوت الضغطcp .اما الانتروبي فهو كمية ثرموديناميكية ذات صفة شمولية تمثل احد دوال الحالة ،وتعتبر مقياسا لدرجة الاختلاط العشوائي في نظام معين ويرمز له بالرمز S. وكذلك طاقة جبس الحرة إذ إنها من أكثر الدوال أهمية حيث أدخلت لتدل على الاتجاه التلقائي لتفاعل كيميائي ،وتدل على موقع الاتران الكيميائي وتعطى بالعلاقة:

G=U-TS ...(9)

طرق الحساب

...(8)

لقد كان للتطور السريع الحاصل في البرامجيات والسرعة الهائلة التي وصلت اليها الحاسبات الاشر الاكبر في تطوير المعالجة النظرية للاطياف الجزيئية حيث طور الكثير من الباحثين طرائق وبرامجيات لحساب الصفات الثرموديناميكية وحساب الشكل الهندسي التوازني وطاقة المستويات الجزيئية للمركبات متخذين من معادلة شرودنكر والحلول التقريبية لها الاساس في صياغة هذه الطرائق والبرمجيات ،ومن اهم الطرائق التي تم استخدامها في هذا البحث هي طريقة PM3 والتي تمتاز بكفاءتها النسبية مقارنة مع الطرائق التجريبية الاخرى استخدامها في هذا البحث هي طريقة Gaylard (1915/2003), Hans Beyer (1955) برنامج المستخدمة في هذا البحث، برنامج Win Mopac 7.21 وبرنامج المستخدمة في هذا البحث تنفيذ هذه البرامج باستخدام حاسبة الكترونية من نوع Pentium IV. الجدولين1 و 2 يوضحان صيغة المصفوفة الابتدائية لجزيئتي (Se<sub>2</sub>Br<sub>2</sub>) و(Se<sub>2</sub>I<sub>2</sub>) على التوالي.

| Atom | Distance<br>R(Aº) | Opt. | Angle<br>(θ°) | Opt. | Dihedral<br>( <b>Ф</b> °) | Opt. | A | В | С |
|------|-------------------|------|---------------|------|---------------------------|------|---|---|---|
| Se   | .000000           | 0    | .000000       | 0    | .000000                   | 0    | 0 | 0 | 0 |
| Br   | 1.433429          | 1    | .000000       | 0    | .000000                   | 0    | 1 | 0 | 0 |
| Se   | 2.639291          | 1    | 38.085940     | 1    | .000000                   | 0    | 2 | 1 | 0 |
| Br   | 1.405827          | 1    | 146.355300    | 1    | .000000                   | 1    | 3 | 2 | 1 |

جدول(1) :صيغة المصفوفة الابتدائية لجزيئة(Se<sub>2</sub>Br<sub>2</sub>)

جدول(2): صيغة المصفوفة الابتدائية لجزيئة(Se<sub>2</sub>I<sub>2</sub>)

| Atom | Distance<br>R(A <sup>o</sup> ) | Opt. | Angle<br>(θ°) | Opt | Dihedral<br>(Ф⁰) | Opt. | Α | в | с |
|------|--------------------------------|------|---------------|-----|------------------|------|---|---|---|
| Se   | .0000                          | 0    | .000000       | 0   | .000000          | 0    | 0 | 0 | 0 |
| I    | 1.595812                       | 1    | .000000       | 0   | .000000          | 0    | 1 | 0 | 0 |
| Se   | 2.588797                       | 1    | 30.598280     | 1   | .000000          | 0    | 2 | 1 | 0 |
| I    | 1.532509                       | 1    | 146.281300    | 1   | .000000          | 1    | 3 | 2 | 1 |

النتائج والمناقشة

1. الخواص الطيفية

تم دراسة منحني الجهد وتحديد نقطة الاتزان والتي يكون فيها قيمة الطاقة الكلية اقل ما يمكن ويوضح الشكلين 3 و 4 منحني طاقة الاهتزاز لجزيئتي(Se<sub>2</sub>Br<sub>2</sub>)و(Se<sub>2</sub>Br<sub>2</sub>) على التوالي،حيث تبلغ الطاقة الكلية عند موضع الاتزان(قعر منحني الجهد) حوالي (Se<sub>2</sub>Br) و (Se<sub>2</sub>Br) على التوالي،حيث تبلغ الطاقة الكلية عند موضع الاتزان(قعر منحني الجهد) حوالي (1.438-) و (1.598-) للجزيئتين على التوالي،في حين تكون طول الاصرة(Se-Br) و (Se-Br) و (Se-Br) و (Se-Br) و دون (Se-Br) موضع الاتزان(قعر منحني الجهد) حوالي (1.434) و (1.438-) للجزيئتين على التوالي، في حين تكون الول الاصرة(Se-Br) و (Se-Br) و (Se-Br) على التوالي، ويلاحظ من خلال الشكلين الاقتراب من السلوك اللاتوافقي في مستويات ألاهتزاز اذ يظهر مط الاصرة والابتعاد عن السلوك التوافقي في مستويات ألاهتزاز اذ يظهر مط الاصرة والابتعاد عن السلوك التوافقي في مستويات ألاهتزاز اذ يظهر مط الاصرة والابتعاد حين السلوك التوافقي في مستويات ألاهتزاز اذ يظهر مط الاصرة والابتعاد حين السلوك التوافقي في مستويات ألاهتزاز الا يظهر مط الاصرة والابتعاد حين السلوك التوافقي في مستويات ألاهتزاز اذ يظهر مط الاصرة والابتعاد حين السلوك التوافقي الدخولنا في مستويات الاهتزاز الا يلها معل الاصرة والابتعاد عال السلوك التوافقي في مستويات ألاهتزاز الا يظهر مط الاصرة والابتعاد حين السلوك التوافقي الدخولنا من السلوك اللتوافقي في معاز الاحال قوافقي الافتراز الاعليا كلما زادت قيمة المسافة (Se-Br) و (Se-Br) الماز حيث تزداد الطاقة حتى الصل الى تفكك الجزيئة بطاقة نفكك مقدارها (4eV) و (3eV) على التوالي.

مجلة جامعة بابل / العلوم الصرفة والتطبيقية / العحد (٤) / المجلد (٢٤) : ٢٠٦



شكل (3) تغير الطاقة الكلية مع المسافة Se-Br لجزيئة Se-Br



شكل (4) تغير الطاقة الكلية مع المسافة I Se- I لجزيئة Se-I شكل (4)

كذلك تم دراسة أنماط الاهتزاز للجزيئة اللاخطية حيث إن عدد أنماط الاهتزاز لهذه الجزيئة هي ستة انماط والجدولين 3 و 4 يوضحان قيم الترددات للجريئتين معبرا عنها بالعدد الموجي والتي قيست باستخدام برنامج Win Mopac.

|               | ,                                   |                      |
|---------------|-------------------------------------|----------------------|
| No. vibration | Wave number<br>ύ(cm <sup>-1</sup> ) | Wave length<br>λμ)m) |
| 1             | 39.95                               | 250.3129             |
| 2             | 129.78                              | 77.0535              |
| 3             | 194.59                              | 51.3901              |
| 4             | 230.26                              | 43.4292              |
| 5             | 318.04                              | 31.4426              |
| 6             | 452.51                              | 22.099               |

جدول (3): الترددات الاهتزازية لجزيئة (Se2Br2) والأطوال الموجية المقابلة لها

جدول (4): الترددات الاهتزازية لجزيئة (Se<sub>2</sub>I<sub>2</sub>) والأطوال الموجية المقابلة لها

| No. vibration | Wave number<br>ύ(cm <sup>-1</sup> ) | Wave length<br>λμ)m) |
|---------------|-------------------------------------|----------------------|
| 1             | 24.47                               | 408.6637             |
| 2             | 31.66                               | 315.856              |
| 3             | 92.45                               | 108.1666             |
| 4             | 191.95                              | 52.0969              |
| 5             | 373.41                              | 26.7802              |
| 6             | 425.23                              | 23.5167              |

إضافة إلى ذلك تم حساب بعض الخواص مثل عزم ثناي القطب الكهرباي المحرباني Dipole وWin Mopac وي Win Mopac من خلال برنامج Hyperchem وي Win Mopac حيث كانت (0.001683D) لجزيئه (0.001683D) و (Se<sub>2</sub>Br<sub>2</sub>) و (Se<sub>2</sub>Br<sub>2</sub>) الجزيئة (Se<sub>2</sub>Br<sub>2</sub>)، وتم حساب قيمة اعلى مدار جزيئي مشغول (Se<sub>2</sub>Br<sub>2</sub>) و (Se<sub>2</sub>Br<sub>2</sub>) لجزيئة (Se<sub>2</sub>Br<sub>2</sub>)، وتم حساب قيمة اعلى مدار جزيئي مشغول المزيئة (Se<sub>2</sub>Br<sub>2</sub>) و Se<sub>2</sub>Br<sub>2</sub>) و کانت قيمته (Se<sub>2</sub>Br<sub>2</sub>)، وتم حساب قيمة اعلى مدار مشغول Homo بينما لجزيئة (Se<sub>2</sub>Br<sub>2</sub>) و Se<sub>2</sub>Br<sub>2</sub>) و Se<sub>2</sub>Br<sub>2</sub>) التي تمته (Se<sub>2</sub>Br<sub>2</sub>)، وتم حساب قيمة اعلى مدار مشغول مشغول المزيئة (Se<sub>2</sub>Br<sub>2</sub>) و Se<sub>2</sub>Br<sub>2</sub>) و Se<sub>2</sub>Br<sub>2</sub>) و Se<sub>2</sub>Br<sub>2</sub> من المال المن مدار المنفول المن مدار المنفول المن مدار المنفول المول المنفول المنفول المول المنفول المنفول الممول المنفول الممول ال

مجلة جامعة بابل / العلوم الصرفة والتطبيقية / العدد (٤) / المجلد (٢٤) : ٢٠٦





Total charge density (3D)

Total charge Density(2D)

شكل (5): توزيع كثافة الشحنة الكلية لجزيئه (Se<sub>2</sub>Br<sub>2</sub>) ببعدين (2D) وثلاث أبعاد(3D)



Total charge Density(2D)

Total charge Density (3D)

شكل (6): توزيع كثافة الشحنة الكلية لجزيئه (Se<sub>2</sub>I<sub>2</sub>)ببعدين(2D) وبثلاث أبعاد(3D)

 $C_P$  اما بالنسبة للخواص الحرارية ،يوضح الجدولين 5و 6 قيم حرارة التكوين  $\Delta H_f$  والسعة الحرارية  $O_F$ ، الانثالبي H ،الانتروبي S وطاقة جبس الحرة G للجزيئيتين قيد الدراسة، حيث تم ايجاد هذه القيم في درجة حرارة الغرفة (298°K).

# مجلة جامعة بابل / العلوم الصرفة والتطبيقية / العدد (٤) / المجلد (٢٦) : ٢٠٦

| Thermodynamic properties                 | Values at 298°K, 1atm | Unit        |
|------------------------------------------|-----------------------|-------------|
| حرارة التكوين $(\Delta { m H_{f}})$      | -16.472               | Kcal./mol   |
| $(\mathrm{C}_\mathrm{p})$ السعة الحرارية | 18.4918               | Cal./K/mol. |
| الانثالبي(H)                             | 4435.7337             | Cal./mol    |
| الانتروبي(S)                             | 88.0736               | Cal./K/mol  |
| طاقة جبس الحرة(G)                        | -21810.1991           | K.Cal./mol  |

جدول(5) :الخواص الحرارية لجزيئة(Se2Br2) عند درجة حرارة الغرفة(298°K)

جدول(6): الخواص الحرارية لجزيئه (Se<sub>2</sub>I<sub>2</sub>) عند درجة حرارة الغرفة (298°K)

| Thermodynamic<br>properties              | Values at 298°K, 1atm | Unit        |
|------------------------------------------|-----------------------|-------------|
| حرارة التكوين(ΔH <sub>f</sub> )          | 6.933                 | Kcal./mol   |
| $(\mathrm{C}_\mathrm{p})$ السعة الحرارية | 18.660                | Cal./K/mol. |
| الانثالبي(H)                             | 4670.5219             | Cal./mol    |
| الانتروبي(S)                             | 94.0326               | Cal./K/mol  |
| طاقة جبس الحرة(G)                        | -23351.1929           | K.Cal./mol  |

ويوضح الشكلين 7 و 8 التناسب الطردي الحاصل لكل الخواص الثرموديناميكية مع درجة الحرارة باستثناء طاقة جبس الحرة التي تتناسب بشكل عكسي مع درجة الحرارة وللجزيئيتين Se<sub>2</sub>Br<sub>2</sub> و Se<sub>2</sub>l و على التوالي.





شكل(7) : العلاقة بين الخصائص الحرارية ودرجة الحرارة لجريئة(Se<sub>2</sub>Br<sub>2</sub>)



شكل(8) : العلاقة بين الخصائص الحرارية ودرجة الحرارة لجزيئة(Se<sub>2</sub>I<sub>2</sub>)

## مبلة جامعة بابل / العلوم الصرفة والتطبيقية / العدد (٤) / المبلد (٢٤) : ٢٠٦

الاستنتاجات

من خلال النتائج التي توصلنا اليها في هذا البحث يتضح ان الاصرة الفعالة ذات القيم المختلفة للامتصاص يكون من خلال الاصرتين(Se-Br)،(Se-Br)،حيث ان ترددات المط والانحناء تعتمد بصورة كبيرة على كتل الذرات المهتزة ،حيث كلما كانت الذرات خفيفة الوزن كانت اهتزازاتها أكبر. كذلك نلاحظ ان الاصرة مابين الذرات العالية الكهروسلبية كالهالوجينات تكون فعالة في امتصاص قيم مختلفة من الطاقة. من خلال النتائج يتضح أن الكهروسالبية العالية التي تمتاز بها مجموعة الهالوجينات أدى الى زيادة في توزيع كثافة

لقد وجدنا من نتائج الخواص الثرموديناميكية للجزيئتين قيد الدراسة أن هناك تتاسب طردي مع درجات الحرارة لكل من H، Cp،ΔH وS وذلك بسبب الحركة الدورانية والانتقالية لتلك الجزيئات ،وعند درجات الحرارة العالية فتساهم الحركة الالكترونية في زيادة قيم الخواص الثرموديناميكية مثل السعة الحرارية Cp. و ان القيمة السالبة لحرارة تكوين جزيئة(Se<sub>2</sub>Br<sub>2</sub>) تدل على استقرار هذه الجزيئة.

المصادر

- Clyde M.; Day,J.R. and Joel Sel-bin; "Theoretical in organic chemistry",2<sup>nd</sup> edition;translated by Dr.Issam J.Sallomi,(1983).
- Frisch, M. J.; G. W. Trucks, H. B. Schlegel et al., Gaussian 09, Revision A.02, Gaussian, Inc., PA, Wallingford CT. 2009.

Gaylard, M.; Hart Rao, revised; "Infrared spectroscopy" Internet survey produced, (1915/2003). Gbori: Csonka and Krisztina Elias. Imreg. Csizmadia. J. Coput. Chem., 18, 330-342, (1996).

Hans Beyer, Director of Institute for organic chemistry, "Organic chemistry", Ernst-Moritz – Arndt-Univ. Griswold German Democratic republic, (1955).

http://www.webelements.com/3<sup>rd</sup> 2006.

.

- Huang, W.; S. J. Chua and J. F. Pan, Chem. Phys. Lett, 363, 18, 2002.
- King, G.W. "Spectroscopy and Molecular Structure", Hoit, Rinehart and Winston ,New York(1964).
- M.ze,Kwok. S.Ng"Physics of semiconductor devices"3rd,2007.
- Revanasiddappa, M.; S.C. Raghavendra, S. Khasim and T. K. Vishnuvardhan, J.Bull. Korean chem.. Soc. Vol. 28, No.7, P(1104-1108), 2007.
- Sadasivam, K.; R. Kumaresan, Computational and Theoretical Chemistry 963, 227-235, 2011.
- Samulski, E. T.; T. J. Dingemans and N. S. Murthy, J. Phys. Chem, B 105, 8845, 2001.

Steel, D. "Theory of vibrational spectroscopy", Sunders Philadelphia, (1971).

- Weinberg, N. ; S. Holdcroft, G. Diaz-Quijada and B. M. Pinto, J. Phys. Chem, A 106, 1266, 2002.
- Wood Wards R.B. and R. Hoffmann. "Conservation of orbital symmetry", Academic Press.New York.(1970).