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Abstract 
The UOTCS (University Of Technology Control System) helicopter 

system is a laboratory scale experimental platform developed primarily for 
teaching system dynamics and control engineering principles to undergraduate 
students. It also provides an excellent research platform for control and 
mechatronics postgraduate students. This paper is concerned with the modeling 
and controllers design for the UOTCS helicopter to mimics its motion. The 
kinematics model was derived following the Denavit-Hartenberg theory while the 
dynamic model was based on Euler-Lagrange equations of motion. The helicopter 
mathematical model includes the inertias of the counterweight, the beams and the 
propeller motors. This model was found competent enough for this application as it 
describes the dominant behaviors and coupling among the degrees of freedom of 
the helicopter model. Fuzzy logic controllers for elevation and pitch motion control 
were designed. The performance of the FLC is compared with the classical PID 
controller and the results are evaluated. Fuzzy logic controllers are suitable to 
control the elevation and pitch motions of the UOTCS helicopter. 

 
Keywords: Helicopter modeling, Simulation, Fuzzy Logic Control, Teaching 
platform. 

 
  UOTCS)(نمذجة و تصمیم مسیطر منطق مضبب لمنظومة مروحیة أل 

  ذي ثلاث درجات حریة المختبریة
   الخلاصة

في قسم ھندسة السیطرة و النظم في  صُنعت التي و )UOTCS(لمروحیة یقُدم البحث تمثیل وتصمیم مسیطر ل
ً لتعلیم دینامیكیل . وجیةالجامعة التكنول ُورت ھذه المروحیة ابتداء وأساسیات ھندسة السیطرة  ھألانظم ةقد ط

بحث ممتازة لطلبة الدراسات العلیا في ھندسة  منصةوفر نظومة تُ كذلك فان الم. لطلبة الدراسات الأولیة
ُور النموذج . السیطرة والمیكاترونیكس تق . UOTCS)(الریاضي لكي یشابھ حركة المروحیة ط ُ وقد اش

تباع نظریة  ِ ُینماتیكي بإ دینامیكي على معادلات النموذج ال اعتمدبینما  (Denavit-Hartenberg)النموذج الك
(Euler-Lagrange) النموذج الریاضي عزم القصور الذاتي لكل من كتلة الموازنة و  یشمل. للحركة

جد النموذج  .ي المروحیتینالحاملات ومحرك ُ ً الریاضي و لتطبیق حیث یصف السلوكیات المؤثرة لملائما
لكل من  ضبابیةیطرات منطقیة البحث تصمیم مسُ  یقدم كذلك  .والتعشیق بین درجات الحریة لنموذج المروحیة

وُرن . UOTCS)(ال لمروحیة میللاو  حركة الارتفاع مع المسیطر التقلیدي  أداء مسیطر المنطق المضببق
)(PID  تي مناسبة للسیطرة على حركجیدة و لمسیطرات المنطقیة الضبابیة أداء ا الى أن النتائج تشیرو

ُفت الصیاغات الواقعیة الحقیقیة لإحیاء . UOTCS)( لمروحیة elevation and pitch)( الارتفاع والمیل وظ
اسُتعملت لغة النموذج الواقعي الحقیقي لخلق نموذج مروحیة ثلاثیة  حیث.وإظھار نتائج المحاكاة صوریا

 .الأبعاد
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1. Introduction   
Hardware-in-the-loop (HIL) simulation is 

an approach to shorten new product 
development cycle. Helicopter laboratory 
processes is a typical example of HIL 
simulation. The UOTCS (the abbreviation 
stands for University Of Technology Control 
System) helicopter system is an experimental 
platform manufactured at the department of 
Control and Systems Engineering / University 
of Technology. This system has been a part of a 
laboratory facility provided by the CS Dept. 
since 2007 [1]. It presents a useful 
experimental platform for advanced students 
and researchers in the field of control and 
mechatronics to practice their skills in 
modeling, system identification, robust 
control and real time software design [2]. 
Such a setup is a MIMO type with nonlinear 
dynamics and static input nonlinearities. It 
may prove helpful for nonlinear controller 
design and identification of a linear model. 

The UOTCS helicopter is mounted on a 
table top and its primary components are the 
main beam, the twin rotor assembly and the 
counterweight, as shown in figure (1). The 
rotational motion about the vertical axis is 
called (travel). It occurs about a vertical axis 
which goes through the slip–ring and is 
perpendicular to the table. The main beam can 
be raised and lowered about a horizontal 
pivot. This motion is called (elevation) and it 
occurs about an axis which goes through the 
slip–ring assembly and is parallel to the table. 
At one end of the main beam, there is another 
bearing whose axis is collinear with the 
beam's axis. It allows a set of twin rotors 
driven by DC motors to pivot around that 
bearing. The resulting motion is called 
(pitch). The pitch motion of the rotors gives 
rise to the travel motion of the assembly. At 
the other end of the main beam, there is a 
counterweight which reduces the power 
requirements on the motors by reducing the 
effective weight of the rotor assembly in the 
horizontal position [1, 3]. 

The UOTCS helicopter is a complex 
system having high nonlinearity and coupling 
among its degrees of freedom. The goal of 
this research is to upgrade the helicopter 
mathematical model that was developed in 
reference [1] to include the inertias of the 

counterweight, the beams and the motors. 
Further more, to design fuzzy logic pitch and 
elevation controllers and asses their 
performance. The ultimate objective is to 
provide a safe educational laboratory 
apparatus that satisfies laboratory experience 
for the students in the fields of system 
dynamics, parameter identification, and 
nonlinear control theory. The provision of a 
UOTCS helicopter animation using virtual 
reality is an additional useful tool for teaching 
control students. 

Mathematical modeling of the UOTCS 
helicopter will be explained next in section 2. 
Section 3 discusses elevation and pitch 
controllers design. 

 
2. Modeling   

The UOTCS helicopter mathematical 
model was obtained by applying kinematics 
analysis first and then the dynamic equations 
of motion of the system is derived. Figure (2) 
shows the coordinate system assignment of 
the UOTCS helicopter using the Denavit–
Hartenberg (D-H) convention [4]. The right-
hand Cartesian world coordinate system, 
O0(x0y0z0), is established at the intersection of 
the main bearings and the slip-ring assembly. 
The seven coordinate systems O1(x1y1z1), 
O2(x2y2z2) .. to O7(x7y7z7), are setup as shown 
in figure (2). The origins of the first and 
second coordinates coincide with that of the 
world system. Table (1) defines the link 
parameters ai, αi, di, and θi based on the D-H 
convention, where i = 1, 2,…….7 [4]. 

The overall transformation between any 
two desired points is obtained by 
consecutively multiplying the homogeneous 
transformation matrices Ti between axes i and 
i-1 (reference [5]) for all axes in between. For 
example, the forward kinematics, from base 
to counterweight (Tc) is given by multiplying 
the homogeneous transformation matrices T1 
(from O0 to O1) and T7 (from O1 to O7), i.e; 
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Where S and C are used to designate sine and 
cosine of the angle, respectively. Similarly, 
the forward kinematics of the back motor 
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(figure (2)) is obtained by multiplying the 
homogeneous transformation matrices T1 
(from O0 to O1), T2 (from O1 to O2), T4 (from 
O2 to O4) and T6 (from O4 to O6). The 
resulting transformation and other 
transformations can be found in reference [6]. 
        By using Euler-Lagrange's equations of 
motion of the system, a set of differential 
equations describing the motion of the 
UOTCS helicopter in terms of its joint 
variables and its structural parameters were 
derived [6]. The derivation is based on the 
kinetic and potential energies of the entire 
system; it is expressed by [4]; 

Q
q
L

q
L









td
d    ..… (2)  

where, L is the Lagrangian and it represents 
the difference between the Kinetic and 
Potential energies of the system. Also, q = 
[q1, q2,…..qn]T is the set of generalized 
coordinate for the system and  Q = [Q1, 
Q2,…..Qn]T is the vector of generalized forces 
acting on the system. In order to simplify and 
derive the final form of the equations several 
assumptions are made, they are; 
 The propellers are rigid and have no 

twist. 
 The simulator structure is rigid and 

symmetrical therefore the main beam 
does not create any moments. 

 The effects of friction of the joints and 
those of the slip rings and brushes are 
negligible. 

    To solve equation (2), the Jacobian matrix, 
J, of the UOTCS helicopter was determined 
first. J is a 6n matrix consisting of [Jv Jω]T, 
where the upper part, Jv, and the lower part, 
Jω, are the linear and angular velocity 
Jacobian matrices, respectively. The resulting 
equation of motion of the helicopter model 
expressed in matrix form is obtained in the 
form [4]; 
    τ q gq qq, C q qD  )()()(    ……..(3) 
Where D(q) is a symmetric positive matrix 
which is in general configuration dependent 
and it is called inertia matrix. The overall 
inertia matrix D(q) of the UOTCS helicopter 
was determined by adding the inertia matrices 
of the counterweight (D(q)c), main beam 
(D(q)a), front motor (D(q)f), back motor 
(D(q)b) and pendulum link (D(q)h); that is [1]; 

fac )()()()( qDqDqDqD   
                  hb )()( qDqD           .……(4) 
In equation (3), the elements of the matrix 

)( qq,C   were calculated by using the 
Christoffel symbols [4, 6]. 
   The torque term g(q) in equation (3) is due 
to gravitational forces. It is simply the mass 
multiplied by the gravitational acceleration 
and the height of the center of each mass. 
These are the centre of mass of the 
counterweight, front and back motors, the 
main beam and the pendulum-link. 
   Finally, the last term is the torque matrix. It 
was be calculated by using [5]; 

FqJτ    T)(            .….(5) 
Where, F is the force vector. In other words 
the forces Ff, Fb of the front and back motors 
are related to the joint torques by the 
transpose of the system Jacobian matrix. The 
relationship between the generalized joint 
torque τ(q) vector and the external 
generalized force F exerted by the (n) links 
on the environment in a specific configuration 
is; 

FJqτ    T)( nv                                      ……(6) 
Where T

nvJ  is the transpose Jacobian matrix 
Jv, linear velocity Jacobian, of n links. The 
entries of the Jacobian matrix depend on the 
values of the joint variables, and they are 
usually expressed relative to the base 
coordinate system. Therefore, the components 
of the external generalized force vector F=[Fx 
Fy Fz]T must also be expressed relative to the 
base coordinates. Thus Fx, Fy, Fz are the 
components of the force at the ends. As 
shown in figure (2) the 3DOF UOTCS 
helicopter has two external forces Ff and Fb 
acting at two points O5 and O6, respectively. 
The Ff and Fb are the forces produced by the 
Front and Back propellers, respectively. The 
generalized force vector F for this 
configuration can be represented as; 
 
   T]00[ f

5
0

front
0 F       .   RF   

   T6 ]00[ b0
back

0 F       .    RF          … (7) 
 
2.1 Simulation: 
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The kinematics and dynamic 
equations of the UOTCS helicopter were 
programmed using MATLAB software. 
Various MATLAB files and functions were 
built for this purpose. The output of these 
files and functions is a general nonlinear 
model presented in a symbolic form. A 
simulink block named MATLAB Fnc 
(MATLAB Function) which contains a script 
MATLAB function dedicated to solving the 
model's nonlinear differential equation was 
built. A simulink nonlinear model of the 
UOTCS helicopter was implemented, as 
shown in figure (3a). The interested reader 
may refer to references [1, 6] for further 
details. 
 Figure (3a) shows that the inputs are 
the helicopter system parameters (Length 
block: Laf, Lc, Lw, Lh; Mass block: mp, mc, ma, 
mh; Inertia block: Ixc, Izc, Ixp, Izp, Ixa, Iya, Iza, Ixh, 
Iyh and Izh), control inputs (Ff and Fb), angular 
positions and velocities. MATLAB Fnc 
outputs are the angular accelerations q . The 
latter vector is fed to a subsystem block 
named "angles" to integrate it twice to 
generate q  and q vectors. 

The initial values of q and q  can be 
easily added to the integral blocks as required 
by the operator. However, for any initial ε, Lw 
should be adjusted for a given Ff and Fb or 
vice-versa. Using equation (2), it can be 
shown that for any q and q = q =0 [6]; 

  )()([ afhafphp LmL2mεtanm2mhwL   
     cbfafca /mε/gcosFFLLm )]()(        ..(8) 
 Equation (8) relates the length Lw to the 
elevation angle (ε) at the equilibrium point 
with zero pitch angle.  
 
2.2 Linearization   

The provision of a linearized model about 
an arbitrary equilibrium operating point is 
crucial to make the necessary requirements 
available for the FLC design. Linearization is 
accomplished by determining the variation 
equations about an equilibrium point using 
Taylor series expansion technique. A 
numerical equivalent linear system was 
developed for the UOTCS helicopter at any 
desired operating point expressed in the form 
[6]; 

 
 )()()( ttt uBxAx          …….(9) 
Where, T],,,,,[)(  tx  and 

T],[)( bf FFt   u  represent variation of the state 
from an operating point. Matrices A and B are 
functions of the states and inputs for each 
operating point. Table (2) summarizes a 
number of elevation and pitch motions 
transfer functions obtained for an arbitrarily 
selected operating points. The table shows a 
variation of about 30% and 20% in elevation 
and pitch time constants, respectively. Also, 
the elevation gain exhibited a 33% change. 
 
 
3. FLC Controller Design   

    Elevation and pitch motion fuzzy logic 
controllers were designed. Each controller has 
two inputs and one output. Figure (4) shows 
the elevation controller schematically. The 
pitch controller is similar to that shown in 
figure (4) except that the gains ke1, ke2, koe are 
replaced in respective order by kp1, kp2, kop. 
The input and output universes of the fuzzy 
controllers are normalized in the range (-1, 1). 
The gains ke1, ke2, kp1 and kp2 are used to map 
the actual inputs of the fuzzy system to the 
normalized universes of discourse (-1, 1) and 
are called normalizing gains. Similarly koe 
and kop are the output gains that scale the 
output of the controllers. 

The elevation and pitch controllers use 
triangular membership functions. The 
membership functions for the input fuzzy sets 
are uniform and similar for the elevation and 
pitch controllers. Figure (5a) shows the 
elevation controller membership functions. 
The membership functions for the output 
fuzzy sets are narrower near zero for 
elevation and pitch controllers (figure (5b)). 
This serves to decrease the gain of the 
controller near the set point so a better steady 
state control can be obtained and yet avoid 
excessive overshoot [7]. The output 
membership function for the elevation 
controller is similar to that of the pitch 
controller (shown in figure (5b)) but has 
equally spaced center values for the 
membership function, i.e., PS, PM and PB 
assume the values ⅓, ⅔ and 1. 
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The rule base array that was used for 
elevation and pitch controllers is the same. 
Each rule base is a 77 array, since there are 
7 fuzzy sets on the input universes of 
discourse, as shown in table (3).The topmost 
rows show the indices for the seven fuzzy sets 
of the derivative for the position error input e, 
and the column at the extreme left shows the 
indices for the seven fuzzy sets for the 
position error input. The body of the table 
shows the indices action for input in Fuzzy 
implications of the form: 
IF premise THEN consequent. 
For example: IF error is negligible and 
change-in-error is positive-small THEN 
output is positive-small. 

To design the controllers, the normalized 
gains ke1, ke2 and koe for the elevation 
controller were tuned by trial and error to 
obtain minimum overshoot and steady state 
error response to unit step inputs in elevation 
angle using the linearized models of table (2). 
Figure (6) shows the response (continuous 
curves) where the transfer function for the 
operating point q=[0 -30 0]T and q =0 was 
used. The values of ke1, ke2 and koe thus 
obtained are 0.3, 0.07 and 15, respectively. 
The same design producer was followed for 
the pitch fuzzy logic controller. The controller 
parameters kp1, kp2 and kop were found to be 
0.46, 0.04 and 17, respectively. Dotted curves 
of figure (6) show pitch angle responses to 
unit step inputs. 
 
3.1 FLC for the UOTCS Helicopter   

    A nonlinear simulator for the UOTCS 
helicopter with elevation and pitch motion 
controllers was implemented in simulink, as 
shown in figure (3b). The saturation 
nonlinearities are used to put limits on the 
propeller thrust force with zero lower limits. 
A series of numerical tests were carried out 
using the nonlinear simulator to tune up the 
linearized system based FLC parameters. 
Figures (7a) and (7b) show typical pitch (-5o) 
step and elevation (from -10o to 30o) 
responses after tuning. The new elevation 
controller gains ke1, ke2 and koe are 0.5, 0.64 
and 18, respectively. The pitch controller 
gains remained the same as those obtained 
with the linearized model. 

Two main groups of numerical tests were 
carried out to test the controllers and asses the 
degree of coupling between the helicopters' 
inputs and outputs. For the first group, the 
initial elevation of the UOTCS helicopter was 
-15˚ with zero thrust force and subjected to 
either a step change in elevation and/or pitch 
inputs. The necessary counterweight position 
Lw setting was 0.2235 m in order to maintain 
the elevation at    -15˚. The final position for 
this group of tests is 20˚. Group two of the 
tests are similar to those of group one except 
for the initial conditions. An initial thrust 
force was applied to maintain level initial 
position. This represents the case when the 
helicopter was loaded and it was just about to 
take off. 

Figure (8) shows elevation angle 
responses (curves set (a)) to step inputs from -
15˚ to 20˚ position. Curve (a1) is the response 
of the nonlinear model with thrust force 
saturation and gain ½. No change in response 
is obtained when the gain is increased to unity 
(curve (a2)). Curve (a3) shows the response 
of the nonlinear model without thrust force 
saturation. A comparison with curve (a4) 
shows that there is a minor change in 
response with negligible steady state error. 
Figure (8) also shows the elevation responses 
under conditions of simultaneous step inputs 
in elevation and pitch (curves set (b)). Using 
thrust force saturation with half and unity 
gains, the responses of curves (b1) and (b2)) 
are obtained in respective order. The pitching 
maneuver affects elevation movement only 
when there is saturation in the thrust force. 
The peak overshoot has increased to 28.5% 
for curve (b1) and 30% for curve (b2). 
Following the same order of systems, the 
settling time has increased from 8.5 to 11 
seconds. Curves (b3) and (b4) in figure (8) 
reflect the coupling is rather weak when there 
is no saturation. In conclusion, the pitching 
motion affects elevation motion only when 
there is saturation in the thrust force. The 
pitch angle responses shown in figure (9) 
show a similar tendency in its behaviour. 

Figure (10) is a sample of representative 
results for group two of the numerical tests, 
where the same trend in behavior is exhibited.  
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3.2 Discussion of Controllers Performance  
To evaluate helicopter's elevation and 

pitch maneuvering quality with FLCs, its 
performance is compared with PID 
controllers. Using the UOTCS helicopter 
nonlinear simulator, a series of numerical 
tests were carried out and figures (11) to (16) 
summarize typical simulation results. In all 
these tests, the masses and moments of 
inertias of the main beam and pendulum link 
together with the mass moment of inertias of 
the counterweight, front and back motors are 
taken into account. In some figures; namely; 
figures (13), (15) and (16), this model is 
referred to as the first model. The second 
model reported in figures (13), (15) and (16) 
refers to the model used in reference [1] 
where the masses and moments of inertias of 
the main beam and pendulum link were 
assumed zero. The operating point of the 
UOTCS helicopter considered for all these 
tests are -30˚ elevation with zero thrust force. 

Figure (11) shows elevation angle 
responses to a step input from –30º to 0º 
position. Curve (a1) is the UOTCS response 
using FLC with thrust force saturation. There 
is no peak overshoot and the output reach 
level position in 8 seconds. The response is 
not seriously influenced by the controller gain 
(curve (a2)). When using the PID controller 
the peak overshoot increases to (25.8%) and 
the settling time increases to 10 seconds 
(curves (b1) and (a1)). Curve (a3) shows the 
response of the helicopter with FLC without 
thrust force saturation. Again, no peak 
overshoot is shown and the settling time is 8 
seconds. The corresponding PID controller 
response (curve (b3)) shows a peak overshoot 
of (8.3%) with 9.5 seconds settling time. 

Figure (12) presents a performance 
comparison of FLC, PID and PD pitch 
controllers for pitch only maneuver. The 
performance with PID and PD controllers is 
sensitive to the saturation nonlinearity as 
indicated by curves (b1) and (b3) (for gains ½ 
and 1) or (b2) and (b4). Using the PD pitch 
controller leads to steady state error as shown 
by curves (b1) and (b3). Curves (a1) and (a2) 
clearly point out the robustness of the FLC to 
saturation nonlinearity and its fast response. 

The performance of the FLCs under 
conditions of coupling between elevation and 

pitch motions is shown in figure (13). 
Simultaneous step inputs are applied to both 
inputs (elevation (-30o to 00) and pitch (0o to -
5o)) with and without saturation thrust forces. 
The corresponding UOTCS responses with 
PID controllers are also shown (continuous 
curves). The FLC shows a peak overshoot of 
33% and settling time 9.5 seconds (curve 
(a1)) as compared with 53% and 13.5 seconds 
when PID controller is used (curve (b1)). 
When a PD pitch motion controller is used, 
the peak overshoot is reduced to 37% and the 
settling time to 11 seconds, as shown by 
curve (b1) in figure (14). Figure (15) shows 
the pitch angle response. The steady state 
error is a result of the PD action. The figure 
clearly displays the same trend of the 
superiority of the FLC in terms of robustness 
and speed of response. 

The dotted curves shown in figures (13), 
(15) and (16) are obtained when the second 
model is used, where the inertias of the 
propeller motors, counterweight and beams 
are assumed negligible as reported in 
reference [1]. The UOTCS responses are 
similar to those of the first model except that 
now the responses are faster with reduced 
peak overshoot (dotted curves of figure (13)). 
This is attributed to the reduced mass inertias. 
The steady state error shown in figure (15) is 
eliminated if a PID pitch controller is used, as 
shown in figure (16). 

The numerical tests lead to the same 
result that the FLC is superior in terms of 
robustness and speed of response. In 
conclusion, the FLC is better with regard of 
peak overshoot and settling time when 
compared with the PID controller. 
 
4. 3D Animation of UOTCS Helicopter  

A 3D UOTCS Helicopter scene was 
created using VRML to provide a powerful 
tool to facilitate teaching and research (figure 
(17)). VRML is a scene description language 
which is human readable [8]. The VRML 
scene graph is composed of a hierarchy of 
nodes and routes. The UOTCS helicopter 
scene has three degrees of freedom. 
“Transform” nodes are used to control 
rotational values of the entire “children” 
nodes below it. The “children” node contains 
one or more objects. Each “Transform” node 
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are named as travel, elevation and pitch, so 
that they can be rotated separately. Also three 
viewpoints and Background nodes are used to 
enable the UOTCS helicopter object to be 
viewed in different directions [6]. 

Using the simulink of figure (3b), the 
response of the helicopter over time is made 
visually realistic with user interaction option. 
Simulink provides connection for control and 
manipulation of virtual reality object, using 
virtual reality toolbox [9]. The VR toolbox is 
a solution for interacting with VR models of 
dynamic system over time. 

 
5. Conclusions  

A mathematical model for a recently built 
3DOF table top helicopter experimental setup 
named UOTCS helicopter was successfully 
developed. It takes into account system 
nonlinearities and mass moments of inertia of 
the beams, the counterweight and the motors. 
Fuzzy logic controllers for the coupled 
elevation and pitch motions are successfully 
designed and tested. Their performance is 
found to be superior and robust compared 
with their PID controllers' counterpart. The 
former controllers cover a wider range of 
operating conditions. Finally, the developed 
3D UOTCS Helicopter scene is an attractive 
alternative to traditional laboratory 
equipments which can meet educational 
objectives. 

The theoretical model is to be extended in 
the future to take into account structural 
flexibility and propeller air friction and 
inertia. Also, other controller designs are to 
be investigated. The use of virtual reality is 
very useful in helping users to interact with 
the model and view the behavior of the 
UOTCS helicopter and its response over time. 
The overall student reaction should also be 
investigated and their feedback should be 
analyzed with the ultimate goal of providing 
laboratories suitable for distance learning.  
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List of Symbols   
Cijk Christoffel’s symbols. 
C(q, q ) The second matrix of the Euler-
Lagrange equation. 
Cij Elements of the matrix C(q, q ). 
D(q) Inertia matrix. 
di  Offset of the frame i. 
F The external generalized force vector. 
Fb Back motor thrust force. 
Ff Front motor thrust force. 
kd Derivative gain. 
g(q) Gravitational matrix . 
J  Jacobian matrix. 
ke1 Gain of the error input to elevation 
controller. 
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ke2 Gain of the change of error input to 
elevation controller. 
koe Gain of the output from elevation 
controller. 
kp1 Gain of error input to pitch controller. 
kp2 Gain of the change of error input to pitch 
controller. 
kop Gain of the output from pitch controller. 
q The set of the generalized coordinate for the 
system. 
Q The vector of the generalized forces acting 
on the system. 
Ti The homogeneous transformation related 
two coordinate frames (i) and (i-1) attached to 
the links which are connected to the rotational 
joint. 
αi Twist angle of the frame i. 
ε  Elevation angle. 
θ  Pitch angle. 
θi Angle of the frame i. 

τ  Travel angle. 
τ(q) Torque vector. 
Note: Refer to figure (3a) for definitions of 
Masses (m), Lengths (L) & Inertias (I). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Table (1) Structural Kinematics Parameters 
 

 
* Where 2/)( aeafc LLL   
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Table (2) Elevation and Pitch Transfer Function for each Operating Point. 
 

 

 

 

 

Table (3) Rule-Base for Elevation and Pitch Controller. 
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(a) 

Figure (3) a) MATLAB Fnc dedicated to solve the UOTCS nonlinear differential 
equations. b) UOTCS nonlinear Simulink with pitch & elevation controllers [6]. 

counterweigh
t 

Elevation 
encoder 

Main beam 

 

Slip-ring 
assembly 

I/O cards 

Travel 
encoder 

Helicopter 
platform 

Pitch 
encoder 

Personal 
computer 

Control panel 

Figure (2)  UOTCS  Helicopter 
coordinates system assignment. 

Figure (1) 3DOF UOTCS Helicopter 
 simulator [1]. 

(b) 

* Figure (2) & Table (1) define the lengths. 
# I is the mass moment of inertia & first suffix specifies 

the axis, second suffix specifies:       h=helicopter body, 
   a= main beam, c=counter weight, p=front & back motor.  
$ m mass & the suffix designation is as the second suffices 

defined in # above. 
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Figure (4) Elevation proportional plus 
integral fuzzy logic controller. 

Figure (6) Step input responses when tuning 
FLCs with the linearized model. 

Figure (7) a) Pitch & b) elevation tests 
Using  FLC  after tuning with the  non- 
linear model. 

a) Pitch response (0 to -5o). 

b) Elevation response (-10o to 20o). 
 

(a) Elevation controller input 
        membership function. 

(b) Pitch controller output 
      membership function. 

Figure (5) Fuzzy sets membership function;  
a) Elevation controller. b) Pitch controller. 

curve    ke1   ke2   koe        kp1   kp2    kop 
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Figure (12) Performance comparison of 
FLC, PID  &  PD controllers with pitch only 
maneuvering. 

Figure (11) A comparison of elevation 
responses using FLC & PID controllers with & 
without saturation. 

Figure (8) Elevation angle response with 
& without pitching of the nonlinear model. 

Figure (9) Pitch angle responses of 
the nonlinear model. 

Figure (10) Elevation angle responses from 
level to 20o with an initial thrust force. 

Figure (13) Elevation angle responses  from 
-30o to level with pitching action & usin PID 
pitch controller. 
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Figure (14) Elevation angle responses from -30o 
to level with pitching action & using PD pitch 
controller. 

Figure (15) Pitch angle responses from 0o to -5o 
using PD pitch controller. 

Figure (16) Pitch angle responses from 0o to -5o 
using PID pitch controller. 

Figure (17) UOTCS helicopter scene created 
using VRML. 


