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Abstract

The UOTCS (University Of Technology Control System) helicopter
system is a laboratory scale experimental platform developed primarily for
teaching system dynamics and control engineering principles to undergraduate
students. It also provides an excellent research platform for control and
mechatronics postgraduate students. This paper is concerned with the modeling
and controllers design for the UOTCS helicopter to mimics its motion. The
kinematics model was derived following the Denavit-Hartenberg theory while the
dynamic model was based on Euler-Lagrange equations of motion. The helicopter
mathematical model includes the inertias of the counterweight, the beams and the
propeller motors. This model was found competent enough for this application as it
describes the dominant behaviors and coupling among the degrees of freedom of
the helicopter model. Fuzzy logic controllers for elevation and pitch motion control
were designed. The performance of the FLC is compared with the classical PID
controller and the results are evaluated. Fuzzy logic controllers are suitable to
control the elevation and pitch motions of the UOTCS helicopter.

Keywords: Helicopter modeling, Simulation, Fuzzy Logic Control, Teaching
platform.
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1. Introduction

Hardware-in-the-loop (HIL) simulation is
an approach to shorten new product
development cycle. Helicopter laboratory
processes is a typical example of HIL
simulation. The UOTCS (the abbreviation
stands for University Of Technology Control
System) helicopter system is an experimental
platform manufactured at the department of
Control and Systems Engineering / University
of Technology. This system has been a part of a
laboratory facility provided by the CS Dept.
since 2007 [1]. It presents a useful
experimental platform for advanced students
and researchers in the field of control and
mechatronics to practice their skills in
modeling, system identification,  robust
control and real time software design [2].
Such a setup is a MIMO type with nonlinear
dynamics and static input nonlinearities. It
may prove helpful for nonlinear controller
design and identification of a linear model.

The UOTCS helicopter is mounted on a
table top and its primary components are the
main beam, the twin rotor assembly and the
counterweight, as shown in figure (1). The
rotational motion about the vertical axis is
called (travel). It occurs about a vertical axis
which goes through the slip-ring and is
perpendicular to the table. The main beam can
be raised and lowered about a horizontal
pivot. This motion is called (elevation) and it
occurs about an axis which goes through the
slip—ring assembly and is parallel to the table.
At one end of the main beam, there is another
bearing whose axis is collinear with the
beam’'s axis. It allows a set of twin rotors
driven by DC motors to pivot around that
bearing. The resulting motion is called
(pitch). The pitch motion of the rotors gives
rise to the travel motion of the assembly. At
the other end of the main beam, there is a
counterweight which reduces the power
requirements on the motors by reducing the
effective weight of the rotor assembly in the
horizontal position [1, 3].

The UOTCS helicopter is a complex
system having high nonlinearity and coupling
among its degrees of freedom. The goal of
this research is to upgrade the helicopter
mathematical model that was developed in
reference [1] to include the inertias of the
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counterweight, the beams and the motors.
Further more, to design fuzzy logic pitch and

elevation  controllers and asses their
performance. The ultimate objective is to
provide a safe educational laboratory

apparatus that satisfies laboratory experience
for the students in the fields of system
dynamics, parameter identification, and
nonlinear control theory. The provision of a
UOTCS helicopter animation using virtual
reality is an additional useful tool for teaching
control students.

Mathematical modeling of the UOTCS
helicopter will be explained next in section 2.
Section 3 discusses elevation and pitch
controllers design.

2. Modeling
The UOTCS helicopter mathematical

model was obtained by applying kinematics
analysis first and then the dynamic equations
of motion of the system is derived. Figure (2)
shows the coordinate system assignment of
the UOTCS helicopter using the Denavit-—
Hartenberg (D-H) convention [4]. The right-
hand Cartesian world coordinate system,
Oo(XoYoZo), is established at the intersection of
the main bearings and the slip-ring assembly.
The seven coordinate systems Oj(X1Yy1Z1),
0,(X2Y22,) .. to O;(X7y7z7), are setup as shown
in figure (2). The origins of the first and
second coordinates coincide with that of the
world system. Table (1) defines the link
parameters a;, a;, di, and 6; based on the D-H
convention, where i = 1, 2, 7 [4].

The overall transformation between any
two desired points is obtained by
consecutively multiplying the homogeneous
transformation matrices T; between axes i and
i-1 (reference [5]) for all axes in between. For
example, the forward kinematics, from base
to counterweight (T.) is given by multiplying
the homogeneous transformation matrices T,
(from Og to O,) and T (from O to Oy), i.€;

_CACS _SA _CASS _L\NCZ.CS
-S,C, -C, -s,Cc, -L,S,C
Tc = e 7 e WO e (1)
-8, 0 0 -L,S,
0 0 0 1

Where S and C are used to designate sine and
cosine of the angle, respectively. Similarly,
the forward kinematics of the back motor
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(figure (2)) is obtained by multiplying the
homogeneous transformation matrices T,
(from Oq to 03), T, (from Oy to Oy), T4 (from
0, to O4) and Tg (from O, to Og). The
resulting transformation and other
transformations can be found in reference [6].
By using Euler-Lagrange's equations of
motion of the system, a set of differential
equations describing the motion of the
UOTCS helicopter in terms of its joint
variables and its structural parameters were
derived [6]. The derivation is based on the
kinetic and potential energies of the entire
system; it is expressed by [4];
dtog oq
where, L is the Lagrangian and it represents
the difference between the Kinetic and
Potential energies of the system. Also, g =

[01, Oz....0n]" is the set of generalized
coordinate for the system and Q = [Q,
Q.,..... Qn]T is the vector of generalized forces

acting on the system. In order to simplify and
derive the final form of the equations several
assumptions are made, they are;

e The propellers are rigid and have no

twist.
e The simulator structure is rigid and
symmetrical therefore the main beam

does not create any moments.

e The effects of friction of the joints and
those of the slip rings and brushes are
negligible.

To solve equation (2), the Jacobian matrix,
J, of the UOTCS helicopter was determined
first. J is a 6xn matrix consisting of [J, Jw]T,
where the upper part, J,, and the lower part,
J,, are the linear and angular velocity
Jacobian matrices, respectively. The resulting
equation of motion of the helicopter model
expressed in matrix form is obtained in the
form [4];

D(@) g + C(a.d) a4+ g(a) = =
Where D(q) is a symmetric positive matrix
which is in general configuration dependent
and it is called inertia matrix. The overall
inertia matrix D(q) of the UOTCS helicopter
was determined by adding the inertia matrices
of the counterweight (D(Qg).), main beam
(D(q)a), front motor (D(q);), back motor
(D(q)y) and pendulum link (D(q)y); that is [1];
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D(a) = D(q) + D(a), + D(a) ¢

+D(q), + D(9);,
In equation (3), the elements of the matrix
C(q,q) Wwere calculated by wusing the
Christoffel symbols [4, 6].

The torque term g(q) in equation (3) is due
to gravitational forces. It is simply the mass
multiplied by the gravitational acceleration
and the height of the center of each mass.
These are the centre of mass of the
counterweight, front and back motors, the
main beam and the pendulum-link.

Finally, the last term is the torque matrix. It
was be calculated by using [5];
r=J(Q)"F
Where, F is the force vector. In other words
the forces F;, Fp, of the front and back motors
are related to the joint torques by the
transpose of the system Jacobian matrix. The
relationship between the generalized joint
torque 7(q) vector and the external
generalized force F exerted by the (n) links
on the environment in a specific configuration
is;
T(@)=J, F
Where J. is the transpose Jacobian matrix

Jy, linear velocity Jacobian, of n links. The
entries of the Jacobian matrix depend on the
values of the joint variables, and they are
usually expressed relative to the base
coordinate system. Therefore, the components
of the external generalized force vector F=[F,
F, F,]" must also be expressed relative to the
base coordinates. Thus F,, F,, F, are the
components of the force at the ends. As
shown in figure (2) the 3DOF UOTCS
helicopter has two external forces Fi and Fy
acting at two points Os and Og respectively.
The F; and Fy are the forces produced by the
Front and Back propellers, respectively. The

generalized force wvector F for this
configuration can be represented as;
Fofmm:ROS.[O O Ff]T
FA* =RS.[0 0 R . (7

2.1 Simulation:
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The  kinematics and  dynamic
equations of the UOTCS helicopter were
programmed using MATLAB software.

Various MATLAB files and functions were
built for this purpose. The output of these
files and functions is a general nonlinear
model presented in a symbolic form. A
simulink block named MATLAB Fnc
(MATLAB Function) which contains a script
MATLAB function dedicated to solving the
model's nonlinear differential equation was
built. A simulink nonlinear model of the
UOTCS helicopter was implemented, as
shown in figure (3a). The interested reader
may refer to references [1, 6] for further
details.

Figure (3a) shows that the inputs are
the helicopter system parameters (Length
block: Las, Le, Lw, Ln; Mass block: mp, mg, m,
my; Inertia block: Iy, e, I, lzp, Ixar lyay lza Ins
Iyn and I;n), control inputs (Fr and Fy), angular
positions and velocities. MATLAB Fnc
outputs are the angular accelerations¢. The
latter vector is fed to a subsystem block
named "angles" to integrate it twice to
generate ¢ and q vectors.

The initial values of g and ¢ can be
easily added to the integral blocks as required
by the operator. However, for any initial ¢, L,
should be adjusted for a given F¢ and Fy or
vice-versa. Using equation (2), it can be
shown that for any g and 9=9=0 [6];

LW =[h(2m, + my)tan(e) + 2m, Ly +my Ly

— L, (F¢ +Fy)lgeos(e)lm,  ..(8)
Equation (8) relates the length L, to the

elevation angle (¢) at the equilibrium point
with zero pitch angle.

+m,L,

2.2 Linearization

The provision of a linearized model about
an arbitrary equilibrium operating point is
crucial to make the necessary requirements
available for the FLC design. Linearization is
accomplished by determining the variation
equations about an equilibrium point using
Taylor series expansion technique. A
numerical equivalent linear system was
developed for the UOTCS helicopter at any
desired operating point expressed in the form

[6];
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x(t) = A x(t) + B u(t)
Where, X(t) =[4,£,0,4,£60]"
u(t)=[F,,F,]" represent variation of the state

from an operating point. Matrices A and B are
functions of the states and inputs for each
operating point. Table (2) summarizes a
number of elevation and pitch motions
transfer functions obtained for an arbitrarily
selected operating points. The table shows a
variation of about 30% and 20% in elevation
and pitch time constants, respectively. Also,
the elevation gain exhibited a 33% change.

and

3. ELC Controller Design

Elevation and pitch motion fuzzy logic
controllers were designed. Each controller has
two inputs and one output. Figure (4) shows
the elevation controller schematically. The
pitch controller is similar to that shown in
figure (4) except that the gains Kei, Kez, Koe are
replaced in respective order by kpi, Kp2, Kop.
The input and output universes of the fuzzy
controllers are normalized in the range (-1, 1).
The gains ke, ke, ko1 and kg, are used to map
the actual inputs of the fuzzy system to the
normalized universes of discourse (-1, 1) and
are called normalizing gains. Similarly Ko
and ko, are the output gains that scale the
output of the controllers.

The elevation and pitch controllers use
triangular ~ membership  functions.  The
membership functions for the input fuzzy sets
are uniform and similar for the elevation and
pitch controllers. Figure (5a) shows the
elevation controller membership functions.
The membership functions for the output
fuzzy sets are narrower near zero for
elevation and pitch controllers (figure (5b)).
This serves to decrease the gain of the
controller near the set point so a better steady
state control can be obtained and yet avoid
excessive overshoot [7]. The output
membership  function for the elevation
controller is similar to that of the pitch
controller (shown in figure (5b)) but has
equally spaced center wvalues for the
membership function, i.e., PS, PM and PB
assume the values %5, % and 1.
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The rule base array that was used for
elevation and pitch controllers is the same.
Each rule base is a 7x7 array, since there are
7 fuzzy sets on the input universes of
discourse, as shown in table (3).The topmost
rows show the indices for the seven fuzzy sets
of the derivative for the position error input e,
and the column at the extreme left shows the
indices for the seven fuzzy sets for the
position error input. The body of the table
shows the indices action for input in Fuzzy
implications of the form:

IF premise THEN consequent.

For example: IF error is negligible and
change-in-error is  positive-small THEN
output is positive-small.

To design the controllers, the normalized
gains ke, ke and k, for the elevation
controller were tuned by trial and error to
obtain minimum overshoot and steady state
error response to unit step inputs in elevation
angle using the linearized models of table (2).
Figure (6) shows the response (continuous
curves) where the transfer function for the
operating point g=[0 -30 0]" and ¢=0 was
used. The values of ke, ke and Ko thus
obtained are 0.3, 0.07 and 15, respectively.
The same design producer was followed for
the pitch fuzzy logic controller. The controller
parameters Ky, Ky, and Ko, were found to be
0.46, 0.04 and 17, respectively. Dotted curves
of figure (6) show pitch angle responses to
unit step inputs.

3.1 ELC for the UOTCS Helicopter

A nonlinear simulator for the UOTCS
helicopter with elevation and pitch motion
controllers was implemented in simulink, as
shown in figure (3b). The saturation
nonlinearities are used to put limits on the
propeller thrust force with zero lower limits.
A series of numerical tests were carried out
using the nonlinear simulator to tune up the
linearized system based FLC parameters.
Figures (7a) and (7b) show typical pitch (-5°)
step and elevation (from -10° to 30°)
responses after tuning. The new elevation
controller gains Ke, Ke, and ko are 0.5, 0.64
and 18, respectively. The pitch controller
gains remained the same as those obtained
with the linearized model.
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Two main groups of numerical tests were
carried out to test the controllers and asses the
degree of coupling between the helicopters'
inputs and outputs. For the first group, the
initial elevation of the UOTCS helicopter was
-15° with zero thrust force and subjected to
either a step change in elevation and/or pitch
inputs. The necessary counterweight position
Lw setting was 0.2235 m in order to maintain
the elevation at  -15°. The final position for
this group of tests is 20°. Group two of the
tests are similar to those of group one except
for the initial conditions. An initial thrust
force was applied to maintain level initial
position. This represents the case when the
helicopter was loaded and it was just about to
take off.

Figure (8) shows elevation angle
responses (curves set (a)) to step inputs from -
15° to 20° position. Curve (al) is the response
of the nonlinear model with thrust force
saturation and gain .. No change in response
is obtained when the gain is increased to unity
(curve (a2)). Curve (a3) shows the response
of the nonlinear model without thrust force
saturation. A comparison with curve (a4)
shows that there is a minor change in
response with negligible steady state error.
Figure (8) also shows the elevation responses
under conditions of simultaneous step inputs
in elevation and pitch (curves set (b)). Using
thrust force saturation with half and unity
gains, the responses of curves (bl) and (b2))
are obtained in respective order. The pitching
maneuver affects elevation movement only
when there is saturation in the thrust force.
The peak overshoot has increased to 28.5%
for curve (bl) and 30% for curve (b2).
Following the same order of systems, the
settling time has increased from 8.5 to 11
seconds. Curves (b3) and (b4) in figure (8)
reflect the coupling is rather weak when there
is no saturation. In conclusion, the pitching
motion affects elevation motion only when
there is saturation in the thrust force. The
pitch angle responses shown in figure (9)
show a similar tendency in its behaviour.

Figure (10) is a sample of representative
results for group two of the numerical tests,
where the same trend in behavior is exhibited.
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3.2 Discussion of Controllers Performance
To evaluate helicopter's elevation and
pitch maneuvering quality with FLCs, its
performance is compared with  PID
controllers. Using the UOTCS helicopter
nonlinear simulator, a series of numerical
tests were carried out and figures (11) to (16)
summarize typical simulation results. In all
these tests, the masses and moments of
inertias of the main beam and pendulum link
together with the mass moment of inertias of
the counterweight, front and back motors are
taken into account. In some figures; namely;
figures (13), (15) and (16), this model is
referred to as the first model. The second
model reported in figures (13), (15) and (16)
refers to the model used in reference [1]
where the masses and moments of inertias of
the main beam and pendulum link were
assumed zero. The operating point of the
UOTCS helicopter considered for all these
tests are -30° elevation with zero thrust force.
Figure (11) shows elevation angle
responses to a step input from -30° to Q°
position. Curve (al) is the UOTCS response
using FLC with thrust force saturation. There
is no peak overshoot and the output reach
level position in 8 seconds. The response is
not seriously influenced by the controller gain
(curve (a2)). When using the PID controller
the peak owvershoot increases to (25.8%) and
the settling time increases to 10 seconds
(curves (bl) and (al)). Curve (a3) shows the
response of the helicopter with FLC without
thrust force saturation. Again, no peak
overshoot is shown and the settling time is 8
seconds. The corresponding PID controller
response (curve (b3)) shows a peak overshoot
of (8.3%) with 9.5 seconds settling time.
Figure (12) presents a performance
comparison of FLC, PID and PD pitch
controllers for pitch only maneuver. The
performance with PID and PD controllers is
sensitive to the saturation nonlinearity as
indicated by curves (b1) and (b3) (for gains %2
and 1) or (b2) and (b4). Using the PD pitch
controller leads to steady state error as shown
by curves (b1) and (b3). Curves (al) and (a2)
clearly point out the robustness of the FLC to
saturation nonlinearity and its fast response.
The performance of the FLCs under
conditions of coupling between elevation and
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pitch motions is shown in figure (13).
Simultaneous step inputs are applied to both
inputs (elevation (-30° to 0°) and pitch (0° to -
5%)) with and without saturation thrust forces.
The corresponding UOTCS responses with
PID controllers are also shown (continuous
curves). The FLC shows a peak overshoot of
33% and settling time 9.5 seconds (curve
(al)) as compared with 53% and 13.5 seconds
when PID controller is used (curve (bl)).
When a PD pitch motion controller is used,
the peak overshoot is reduced to 37% and the
settling time to 11 seconds, as shown by
curve (bl) in figure (14). Figure (15) shows
the pitch angle response. The steady state
error is a result of the PD action. The figure
clearly displays the same trend of the
superiority of the FLC in terms of robustness
and speed of response.

The dotted curves shown in figures (13),
(15) and (16) are obtained when the second
model is used, where the inertias of the
propeller motors, counterweight and beams
are assumed negligible as reported in
reference [1]. The UOTCS responses are
similar to those of the first model except that
now the responses are faster with reduced
peak overshoot (dotted curves of figure (13)).
This is attributed to the reduced mass inertias.
The steady state error shown in figure (15) is
eliminated if a PID pitch controller is used, as
shown in figure (16).

The numerical tests lead to the same
result that the FLC is superior in terms of
robustness and speed of response. In
conclusion, the FLC is better with regard of
peak overshoot and settling time when
compared with the PID controller.

4. 3D Animation of UOTCS Helicopter

A 3D UOTCS Helicopter scene was
created using VRML to provide a powerful
tool to facilitate teaching and research (figure
(17)). VRML is a scene description language
which is human readable [8]. The VRML
scene graph is composed of a hierarchy of
nodes and routes. The UOTCS helicopter

scene has three degrees of freedom.
“Transform” nodes are used to control
rotational values of the entire “children”

nodes below it. The “children” node contains
one or more objects. Each “Transform” node
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are named as travel, elevation and pitch, so
that they can be rotated separately. Also three
viewpoints and Background nodes are used to
enable the UOTCS helicopter object to be
viewed in different directions [6].

Using the simulink of figure (3b), the
response of the helicopter over time is made
visually realistic with user interaction option.
Simulink provides connection for control and
manipulation of virtual reality object, using
virtual reality toolbox [9]. The VR toolbox is
a solution for interacting with VR models of
dynamic system over time.

5. Conclusions

A mathematical model for a recently built
3DOF table top helicopter experimental setup
named UOTCS helicopter was successfully
developed. It takes into account system
nonlinearities and mass moments of inertia of
the beams, the counterweight and the motors.
Fuzzy logic controllers for the coupled
elevation and pitch motions are successfully
designed and tested. Their performance is
found to be superior and robust compared
with their PID controllers' counterpart. The
former controllers cover a wider range of
operating conditions. Finally, the developed
3D UOTCS Helicopter scene is an attractive
alternative to traditional laboratory
equipments which can meet educational
objectives.

The theoretical model is to be extended in
the future to take into account structural
flexibility and propeller air friction and
inertia. Also, other controller designs are to
be investigated. The use of virtual reality is
very useful in helping users to interact with
the model and view the behavior of the
UOTCS helicopter and its response over time.
The overall student reaction should also be
investigated and their feedback should be
analyzed with the ultimate goal of providing
laboratories suitable for distance learning.
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List of Symbols
Cij Christoffel’s symbols.

C(q,q) The second matrix of the Euler-

Lagrange equation.
Cij Elements of the matrix C(q, q).

D(q) Inertia matrix.

di Offset of the frame i.

F The external generalized force vector.

F, Back motor thrust force.

F; Front motor thrust force.

kq Derivative gain.

g(qg) Gravitational matrix .

J Jacobian matrix.

ke Gain of the error input to elevation
controller.
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ke Gain of the change of error input to
elevation controller.

kee Gain of the output from elevation
controller.

ko1 Gain of error input to pitch controller.

ko2 Gain of the change of error input to pitch
controller.

kop Gain of the output from pitch controller.

g The set of the generalized coordinate for the
system.

Q The vector of the generalized forces acting
on the system.

T; The homogeneous transformation related
two coordinate frames (i) and (i-1) attached to
the links which are connected to the rotational
joint.

a; Twist angle of the frame i.

¢ Elevation angle.

6 Pitch angle.

6; Angle of the frame i.
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T Travel angle.

7(g) Torque vector.

Note: Refer to figure (3a) for definitions of
Masses (m), Lengths (L) & Inertias (1).

Table (1) Structural Kinematics Parameters

Link Name A o d @ 8, - name
1 Travel joint 0 w/2 0 ) travel
2 Elevation joint 0 w2 0 e+m/2 Elevation
3 Elevation jomt 0 w/2 Lo etm/2 Elevation
4 Arm -h 0 Ly 8 Pitch
5 Front Motor Ly m/2 0 /2 Fixed
6 Back Motor L, /2 0 n/2 Fixed
7 Counter-weight L, /2 0 getm Elevation

* Where L =(Ly +L )/2
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Table (2) Elevation and Pitch Transfer Function for each Operating Point.

[~ = 6] [0°30° 07 | [0 30" 0] [0°-15 0] [0°-15 0] | [0 0 0]
[0 0] [0.001 0.001] [0 0] [0.001 0.001] | [0.0450.0457]
[Ff Fb]
Elevation T.F 256 21 285 25 205
2 2 2 2 2
(2568°+1) | (2088’+ 1 | (28ssirn | 2ssten | 22287+
Pitch TF 1 101 0.9 0.91 0.87
2 2 2 2
18s 4+ 1) | 0198’4+ | 178" +sn | 0178t | (0168 + 1)

Table (3) Rule-Base for Elevation and Pitch Controller.

e
Output

NE | NM NS | ZR PS | PM | PB

NB |[ZR | NS | NS | ZR PS | PM | PM

NM | NM | ZR | NS | NS PS |PS | PM

NS |NM | NM | ZR | NS PS | PS | PS

e | IR | NS NS NS none | PS | PS PS

PS (NB | NM | NM | PS ZR | FB | PS

PM | NB | NM | ZR | ZR PB |ZR | PB

PB NB |[NB |ZR | IR PB | PB | ZR
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Slip-ring
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Figure (1) 3DOF UOTCS Helicopter Figure (2) UOTCS Helicopter
simulator [1]. coordinates system assignment.
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* Figure (2) & Table (1) define the lengths.
# | is the mass moment of inertia & first suffix specifies
the axis, second suffix specifies: h=helicopter body,
a= main beam, c=counter weight, p=front & back motor. (a)
$ m mass & the suffix designation is as the second suffices
defined in # above.
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Figure (3) a) MATLAB Fnc dedicated to solve the UOTCS nonlinear differential
equations. b) UOTCS nonlinear Simulg'ﬂ( with pitch & elevation controllers [6].
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Figure (4) Elevation proportional plus Figure (6) Step input responses when tuning
integral fuzzy logic controller. FLCs with the linearized model.
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(a) Elevation controller input a) Pitch response (0 to -5°).
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membership function.

Figure (5) Fuzzy sets membership function; Figure (7) a) Pitch & b) elevation tests

a) Elevation controller. b) Pitch controller. Using FLC after tuning with the non-
linear model.
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Figure (8) Elevation angle response with

& without pitching of the nonlinear model.
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Figure (11) A comparison

without saturation.
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Figure (9) Pitch angle responses of Figure (12) Performance comparison of
the nonlinear model. FLC, PID & PD controllers with pitch only
maneuvering.
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Figure (10) Elevation angle responses from
level to 20° with an initial thrust force.
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Figure (13) Elevation angle responses from
-30° to level with pitching action & usin PID

pitch controller.
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Figure (14) Elevation angle responses from -30° Figure (17) UOTCS helicopter scene created
to level with pitching action & using PD pitch using VRML.

controller.
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Figure (15) Pitch angle responses from 0° to -5°
using PD pitch controller.
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Figure (16) Pitch angle responses from 0° to -5°
using PID pitch controller.
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