
Journal of Babylon University/Pure and Applied Sciences/ No.(4)/ Vol.(21): 2013

 1128

Solving Heat Equation Of Higher-Dimensional Of

Partial Differential Equations

Ahmed Sabah Ahmed Al-Jilawi

University Of Babylon / College of Education / Ibn Hayan

Abstract

 The main objective of this paper is to solve the equation of heat that is part of the partial differential

equations and large-scale (three dimensions) through the adoption of the method of division of memory

and compressed and analysis of the field in the form of arrays for storage and collection of data and are

evaluated technology through methods (subspace Krylov) The results showed that this method

achieved a desirable speed through the speed of communication and exchange of data between

processors, as well as the distribution of data among all participating processors by (Matlab Software)

 ان الھدف الاساسي من ھ�ذا البح�ث ھوح�ل معادل�ة الح�رارة الت�ي ھ�ي ج�زء م�ن المع�ادلات التفاض�لیة الجزئی�ھ واس�عة النط�اق الخلاصة

م�ن خ�لال اعتم�اد اس�لوب تق�سیم ال�ذاكره وض�غطھا وتحلی�ل المج�ال عل�ى ش�كل م�صفوفات لاغ�راض التخ�زین وجم�ع) ثلاثي الابعاد (

ئج ان ھ�ذه الطریق�ة تحق�ق ت�سریع مرغ�وب فی�ھ واظھ�رت النت�ا) فضاء جزئي كریل�وف (ا من خلال اسالیب البیانات ویتم تقیم التكنلوجی

 من خلال سرعة الاتصال وتبادل البیانات بین المعالجات وكذالك توزیع البیانات بین جمیع المعالجات المشاركھ عن طریق

(Matlab Software)

1. Introduction

 A domain decomposition algorithm based on finite difference for heat equation

was presented in [K. A. Gallivan, and etc]. The whole area is partitioned into several

sub-domains, each of which is solved by the implicit method on the internal elements

while handled by the classical explicit method on the boundary grids. A refined

real-time parallel algorithm for time discretization of a partial differential evolution

equation was proposed in [U. Schendel, 1984]. The method based on an Euler scheme

combines coarse resolutions and independent fine resolutions in time in the same

spirit as standard spatial approximations.

Despite the significant progress in developing parallel iterative solvers to increase the

stability and convergence rate of algorithms , the storage and partition of data remains

a challenge in handling large-scale heat equation and little work has been carried out

on it. This could result from the strong correlation of data and large amounts of global

communication between processors.

This paper describes a massive parallel computing scheme for heat equation. The

primary goal of this research is to present a scalable parallel algorithm which could

meet the intense demands on modeling capability. This is achieved by optimizing the

following procedures: (1) Efficient domain decomposition method; (2) Efficient

memory sharing and data distribution among all participating processors; (3) optimal

parallelized iterative solver and preconditioners for handling linear systems of

equations; (4) fast communication and data exchange among processors.

 1129

2. Classification of Partial Differential Equations

High-order partial differential equations, and systems of second-order PDEs, can

usually be classified as parabolic, [V. Hernandez, J.E. Roman, A.] hyperbolic or

elliptic. This classification gives an intuitive insight into the behaviour of the system

itself. The general high-order PDE is of the form

 0.....2  yyxyxx CuBuAu

 Similar to the technique used to obtain an analytical solution,

 B2 – 4AC < 0 ––––> Elliptic (e.g. Laplace Eq.)

 B2 – 4AC = 0 ––––> Parabolic (e.g. Heat Eq.)

 B2 – 4AC > 0 ––––> Hyperbolic (e.g. Wave Eq.)

Each category describes different phenomena. Mathematical operties correspond to

those phenomena. Prototype problem, Heat Equation

1D 0,)(,
2

2


















tx

t

u
k

x

u

2D 0,),(,
2

2

2

2























tyx

t

u
k

y

u

x

u

3D 0,),,(,
2

2

2

2

2

2




























tzyx

t

u
k

z

u

y

u

x

u

Where),0(),0(),0(LNM 

Given initial temperature distribution as well as boundary temps.

 (or rate of change of temp.) with

 k =
k

C




 = Coefficient of thermal diffusivity

Where k' = coef. of thermal conductivity

 C = heat capacity

  = density

2 . Overview of Three-dimensional Heat Equation

The three-dimensional heat equation can be written as

0,),,(,
2

2

2

2

2

2




















tzyx

t

u

z

u

y

u

x

u
 , (1)

on the domain),0(),0(),0(LNM  , with the initial condition 0,0  tuu

Journal of Babylon University/Pure and Applied Sciences/ No.(4)/ Vol.(21): 2013

 1130

and Dirichlet boundary conditions 0,),,(,  tzyxgu where

),,,(tzyxuu  ,),,(00 zyxuu  ,),,,(tzyxgg  .

This is a linear, second-order, parabolic partial differential equation. We discretize the

left-hand side using seven-point stencil finite differences method and set

KL

L
h

JN

N
h

IM

M
h zyx  ,, , equation (1) can be rewritten as

t

u

h

uuu

h

uuu

h

uuu

z

kjikjikji

y

kjikjikji

x

kjikjikji












 

2

1,,,,1,,

2

,1,,,,1,

2

,,1,,,,1 222
 (2)

where KLkJNjIMi  0,0,0 .

Considering zyx hhh  , equation (2) can be simplified to the follow equation:

2
1,,1,,,1,,1,,,1,,1,,6 xkjikjikjikjikjikjikji h

t

u
uuuuuuu 




  (3)

Applying equation 1,,1,,,1,,1,,,6   kjikjikjikjikjii uuuuuAU (4) to equation (3)

yields equation
t

u
huuAU xkjikjii




 

2
,,1,,1 (5) which could be written in

detail

t

u
h

U

U

AI

IAI

IAI

IA

x

m




























































2

1

1

1

11

11

1






, (6)

where 1I refers to a square matrix of order)1)(1( ln and

 Tlniliiii uuuuU 1,1,11,21,11, ,,,,  ，，，  .

Applying equation 1,,1,,,1,,1,,,6   kjikjikjikjikjiij uuuuuBU (7)

to equation (4) yields two equations kjikjiiji uuBUAU ,1,,1,   (8)

 1131

and





























B

B

B

A

2

22

22

2

I

II

II

IB




 (9)

where 2I refers to a square matrix of order 1l ,  Tljiiij uuU 1,,1j, ,,  ， and

)1()1(
61

161

161

16






































ll

B



(10).

For time discretization, it is handled by the backward Euler method which is a fully

implicit method. Thus we have equation































































0n,K0JN

0IM0,

0n1,-KL1

,1-JN1,1-IM1

22

2

1
,,

1
,,

2

1
1,,

1
,,

1
1,,

2

1
,1,

1
,,

1
,1,

2

1
,,1

1
,,

1
,,1,,

1
,,

Lkorkorjor

joriorigu

k

ji

h

uuu

h

uuu

h

uuu

t

uu

n
kji

n
kji

z

n
kji

n
kji

n
kji

y

n
kji

n
kji

n
kji

x

n
kji

n
kji

n
kji

n
kji

n
kji

 (11)

where t represents the time step and tnggtnuu tkji
n

kjitkji
n

kji  |,| ,,,,,,,, .

3 . Methodology and Implementation

3.1 Parallel partitioning of data

 Developing an efficient data decomposition method is a first and critical step

for a successful parallel scheme when it comes to a detailed,

multimillion-to-multibillion-cell computational model. For the purpose of obtaining

optimal performance, the program should balance the computation in each processor

as well as minimize the communication resulting from the placement of adjacent

elements to different processors. In this paper, the scheme of distributed array for

Journal of Babylon University/Pure and Applied Sciences/ No.(4)/ Vol.(21): 2013

 1132

parallel-computing systems is adopted to store the structured grids which hide the data

layout information and communication information behind. As shown in Figure.1, the

whole data area is represented by a set of nodes which could be further divided into

the local node and the ghost node. Ghost node is a node located at the bordering

portions owned by neighboring processes while local node refers to the node located

at the internal portions.

Figure.1. partitioning of data

3.2 The Sparse Matrix

 The sparse matrix resulted from the finite-difference discretization of partial-differential

equations is stored in a compressed matrix storage format such as AIJ which could also be varied

at runtime to achieve optimal performance. Only nonzero items and their global entries of a

submatrix for a partitioned mesh domain are stored on the processors in order to reduce the

memory requirement. [Zeyao Mo, Xiaowen Xu Volume 33, Issue 3, April 2007]

As computational domain becomes larger, the assembling of sparse matrix becomes

the key issue of achieving high performance. Figure.2 illustrates the layout of a sparse

square matrix of order 5*5*5 from the finite-difference discretization of

partial-differential equation of three-dimensional heat equation. As the whole domain

is partitioned into several sub-domains, we develop a method to assemble the sparse

matrix parallel based on distributed matrix storage. Defining Istart and Iend as

the lower bounder and upper bounder of global index respectively, Ii as the index of

the current row and assigning values to matrix row by row, then as illustrated in

equations (6)-(10), the assembly of sparse matrix could be schematically outlined as

follow.

 1133

;

;6:),(

;1:)1,()1(

;1:)1,()0(

;1:),()1(

;1:),()0(

;1:)*,()1(

;1:)*,()0(

;***:);**(:);*/(:

:

endfor

IiIiPosition

IiIiPositionthenljif

IiIiPositionthenjif

lIiIiPositionthennjif

lIiIiPositionthenjif

lnIiIiPositionthenmiif

lnIiIiPositiontheniif

ljlniIiklniIijlnIii

doIendtoIstartIifor



















4. Performance Evaluation

 The cluster is composed of four nodes, each of which contains a multi-core Intel

Xeon CPU (two cores) and connected by kilomega Ethernet. The main frequency of

CPU is 3.0GHz and memory space per node is 4GB. [Haberman, Richard 2003] We

adopted structured mesh for spatial discretization, restarted GMRES as the iterative

method, preconditioned with block Jacobi method (with one block per process, each

of which is solved with ILU(0)).The convergence criterion used for iterative linear

solver is based on the l2-norm of the residual. Convergence is detected at iteration k

if)10,*10max(50

2

5

2

 brk where kk Axbr  , kr and b are the residual

and right-hand side, respectively.

Experiment was first carried out with discretization of 100*100*100 and 100 time

steps. The speedup of backward and forward Euler method versus processor number

is shown in Figure.2. The plot shows the speedup is almost linear as the processor

number varies from 2 to 4 while there is a large deviation as the processor number

increases to 8. This behavior was extensively analyzed that the limited memory space

rather than the performance of CPU is mainly responsible for the decline in efficiency.

As the number of processors increases, the size of the diagonal part of local domain

and computational effort for computing the preconditioners on each processor

decrease as ILU factorization is only performed on the diagonal. Therefore, the

speedup of backward Euler method is slightly higher than forward Euler method as

processor number increases.

Journal of Babylon University/Pure and Applied Sciences/ No.(4)/ Vol.(21): 2013

 1134

Figure.2. Speedup as processor number varies

Then we adjusted the spatial discretization from 100*100*8 to 100*100*128; and

time discretization is based on fully implicit backward Euler method. The speedup

and efficiency are shown in Table.1. From the table, the computational efficiency is

66.58% when the mesh size is 100*100*8 and it maintains at nearly 73%-74%. This

could be attributed to the proportion of input/out and initialization would decrease as

the problem scale expended. From our analysis, another reasonable reason could be

that the memory space on single node is not enough as the demand for storage space

may increase sharply. There are lots of data swapping in the process of computation

and it would decrease the efficiency of serial program.

Table.1. Speedup and efficiency as the problem scale varies

Grids
Escaping

Time (s)
Speedup Efficiency

100*100*8 45.17 2.66 66.58%

100*100*16 79.09 2.92 73.03%

100*100*32 146.72 2.90 72.37%

100*100*64 286.50 2.99 74.84%

100*100*128 591.95 2.95 73.73%

5 - Application of Heat Equation

 MATLAB, which is short for Matrix Laboratory, incorporates numerical

computation, symbolic computation, graphics, and programming. As the name

suggests, it is particularly oriented towards matrix computations, and it provides both

state-of-the-art algorithms and a simple, easy to learn interface for manipulating

matrices. In this tutorial, I will touch on all of the capabilities mentioned above:

numerical and symbolic computation, graphics, and programming.

5-1 Example:

A 100 cm iron bar, with ρ=7.88, c=0.437, and κ=0.836, is chilled to an initial

temperature of 0 degrees, and then heated internally with both ends maintained at 0

degrees. The heat source is described by the function

 1135

.)100(10),(28 xtxtxF  

The temperature distribution is the solution of

.0,0),100(

,0,0),0(

,1000,0)0,(

,0,1000),,(
2

2

















ttu

ttu

xxu

txtxF
x

u

t

u
c 

We will use standard piecewise linear basis functions and the techniques introduced in

Section 5.6 of this tutorial to compute the mass and stiffness matrices:

n=100

n =

 100

h=100/n

h =

 1

k=0.836

k =

 0.8360

p=7.88

p =

 7.8800

c=0.437

c =

 0.4370

K=sparse(n-1,n-1);

for ii=1:n-1

 K(ii,ii)=2*k/h;

end

for ii=1:n-2

 K(ii,ii+1)=-k/h;

 K(ii+1,ii)=K(ii,ii+1);

end

M=sparse(n-1,n-1);

for ii=1:n-1

 M(ii,ii)=2*p*c*h/3;

Journal of Babylon University/Pure and Applied Sciences/ No.(4)/ Vol.(21): 2013

 1136

end

for ii=1:n-2

 M(ii,ii+1)=p*c*h/6;

 M(ii+1,ii)=M(ii,ii+1);

end

(Note that, for this constant coefficient problem, we do not need to perform any

integrations, as we already know the entries in the mass and stiffness matrices.)

Now I compute the load vector. Here is the typical entry:

clear ii

syms x t ii

phi1=(x-(ii-1)*h)/h

phi1 =

x-ii+1

phi2=-(x-(ii+1)*h)/h

phi2 =

-x+ii+1

F=10^(-8)*t*x*(100-x)^2

F =

1/100000000*t*x*(100-x)^2

int(F*subs(phi1),x,ii*h-h,ii*h)+int(F*subs(phi2),x,ii*h,i

i*h+h)

ans =

1/500000000*t*(ii^5-(ii-1)^5)+1/4*(-1/500000*t+1/10000000

0*t*(-ii+1))*(ii^4-(ii-1)^4)+1/3*(1/10000*t-1/500000*t*(-

ii+1))*(ii^3-(ii-1)^3)+1/20000*t*(-ii+1)*(ii^2-(ii-1)^2)-

1/500000000*t*((ii+1)^5-ii^5)+1/4*(1/500000*t+1/100000000

t(ii+1))*((ii+1)^4-ii^4)+1/3*(-1/10000*t-1/500000*t*(ii

+1))*((ii+1)^3-ii^3)+1/20000*t*(ii+1)*((ii+1)^2-ii^2)

simplify(ans)

ans =

-1/3000000*t+1/100000000*t*ii^3-1/500000*t*ii^2+20001/200

000000*t*ii

Now I need to turn this formula into a vector-valued function that I can pass to beuler.

I write an M-file function

function y=f(t,n)

ii=(1:n-1)';

y=-1/3000000*t+1/100000000*t*ii.^3-1/500000*t*ii.^2+...

 20001/200000000*t*ii;

(Note the clever MATLAB programming in f6: I made ii a vector with components

 1137

equal to 1,2 ,...,n-1.

Then I can compute the entire vector in one command rather than filling it one

component at a time in a loop.)

Next I create the initial vector a0. Since the initial value in the IBVP is zero, a0 is

the zero vector:

a0=zeros(n-1,1);

Now I choose the time step and invoke beuler:

dt=2;

N=180/dt;

[a,t]=beuler(M,K,'f6',a0,N,dt);

The last column of a gives the temperature distribution at time t=180 (seconds). I

will put in the zeros at the beginning and end that represent the Dirichlet conditions:

T=[0;a(:,N+1);0];

xx=linspace(0,100,n+1)';

Here is a plot of the temperature after 3 minutes:

plot(xx,T)

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

Fig 3 Multiple spatial dimensions

6. Conclusions

 In this paper, The compressed matrix storage format is introduced and parallel

assembly of large scale sparse matrix is implemented in our work. has achieved great

improvement in computational efficiency and could significantly enhance the

modeling capability. an efficient parallel method for large-scale three-dimensional

equations is developed which integrates all kinds of most up-to-date parallel iterative

solvers and preconditioners for solving large sparse matrix systems of discrete

equations. Through the scheme of domain decomposition and distributed memory

technology, the requirements of intensive computational ability and large amounts of

memory space are distributed among and share by all processors of cluster. To further

improve parallel performance, we devote intensive effort to the storage and assembly

of sparse matrix.

Journal of Babylon University/Pure and Applied Sciences/ No.(4)/ Vol.(21): 2013

 1138

 References

Gallivan, K. A. Michael T. ,Heath, Esmond Ng, Ortega Applied Partial Differential

Equations ,1983

U. Schendel, Introduction to Numerical Methods for Parallel Computers, Ellis

Horwood Limited, 1984

R. J. Plemmons, Charles H. Romine, A. H. Sameh, Robert G. Voigt, Parallel

Algorithms for Matrix Computations, Society for Industrial and Applied

Mathematics, 1990

Haberman, R. Applied Partial Differential Equations. Edition 4.Prentice
Hall, 2003

MO Zeyao, Xiaowen Xu, Relaxed RS0 or CLJP Coarsening Strategy for Parallel

AMG, Parallel Computing, Volume 33, Issue 3, April 2007

V. Hernandez, J.E. Roman, A. Tomas, Parallel Arnoldi Eigensolvers with Enhanced

Scalability Via Global Communications Rearrangement, Parallel Computing,

Volume 33, Issues 7-8, August 2007

