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Abstract  

  The main objective of this paper is to solve the equation of heat that is part of the partial differential 

equations and large-scale (three dimensions) through the adoption of the method of division of memory 

and compressed and analysis of the field in the form of arrays for storage and collection of data and are 

evaluated technology through methods (subspace Krylov) The results showed that this method 

achieved a desirable speed through the speed of communication and exchange of data between 

processors, as well as the distribution of data among all participating processors by (Matlab Software)  

   

 ان الھدف الاساسي من ھ�ذا البح�ث ھوح�ل معادل�ة  الح�رارة الت�ي ھ�ي ج�زء م�ن المع�ادلات التفاض�لیة الجزئی�ھ  واس�عة النط�اق الخلاصة

م�ن خ�لال اعتم�اد اس�لوب تق�سیم ال�ذاكره وض�غطھا  وتحلی�ل  المج�ال عل�ى ش�كل م�صفوفات لاغ�راض التخ�زین وجم�ع ) ثلاثي  الابعاد (

ئج  ان ھ�ذه الطریق�ة  تحق�ق ت�سریع مرغ�وب فی�ھ  واظھ�رت النت�ا) فضاء جزئي كریل�وف (ا  من خلال اسالیب البیانات ویتم تقیم التكنلوجی

  من خلال سرعة الاتصال  وتبادل البیانات  بین المعالجات  وكذالك توزیع  البیانات  بین جمیع المعالجات المشاركھ عن طریق

(Matlab Software )   

1. Introduction 

     A domain decomposition algorithm based on finite difference for heat equation 

was presented in [ K. A. Gallivan, and etc ]. The whole area is partitioned into several 

sub-domains, each of which is solved by the implicit method on the internal elements 

while handled by the classical explicit method on the boundary grids. A refined 

real-time parallel algorithm for time discretization of a partial differential evolution 

equation was proposed in [U. Schendel, 1984]. The method based on an Euler scheme 

combines coarse resolutions and independent fine resolutions in time in the same 

spirit as standard spatial approximations. 

Despite the significant progress in developing parallel iterative solvers to increase the 

stability and convergence rate of algorithms , the storage and partition of data remains 

a challenge in handling large-scale heat equation and little work has been carried out 

on it. This could result from the strong correlation of data and large amounts of global 

communication between processors.  

This paper describes a massive parallel computing scheme for heat equation. The 

primary goal of this research is to present a scalable parallel algorithm which could 

meet the intense demands on modeling capability. This is achieved by optimizing the 

following procedures: (1) Efficient domain decomposition method; (2) Efficient 

memory sharing and data distribution among all participating processors; (3) optimal 

parallelized iterative solver and preconditioners for handling linear systems of 

equations; (4) fast communication and data exchange among processors. 
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2. Classification of Partial Differential Equations 

High-order partial differential equations, and systems of second-order PDEs, can 

usually be classified as parabolic, [ V. Hernandez, J.E. Roman, A.]  hyperbolic or 

elliptic. This classification gives an intuitive insight into the behaviour of the system 

itself. The general high-order PDE is of the form 

   0.....2  yyxyxx CuBuAu  

  Similar to the technique used to obtain an analytical solution, 

  B2 – 4AC < 0    ––––> Elliptic    (e.g. Laplace Eq.) 

  B2 – 4AC = 0    ––––> Parabolic   (e.g.  Heat Eq.) 

  B2 – 4AC > 0    ––––> Hyperbolic   (e.g.  Wave Eq.)  

Each category describes different phenomena. Mathematical operties correspond to 

those phenomena. Prototype problem, Heat Equation 
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Where     ),0(),0(),0( LNM   

Given initial temperature distribution as well as boundary temps. 

 (or rate of change of temp.) with 

 k  = 
k

C




  = Coefficient of thermal diffusivity  

Where    k' = coef. of thermal conductivity   

         C = heat capacity 

          = density 

 

                                                                                 

2 . Overview of Three-dimensional Heat Equation 

 

The three-dimensional heat equation can be written as  
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on the domain ),0(),0(),0( LNM   , with the initial condition 0,0  tuu  
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and Dirichlet boundary conditions 0,),,(,  tzyxgu  where 

),,,( tzyxuu  , ),,(00 zyxuu  , ),,,( tzyxgg  .  

This is a linear, second-order, parabolic partial differential equation. We discretize the 

left-hand side using seven-point stencil finite differences method and set 
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where KLkJNjIMi  0,0,0 . 

Considering zyx hhh  , equation (2) can be simplified to the follow equation: 

2
1,,1,,,1,,1,,,1,,1,,6 xkjikjikjikjikjikjikji h

t

u
uuuuuuu 




    (3) 

Applying equation 1,,1,,,1,,1,,,6   kjikjikjikjikjii uuuuuAU (4) to equation (3) 

yields equation
t

u
huuAU xkjikjii
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,,1,,1  (5) which could be written in 

detail 
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where 1I  refers to a square matrix of order )1)(1(  ln  and 

 Tlniliiii uuuuU 1,1,11,21,11, ,,,,  ，，，  . 

Applying equation 1,,1,,,1,,1,,,6   kjikjikjikjikjiij uuuuuBU  (7) 

to equation (4) yields two equations kjikjiiji uuBUAU ,1,,1,    (8)  
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and 
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where 2I  refers to a square matrix of order 1l ,  Tljiiij uuU 1,,1j, ,,  ，  and 
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(10). 

 

For time discretization, it is handled by the backward Euler method which is a fully 

implicit method. Thus we have equation 
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    (11) 

where t  represents the time step and tnggtnuu tkji
n

kjitkji
n

kji  |,| ,,,,,,,, . 

 

3 . Methodology and Implementation 

3.1 Parallel partitioning of data 

     Developing an efficient data decomposition method is a first and critical step 

for a successful parallel scheme when it comes to a detailed,  

multimillion-to-multibillion-cell computational model. For the purpose of obtaining 

optimal performance, the program should balance the computation in each processor 

as well as minimize the communication resulting from the placement of adjacent 

elements to different processors. In this paper, the scheme of distributed array for 
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parallel-computing systems is adopted to store the structured grids which hide the data 

layout information and communication information behind. As shown in Figure.1, the 

whole data area is represented by a set of nodes which could be further divided into 

the local node and the ghost node. Ghost node is a node located at the bordering 

portions owned by neighboring processes while local node refers to the node located 

at the internal portions. 

 

Figure.1. partitioning of data 

 

 

 

3.2 The Sparse Matrix 

     The sparse matrix resulted from the finite-difference discretization of partial-differential 

equations is stored in a compressed matrix storage format such as AIJ which could also be varied 

at runtime to achieve optimal performance. Only nonzero items and their global entries of a 

submatrix for a partitioned mesh domain are stored on the processors in order to reduce the 

memory requirement. [ Zeyao Mo, Xiaowen Xu Volume 33, Issue 3, April 2007 ]  

As computational domain becomes larger, the assembling of sparse matrix becomes 

the key issue of achieving high performance. Figure.2 illustrates the layout of a sparse 

square matrix of order 5*5*5 from the finite-difference discretization of 

partial-differential equation of three-dimensional heat equation. As the whole domain 

is partitioned into several sub-domains, we develop a method to assemble the sparse 

matrix parallel based on distributed matrix storage. Defining Istart  and Iend  as 

the lower bounder and upper bounder of global index respectively, Ii  as the index of 

the current row and assigning values to matrix row by row, then as illustrated in 

equations (6)-(10), the assembly of sparse matrix could be schematically outlined as 

follow. 
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4.  Performance Evaluation 

    The cluster is composed of four nodes, each of which contains a multi-core Intel 

Xeon CPU (two cores) and connected by kilomega Ethernet. The main frequency of 

CPU is 3.0GHz and memory space per node is 4GB. [Haberman, Richard 2003 ] We 

adopted structured mesh for spatial discretization, restarted GMRES as the iterative 

method, preconditioned with block Jacobi method (with one block per process, each 

of which is solved with ILU(0)).The convergence criterion used for iterative linear 

solver is based on the l2-norm of the residual. Convergence is detected at iteration k  

if )10,*10max( 50

2

5

2

 brk  where  kk Axbr  , kr  and b  are the residual 

and right-hand side, respectively.  

Experiment was first carried out with discretization of 100*100*100 and 100 time 

steps. The speedup of backward and forward Euler method versus processor number 

is shown in Figure.2. The plot shows the speedup is almost linear as the processor 

number varies from 2 to 4 while there is a large deviation as the processor number 

increases to 8. This behavior was extensively analyzed that the limited memory space 

rather than the performance of CPU is mainly responsible for the decline in efficiency. 

As the number of processors increases, the size of the diagonal part of local domain 

and computational effort for computing the preconditioners on each processor 

decrease as ILU factorization is only performed on the diagonal. Therefore, the 

speedup of backward Euler method is slightly higher than forward Euler method as 

processor number increases.  
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Figure.2. Speedup as processor number varies 

 

Then we adjusted the spatial discretization from 100*100*8 to 100*100*128; and 

time discretization is based on fully implicit backward Euler method. The speedup 

and efficiency are shown in Table.1. From the table, the computational efficiency is 

66.58% when the mesh size is 100*100*8 and it maintains at nearly 73%-74%. This 

could be attributed to the proportion of input/out and initialization would decrease as 

the problem scale expended. From our analysis, another reasonable reason could be 

that the memory space on single node is not enough as the demand for storage space 

may increase sharply. There are lots of data swapping in the process of computation 

and it would decrease the efficiency of serial program. 

 

Table.1. Speedup and efficiency as the problem scale varies 

Grids 
Escaping  

Time (s) 
Speedup Efficiency 

100*100*8 45.17 2.66 66.58% 

100*100*16 79.09 2.92 73.03% 

100*100*32 146.72 2.90 72.37% 

100*100*64 286.50 2.99 74.84% 

100*100*128 591.95 2.95 73.73% 

 

5 - Application of Heat Equation 

    MATLAB, which is short for Matrix Laboratory, incorporates numerical 

computation, symbolic computation, graphics, and programming.  As the name 

suggests, it is particularly oriented towards matrix computations, and it provides both 

state-of-the-art algorithms and a simple, easy to learn interface for manipulating 

matrices.  In this tutorial, I will touch on all of the capabilities mentioned above: 

numerical and symbolic computation, graphics, and programming. 

5-1 Example:  

A 100 cm iron bar, with ρ=7.88, c=0.437, and κ=0.836, is chilled to an initial 

temperature of 0 degrees, and then heated internally with both ends maintained at 0 

degrees.  The heat source is described by the function 
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The temperature distribution is the solution of  

 

.0,0),100(

,0,0),0(

,1000,0)0,(

,0,1000),,(
2

2

















ttu

ttu

xxu

txtxF
x

u

t

u
c 

 

 

We will use standard piecewise linear basis functions and the techniques introduced in 

Section 5.6 of this tutorial to compute the mass and stiffness matrices: 

 
n=100   

n = 

   100   

h=100/n   

h = 

     1   

k=0.836   

k = 

    0.8360   

p=7.88   

p = 

    7.8800   

c=0.437   

c = 

    0.4370   

 
K=sparse(n-1,n-1);   

for ii=1:n-1 

   K(ii,ii)=2*k/h; 

end   

for ii=1:n-2 

   K(ii,ii+1)=-k/h; 

   K(ii+1,ii)=K(ii,ii+1); 

end   

 

M=sparse(n-1,n-1);   

for ii=1:n-1 

   M(ii,ii)=2*p*c*h/3; 
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end   

for ii=1:n-2 

   M(ii,ii+1)=p*c*h/6; 

   M(ii+1,ii)=M(ii,ii+1); 

end   

 

(Note that, for this constant coefficient problem, we do not need to perform any 

integrations, as we already know the entries in the mass and stiffness matrices.) 

 

Now I compute the load vector.  Here is the typical entry: 

 
clear ii   

syms x t ii   

phi1=(x-(ii-1)*h)/h   

phi1 = 

x-ii+1   

phi2=-(x-(ii+1)*h)/h   

phi2 = 

-x+ii+1   

F=10^(-8)*t*x*(100-x)^2   

F = 

1/100000000*t*x*(100-x)^2   

int(F*subs(phi1),x,ii*h-h,ii*h)+int(F*subs(phi2),x,ii*h,i

i*h+h)   

ans = 

1/500000000*t*(ii^5-(ii-1)^5)+1/4*(-1/500000*t+1/10000000

0*t*(-ii+1))*(ii^4-(ii-1)^4)+1/3*(1/10000*t-1/500000*t*(-

ii+1))*(ii^3-(ii-1)^3)+1/20000*t*(-ii+1)*(ii^2-(ii-1)^2)-

1/500000000*t*((ii+1)^5-ii^5)+1/4*(1/500000*t+1/100000000

*t*(ii+1))*((ii+1)^4-ii^4)+1/3*(-1/10000*t-1/500000*t*(ii

+1))*((ii+1)^3-ii^3)+1/20000*t*(ii+1)*((ii+1)^2-ii^2)   

simplify(ans)   

ans = 

-1/3000000*t+1/100000000*t*ii^3-1/500000*t*ii^2+20001/200

000000*t*ii   

 

Now I need to turn this formula into a vector-valued function that I can pass to beuler.  

I write an M-file function  

 
function y=f(t,n) 

ii=(1:n-1)'; 

y=-1/3000000*t+1/100000000*t*ii.^3-1/500000*t*ii.^2+... 

   20001/200000000*t*ii;   

(Note the clever MATLAB programming in f6: I made ii a vector with components 
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equal to 1,2 ,...,n-1. 

Then I can compute the entire vector in one command rather than filling it one 

component at a time in a loop.) 

Next I  create the initial vector a0.  Since the initial value in the IBVP is zero, a0 is 

the zero vector: 

 
a0=zeros(n-1,1);   

 

Now I choose the time step and invoke beuler: 

 
dt=2;   

N=180/dt;   

[a,t]=beuler(M,K,'f6',a0,N,dt);   

The last column of a gives the temperature distribution at time t=180 (seconds).  I 

will put in the zeros at the beginning and end that represent the Dirichlet conditions: 

 
T=[0;a(:,N+1);0];   

xx=linspace(0,100,n+1)';   

Here is a plot of the temperature after 3 minutes: 

 
plot(xx,T)   

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

 
Fig 3  Multiple spatial dimensions 

6. Conclusions 

      In this paper, The compressed matrix storage format is introduced and parallel 

assembly of large scale sparse matrix is implemented in our work. has achieved great 

improvement in computational efficiency and could significantly enhance the 

modeling capability. an efficient parallel method for large-scale three-dimensional 

equations is developed which integrates all kinds of most up-to-date parallel iterative 

solvers and preconditioners for solving large sparse matrix systems of discrete 

equations. Through the scheme of domain decomposition and distributed memory 

technology, the requirements of intensive computational ability and large amounts of 

memory space are distributed among and share by all processors of cluster. To further 

improve parallel performance, we devote intensive effort to the storage and assembly 

of sparse matrix.  
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