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Abstract

This paper deals with free longitudinal vibrations of nonuniform homogeneous cantilever beams.
Cantilever of rectangular cross-section with constant width and tapered thickness variation are considered.
Thickness at the clamped end is estimated while it changed with different values at free end at the ratio
equal to the relation (thickness at free end hf / thickness at clamped end hc) where this ratio change from
0.05 to 0.9. The exact solution of differential equation in the linear case of free axial vibrations of
nonuniform beam by using the analytic method by separation of variable in terms of Bessel function. Effect
of thickness ratio between free end to clamped end (hf / hc) for different value of thickness of cantilever at
clamped end and effect of different value of beam length on the characteristics of vibration ( natural
frequency and mode shape) are studied. Some of results are compared with approximation method which
called Raylieghs quotient. It is concluded that increasing the thickness of clamped end causes decrease in
the natural frequency at any value of length of beam also increasing the thickness ratio and increasing the
length of beam at assisted value of thickness at clamped end ( hc) causing decreased in the value of natural
frequency. On the other hand it is found that the value of mode shape of cantilever beam decrease
when increase the thickness ratio (hf / hc) at any value of thickness of clamped end and at the same value of
length of beam also the mode shape decreased with increasing thickness of clamped end (hc). Finally at the
same value of (hc) the value of mode shape decreased with increasing length of beam..
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List of Sympols
A(X) Area of cross section of beam at section x (m?).
C, Acrbitrary constant.

C, Avrbitrary constant.
C, Avrbitrary constant

E Modulus of elasticity (N/m?).

hc Thickness of beam at clamped end (cm).
hf Thickness of beam at free end (cm).

hx Thickness of beam at section x (cm).

L Length of beam (m).
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Jip Bessel function of order %
Ju»  Bessel function of order %
Jy Bessel function of order v.
m(x) Mass of part of length of beam x (Kg).
P Axial force at section x (N).

P +— ,Axial force at section (x+dx).

t Time (sec).

u(x,t) Displacement at any section x at time t.
U(x) Longitudinal displacement mode.

F(t) Function of time.

U/(x) Mode shape of order r.

U,(x) Derivative of displacement of mode shape.
w Width of beam (cm).

X Length of part of beam (m)
z Parameter is equal to (hc-Bx).
dz First derivative of parameter z w.r.t. x.

dz? Second derivative of parameter z w.r.t. x.
B Parameter define by Eq. (3 ).

€ Strain

A Parameter equal to (density /modulus of elasticity).
p Density of material of beam (kg/m°).

1 Natural frequency of beam at mode 1 (rad/sec).

fop Natural frequency of beam at mode r (rad/sec).

r Gama function.

1. Introduction

Free vibration or stability analysis of structures is one of the main required tasks for an
engineer to accomplish in the engineering design. Cantilevers of tapered thickness variation are
important for studies regarding geometry influence on different phenomena. Cantilevers in
general are key structures in many engineering applications. The fact that nonuniform cantilevers
can be, under specific circumstances, more sensitive than uniform cantilevers is an important
result. In particular they are extensively used as resonator sensors. Results regarding nonuniform
cantilevers of particular geometry used as resonator sensors have been already reported in the
literature. Sanger, 1968 studied the characteristics of free transverse of beam, the differential
equation of motion is solved analytically in terms of Bessel function, the beam which has
rectangular cross section for constant width and tapered thickness. Goel, 1976 applied an
analytical method to obtain exact solution for the determination of modes and frequencies of
nonuniform rectangular cross section beam in terms of Bessel function for free transverse
vibration in pyramids thickness. Wright, 1982 obtained solutions of differential equation for
natural frequency an analytical method in terms of power series by Frobenius method for beam of
constant thickness was dedicated to beam of one end sharp. Storti and Aboelanga, 1987
performed study for nonuniform beams in hypergeometric series of circular cross section were
linearly tapered. De Rosa, 1994 the general case of a stepped beam with a single step has been
solved, and the free vibration frequencies of a slender Euler-Bernoulli stepped beam with two
elastic ends are calculated. Auciello, 1996 presented a detailed study an exact analysis of free
vibration of of rectangular tapered beam with amass at the tip and flexible constraint.. The rotary
inertia of the concentrated mass is considered along with its eccentricity. Lavendelis and .
Zakrhevsky, 2000 presented the exact solution of differential equation in the linear case of free
bending vibrations of nonuniform beam with rectangular cross-section using the factorization
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method. This beam with constant width and parabolic thickness is a good approximation of the
gear tooth profile. The case of the beam with a sharp end is considered. Turner and Wiehn 2001
considered the dynamics of atomic force microscope (AFM) cantilevers in terms of flexural
vibrations. They investigated the sensitivity of a nonuniform cantilever beam (triangular with
constant width) against a uniform cantilever, and found that for values of a studied parameter (the
normal contact stiffness relative to the stiffness of the cantilever) greater than 100, the overall
sensitivity of the triangular cantilever is greater than or equal to that of the uniform beam.
Caruntu 2004, studied free vibration of nonuniform rotating beam which has circular cross
section and the differential equation in term of hypergeometic function Caruntu, 2007 studied
the transverse vibration of beam in two cases of cross section where the first case of circular cross
section which had both ends sharp and the second case was rectangular cross section for beam of
one end sharp. The differential equation was solved analytically in term of orthogonal
polynomials. Dumirtu I, Caruntu, 2009 This paper deals with free transverse vibrations of
nonuniform homogeneous beams. Cantilevers of rectangular (or elliptical) cross-section with
parabolic thickness variation, and cantilevers of circular cross-section with parabolic radius
variation, are considered. Factoring their fourth order differential equations of transverse
vibrations into a pair of second order differential equations leads to general solutions in terms of
hypergeometric functions.Exact natural frequencies and exact mode shapes are reported for sharp
parabolic cantilevers of various dimensionless lengths. Omer and Baki, 2010 The current study
presents a mathematical model and numerical method for free vibration of tapered piles
embedded in two-parameter elastic foundations. The method of Discrete Singular Convolution
(DSC) is used for numerical simulation. Bernoulli-Euler beam theory is considered. Various
numerical applications demonstrate the validity and applicability of the proposed method for free
vibration analysis. The results prove that the proposed method is quite easy to implement,
accurate and highly efficient for free vibration analysis of tapered beam-columns embedded in
Winkler- Pasternak elastic foundations.

In this paper, frequency equation, mode shape are obtained in analytic form of cantilever
beam which have tapered thickness and constant width for different ratio of thickness ration
between free end to clamped end and estimate the characteristics of vibrations at different value
of thickness at clamped end and different value of length also compare some of results with
approximate method which called Raylieghs quotient.

2. Theoretical analysis

Consider an abruptly varying thickness of cantilever beam of length L and the thickness

at any position of part of length of beam can be derived as shown in(Fig. 1).

A
A 4

Fig.(1): Varying thickness of cantilever beam

(hc—hf)/2  (hx—hf)/2
L o L—x
After simplified above relation yields:-

(1)
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h(x):hc—(hc—;hf)x 2)
Let p— hc[ hf 3)
Therefore eq.(2) becomes as shown below:
h(x)=hc - jx (4)
The area of cross section at a distance x from length of beam can be writing as follow:
A(X) =w * h(x) 5)
Substitute eq.(4) in the eq. (5) yields:
A(x) = w *(hc-Bx) (6)

Now we can be derive the natural frequency and mode shape for longitudinal motion of tapered
thickness of cantilever beam. For extensional vibration it is assumed that cross section, which are
initially plane and perpendicular to the axis of the beam, remain plane and perpendicular to that
axis and that the normal stress in the axial direction is the only component of stress. The axis of
the beam  coincides with the X-axis; the displacement at any section x is denoted by u
[Warburton, 1976].

Consider the schematic of the beam on Fig.2. Displacements, strains, and stresses are
assume uniform at a given cross section. From the figure, force P acts to the left and this force
plus an undetermined increment dP acts to the right where dP=0 for static equilibrium. For
dynamics problem, sum of the forces equals the product of mass and acceleration. Let the
element have a mass per unit length of m(x) (or alternatively m(x) = p(x) .A(x), where p(x) is the
density and A(X) is the area of te cross section at x).

_>u

2
p A(x)dx 24
ot?

Fig.(2): Schematic for the longitudinal vibration of beam

Then, by Newton's second law of motion for an element of length dx,

2
[P+dP](x, 1) — P(x, ) =m(x) dx 2 “(’Z"t) . )
ot
From the strength of materials, P= A E e= A E ou(x,t)/ox. Therefore, the force differential is
dP (x,t) _ Py dx, (8)
OX

dp(x.t) = %(A(x) g2 ué:’t)jdx, (9)

and
0 au(x,t) 0%u(x,1)
| A(X)EZ222 2 =
ax[ (x) ™ jdx m(x) dx 0 (20)
After substituting eq. (6) in the eq.(10) and then differential eq. yields the relation:
2 2
(hc—ﬂx)a u(x,t) _'Bau(x,t) =/1(hc—,8x)a u(x,t) (11)

ox? X at?
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where A = p/E
Let u(x,t) =U(x) . F(t) (12)
Differential eq. (12) for x & t and then substitute in eg. (11) can be obtained the following
equation,

d?u(x)

(hc— B x) Y0 25 he— AU () =0 (13)
dx? dx
Let z=hc—Bx then find dz & d°z, this substitute in the eq. (13) and after arranged yields
2 2
,4°U(@) _ﬂdU(z)+a)zU(z):0 (14)
dz? dz B

To apply this to our problem it is necessary to determine appropriate boundary conditions
to be applied at the clamped and free ends of beam., where U(X)x=0 = U(2),=n. = 0 and
(dU/dX)x=0=(dU/dz) =1, =0.

Identifying equation (14) with the general equation of Bessel function (Wylli, 1987),
therefore the final solution can be writing in form:

U(2)=C; 22 345 (\/? wZJ+ c,2423 4, [\/%7 a)zJ (15)

For small z, J,)(z)zr(ll+ )(%)U and  J_, (Z)zr(ll )(g]_u
13 -0

Now equation (15) becomes as follow:

U(z)~C,; zV/? 1 R R 1/2+C Juz 1 (1 /a 12 (16)
e e B

2

1/2 —1/2 17
U(z)=Cyz . 1 {i i(u} +C>5 . 1 [i ia)] ( )
2\ B r[i] 2\ B
2

12 (18)
. 1 1 A
viomen (37 )
r[zj
But to satisfy the second boundary condition (dU/dz),=. = 0, we must set C; = 0, causing solution
eg.(15) to reduce to

U(Z): C2 21/2 ‘]—1/2[ {% C()ZJ (19)

Applying the remaining boundary condition U(hc) = 0 to (19) gives

0= C2 hC1/2 Jl/Z[ % thJ (20)

And this satisfied if either C, = 0 or | 1/2[ [2 whcj = 0, the first result in the trivial solution
N B

u(z)=0 , which is no use. The second equation defines J,,, that is , Ci# 0 and

J—1/2[ /% a)hcjzo

From the division:- J.y, (X) = /ix cos(x) , therefore
T

Jl,z[x% whcj= O N (21)
A B
7 [— whc
\ B
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: _ 12 :
From eq.(20) and (21) we obtained 0= C, hc 2 cos( [2 whe)’ that yields to
A Y
7 |— eohc
\ B

A A V4
cos(.|[= whc) =0, therefore, (/= w, hc)=(2r-1)= (22)
5 VB 2
From eq.(22), we can solve for w,

_@r-Yz | p 23
T Ahc? @)

Equation (15) for the rth mode becomes

U(2)= C, z%? 31/2( f% a)zJ r=1,2,... (24)

From divisions of z eq.(24) becomes
U, (0= Cp (he— Y2 3 4, [,/% . (hcfﬂx)] (25)

Since the modes can only be specified to a constant, it is customary to normalize them according

tolj m(x)U 2 (x) dx =1 . [Benaroya, 1998 ] (26)

Su%stituted eq.(25) in the eq.(26)

yields: _Zm(x) |:Cr (he— Y2 3 4,5 [\/%7 w; (hc—,BX)szx -1 (27)
c? z m(x){(hc—ﬁx)llz J 1o [\/%7 wr (hc—ﬂx)ﬂz dx =1 (28)

Put m(x) = p. A(x), mass per unit length, substituted m(x) in eq.(28) and integrated by part we can
obtained the constant C, :-

1/2
c, = [FEel " (29)
m L

Where, m= p w (hc + hf)/2 it is represented mass per unit length. Substituted eq.(29) in the
eg.(25) and simplified we yields the modes shapes of vibrations in the following form

1/2
U, 00— \/@ o ot 3 1, [ \/g o o ﬁx)] (30)

That is shown the natural frequency and mode shape of longitudinal vibration in analytical
method but now we can obtain the natural frequency by using Rayliegh s quotient, where the
natural frequency is equal potential energy divided by kinetic energy. In the longitudinal motion
this relation can we shown below

i [u (x)]2 dx
JEAb @

2 _

a)r = L -
fmeolu, cof ax
0

Usually, one can only guess at the function U,(x). The better the guess, the closer (from above)
will the approximate frequency be to the actual value. For the first mode, we can obtain
reasonable approximate for ;. For a cantilever beam, guess for U;(x) a function equal zero at
x=0, that is, U;(0) = 0. At the free end, the deflection and slope must be not zero, and our guess
U,(x) must be such that U;(L)# 0 and U'1(L)# 0. We can arrive at several possible guesses for the
eigenfunction, but a simple one is, [Benaroya, 1998 |
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U, (x):a[l—cos;[—z} (32)

Where a is a constant, substitute the expression for U;(x) into the equation (32) and then integrate
the formula to find the approximation to be

7.55 E (hc + hf) (33)
w =
4l

0.75(hc+ hf)— & hfj
T

3. Results and Discussion:

Table(1) shows the properties and dimensions of cantilever beam and table (2) shows the
natural frequency of the first mode of the analytic method and Rayliegh s quotient for different
value of thickness at clamped end and different value of length of beam. The approximate value is
above the actual value since the approximate mode is always stiffer than the actual mode. Figures
(3 to 8) show the natural frequency of the first two mode of vibration as a function of the
thickness ratio of beam for different value of clamped thickness and different value of length of
beam. It is shown that there is decreased in natural frequency with increasing the thickness ratio
and increasing the clamped thickness which is cause increasing the mass according to the general

relation in free vibrations o,= /stifness / mass declares effect the mass on the natural frequency, in

the other wise the natural frequency also decreased with increasing the length of beam where the
length effect directly on stiffness of beam and when increased causing decreased the stiffness of
beam and finally caused decreased the natural frequency of beam at the same clamped thickness
and thickness ratio, we can note that the frequency increased with increasing the number of mode
(r=1,2), also can be seen the difference between three curves diminish when the thickness ratio
(hf/hc) increases, this behavior can be explained by the fact the geometrical structure of beam
approaches to uniform section when the ratio reaches to one, therefore the natural frequency equal

to (1.57 /E/pL2 ), can be written (1.57 /E y mL? ) that is mean the constant properties and the

length of beam effect on natural frequency . Figs (9&10) show the natural frequency as a function
of length of beam for different value of the thickness ratio and different thickness of clamped end
it is noted also the natural frequency is decreased with increasing the clamped thickness and
thickness ratio at the same value of length. It may be observe from figures the natural frequency
quickly decreased until approaches to (3.5m) where slowly variation occurs, this is attributed to
the fact of the structures for length less (3.5m) have very low stiffness when compare with
increasing mass, but for high length the structure approaches to stability where the stiffness
decreasing uniformly with increasing the mass. The main features of the mode shapes associated
with the first two of natural frequency as a function of the length of cantilever beam are
shown in Figs.(11 to 22) for variable clamped thickness and variable length of beam. It can
be note that for two mode shapes the amplitude is decreased with increasing the length of
beam, thickness ratio and thickness of clamped beam associated to equation (30), we
obtained that the behavior of all mode are wave which is to describe the motion of beam
through vibration for all modes. The displacements of motion for all modes are equal to
zero at minimum length of beam because of there is no motion at clamped end but the
displacement is the maximum value at the other end because it is free motion. The behavior
of wave of displacement isn’t axisymetric because of the boundary condition for two end
isn’t similar in the other wise the mass and the stiffener is tapered on the length of beam.

4.Conclusions:

From the results obtained, the main conclusion can be summarized as; the natural frequencies
of the tapered thickness of cantilever beam are decreased with increasing the clamped thickness,
thickness ratio and length of beam
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Table (1): Specifications of the tested models

Parameter Symbol Value Units
Length L 1-5 m
Thickness of clamped end hc 0.1,0,15,0.2 m
Thickness of free end hf 0.1hc - 0.9hc m
Width of beam w 0.1,0.15,0.2 m
Modulus of elasticity E 200 Gpa
Density p 7800 kg/m®
Table(2) :Natural frequencies of the first mode of varying thickness beam.
Length of beam Clamped Free thickness Rayliegh s Analytic
(L) m thickness hc(m) hf (m) quotient (R.M.) method
1 0.1 0.75hc 12774 12576
0.15 0.65hc 12210.86 12150
0.2 0..6hc 11932.55 11248.71
0.25 0.5hc 11381.69 11248.71
0.3 0.45hc 11108.63 10769.82
2 0.1 0.9hc 6820.532 5624.353
0.15 0.8hc 6530.123 6494.446
0.2 0.755hc 6387.229 6288.221
0.25 0.7hc 6245.707 6161.172
0.3 0.655hc 6105.43 6074.99
3 0.1 0.95hc 3484.154 2812.174
0.15 0.9hc 3410.265 3247.225
0.2 0.85hc 3410.266 2812.177
0.25 0.8hc 3337.257 3080.585
0.3 0.75hc 3265.062 3247.223

2nd. mode;;L=1m

1st. mode;L=1m
—=— he=10cm 70000 — —— hc=10cm
—4— hc=15¢cm —4— fc=15cm
—@— hc=20cm

—@— hc=20cm

uency :w2 (rad/sec)
L

Natural freq
w
1=}
3
S
S5}

Natural frequecy : wi (rad/sec)
L

0 T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T 0 T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T
0.0 01 0.2 03 0.4 05 0.6 07 0.8 09 10 0.0 01 02 03 04 05 06 0.7 08 09 10
Thickness ratio hffhc Thickness ratio hffhc

Fig. (3): Natural frequency as a function of Fig. (4): Natural frequency as a function of
thickness ratio of different value of clamped thickness ratio of different value of clamped
thickness for 1* mode at one meter length thickness for 2" mode at one meter length
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18000
2nd. mode ;L=2m
7 1st mode ; L=2m
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Thickness ratio hf/hc
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Thickness ratio  hffhc

Fig. (6): Natural frequency as a function of

Fig. (5): Natural frequency as a function of
thickness ratio of different value of clamped
thickness for 1* mode at two meter length

thickness ratio of different value of clamped
thickness for 2" mode at two meter length

30000

1stmode ; he= 10 cm

27000 —

—— L=im
b —— L=2m
24000 —|
21000 —|
18000 —
15000 —
12000 —

Natural frequency : wl (rad/sec)

9000 —

6000 —

3000 —

ST

T T T T T T
0.0 01 0.2 03 0.4 05 0.6 07 08 0.9 10
Thickness ratio hfihc

Fig. (7): Natural frequency as a function of
thickness ratio of different value of length
for 1° mode at clamped thickness = 10 cm

Natural frequency wi (rad/sec)

1st. mode ; he = 15 cm
—— L=1m
—— L=2m

o-
TTTT TN

T
o0 01 02 03

1717 T
0.4 s a5 07 08 08 10
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Fig. (8): Natural frequency as a function of
thickness ratio of different value of length
for 1° mode at clamped thickness = 15 cm
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18000

) 1st. mode : hc=15cm
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Fig. (9): Natural frequency as a function of Fig.(10): Natural frequency as a function of
length of different value of thickness ratio length of different value of thickness ratio
for 1* mode at clamped thickness = 10 cm for 1* mode at clamped thickness = 15 cm
020 = 2ndmode;L=1m ;hc=10cm
1st. mode;L=1m;hc=10cm - + Wlho=025
—=— hf/hc=0.25 016 —
—4— hf/hc=05 i —4— hilhc=05
—@— hi/hc=075 012 —@— hf/hc=075
0.08 ;
0.04 ;
; 0.00 4 ‘
5 oo 02 04 06 08 10
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4 4
-0.16 —
T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T -0.20 i

00 01 02 03 04 05 06 07 08 09 10
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Fig.(11):Mode shapes associated with Fig.(12):Mode shapes associated with
the first natural frequency of beam for the second natural frequency of beam
different value of thickness ratio respect for different value of thickness ratio
to one meter length at hc=10cm respect to one meter length at hc=10cm
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010

2nd. mode ;L= 1m ; he=15cm
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Fig.(13):Mode shapes associated with
the first natural frequency of beam for
different value of thickness ratio respect
to one meter length at hc=15cm

Fig.(14):Mode shapes associated with
the second natural frequency of beam
for different value of thickness ratio
respect to one meter length at hc=15cm

1st. mode L=1m ;hc=20 cm

—— hf/hc=025
—4— hf/hc=05
—@— hf/hc=075

2nd. mode ; L=1m ;hc =20 cm
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Fig.(15):Mode shapes associated with
the first natural frequency of beam for
different value of thickness ratio respect
to one meter length at hc=20cm

Fig.(16):Mode shapes associated with
the second natural frequency of beam
for different value of thickness ratio
respect to one meter length at hc=20cm
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1st. mode ; L=3m ;he=10cm

+ hf/hc=0.25
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2nd. mode ;L=3m ;hc=10cm
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Fig.(17):Mode shapes associated with Fig.(18):Mode shapes associated with
the first natural frequency of beam for the second natural frequency of beam
different value of thickness ratio respect for different value of thickness ratio
to three meter length at hc=10cm respect to three meter length at hc=10cm
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Fig.(19):Mode shapes associated with  F19-(20):Mode shapes associated with
the first natural frequency of beam for ~ the second natural frequency of beam

different value of thickness ratio respect  for different value of thickness ratio
to three meter length at hc=15cm respect to three meter length at hc=15cm
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Fig.(21):Mode shapes associated with Fig.(22):Mode shapes associated with
the first natural frequency of beam for the second natural frequency of beam
different value of thickness ratio respect for different value of thickness ratio
to three meter length at hc=20cm respect to three meter length at hc=20cm
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