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Abstract 
This paper deals with free longitudinal vibrations of nonuniform homogeneous cantilever beams. 

Cantilever of rectangular cross-section with constant width and tapered thickness variation are considered. 

Thickness at the clamped end is estimated while it changed with different values at free end   at the ratio 

equal to the relation (thickness at free end hf / thickness at clamped end hc) where this ratio change from 

0.05 to 0.9. The exact solution of differential equation in the linear case of free axial vibrations of 

nonuniform beam by using the analytic method by separation of variable in terms of Bessel function. Effect 

of thickness ratio between free end to clamped end (hf / hc) for different value of thickness of cantilever at 

clamped end and effect of different value of beam length on the characteristics of vibration ( natural 

frequency and mode shape) are studied. Some of results are compared with approximation method which 

called Raylieghs quotient. It is concluded that increasing the thickness of clamped end causes decrease in 

the natural frequency at any value of length of beam also increasing the thickness ratio and increasing the 

length of beam at assisted value of thickness at clamped end ( hc) causing decreased in the value of natural 

frequency. On the other hand it is found that the value of mode shape of cantilever beam decrease 

when increase the thickness ratio (hf / hc) at any value of thickness of clamped end and at the same value of 

length of beam also the mode shape decreased with increasing thickness of clamped end (hc). Finally at the 

same value of (hc) the value of mode shape decreased with increasing length of beam..  
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 الخلاصة
.  ث  حثة  الظللةث  لعاما ث  الظا اث  الط متث   ثو طثةو وايثا والتثر  نثلم  اثة  ظت طث  الت ثا  دراسث  اههتثزاتاا اليتظاول هذا البحث   

مظثثا الظثثةو الط مثث   اظطثثا  , ياثث   ثث    ثثاية لةطثث  السثثط بشثث ع  تثثار  تغاثثةي سثثط  سثثتظاع مظثثا مثثة   ا ثث  و  امتبثثار الاما ثث  ماا   ظثث 
ياث  ا ثه هثذ   (hcالسثط  مظثا الظثةو الط مث   \  hf) السثط  مظثا الظثةو الحثةيتغاة مظا الظسب  الطساوي  لععلاق   الحة السط  مظا الظةو
  ظت طث فثر الحالث  اليظةث  للاهتثزاتاا الحثة  الطحلريث  لعاما ث  الغاثة  الحثع الطضثملل لعطعادلث  التلاةثعة  . 0.0 إلث  0.05الظسب   تغاة  ثو 

 ث  دراسث   ثر اة  سثب   الطصثظعحاا الياصث  بطعادلث  بسثع. إلث واللصثلل بلصثع الطتغاثةاا  ةي ث  التحعاعةث  والطتط عث  ط   لاسثظ  اسثتيااا الظ
العتبث  معث   ظثللو ثر اة لثة   يتعلث  ل لقثة   يتعلث  لسثط  الاما ث  مظثا الظهايث  الط متث hc)  (hf/ لظهاي  الحة  إل  الظهاي  الط متث السط   ا او ا

 .   ث  اهسثتظتا  ياصثع رايعثر ر   بعض الظتائج    الظةي   الت ةيمة  والتر  سثط اول ا       دد الظمةعر وش ع الظسق(خصائص اههتزات )التة 
ل العتبثث  ولثثذل  تيثثاد   سثثب  يسثثمت  ظثثاقص بثثالتةدد الظمةعثثر مظثثا  ط لةطثث   ثثو طثثل مظثثا تيثثاد  سثثط  العتبثث  مظثثا الظثثةو الط مثث    ثثو ملثث  بر ثثه 

و ثا بثام ( يسمت  ظاقص فر لةط  التثةدد الظمةعثر.  ثو  هث   خثة  hc (ا لةط   عاظ  لعسط  مظا الظةو الط م مظ السط  وتياد  طلل العتب 
 مظثا  ط لةطث  لسثط  الظثةو الط مث  ومظثا  لث  لةطث  طثلل العتبث   (hf / hc)ي ثع مظثا ا  ثزداد  سثب  السثط  لةطث  شث ع الظسثق لععتبث  الظا اث  

    لةط  الظسق   ع    تياد  طلل العتب . فام (hc (ل  خاةا مو  ل  لةط (. hc (ظةو الط م  ولذل  ش ع الظسق ي ع    تياد  السط  لع
List of Sympols 
A(x)     Area of cross section of beam at section x (m

2
).  

C1 Arbitrary constant. 

C2  Arbitrary constant. 

Cr  Arbitrary constant 

E Modulus of elasticity (N/m
2
). 

hc Thickness of beam at clamped end (cm).  

hf Thickness of beam at free end (cm). 

hx Thickness of beam at section x (cm).  

L Length of beam (m). 



 

J1/2 Bessel function of order 
2

1
. 

J-1/2 Bessel function of order -
2

1
. 

Jυ  Bessel function of order  υ. 

m(x) Mass of part of length of beam x (Kg). 

P Axial force at section x (N). 

x

P
P




 ,Axial force at section (x+dx).  

t  Time (sec). 

u(x,t) Displacement at any section x at time t. 

U(x) Longitudinal displacement  mode. 

F(t) Function of time. 

Ur(x) Mode shape of order r. 

Ur
'
(x) Derivative of displacement of mode shape. 

w  Width of beam (cm). 

x Length of part of beam (m) 

z Parameter is equal to (hc-βx). 

dz First derivative of parameter z w.r.t. x. 

dz
2
 Second derivative of parameter z w.r.t. x.  

β Parameter define by Eq. ( 3  ). 

ε Strain  

λ Parameter equal to (density /modulus of elasticity). 

ρ Density of material of beam (kg/m
3
). 

ω1 Natural frequency of beam at mode 1 (rad/sec). 

ωr Natural frequency of beam at mode r (rad/sec).  

Γ Gama function. 

1. Introduction 
 Free vibration or stability analysis of structures is one of the main required tasks for an 

engineer to accomplish in the engineering design. Cantilevers of tapered thickness variation are 

important for studies regarding geometry influence on different phenomena. Cantilevers in 

general are key structures in many engineering applications. The fact that nonuniform cantilevers 

can be, under specific circumstances, more sensitive than uniform cantilevers is an important 

result. In particular they are extensively used as resonator sensors. Results regarding nonuniform 

cantilevers of particular geometry used as resonator sensors have been already reported in the 

literature. Sanger, 1968 studied the characteristics of free transverse of beam, the differential 

equation of motion is solved analytically in terms of Bessel function, the beam which has 

rectangular cross section for constant width and tapered thickness. Goel, 1976 applied an 

analytical method to obtain exact solution for the determination of modes and frequencies of 

nonuniform rectangular cross section beam in terms of Bessel function for free transverse 

vibration in pyramids thickness. Wright, 1982 obtained solutions of differential  equation for 

natural frequency an analytical method in terms of power series by Frobenius method for beam of 

constant thickness was dedicated to beam of one end sharp. Storti and Aboelanga, 1987  

performed study for nonuniform beams in hypergeometric series of circular cross section were 

linearly tapered. De Rosa, 1994 the general case of a stepped beam with a single step has been 

solved, and the free vibration frequencies of a slender Euler-Bernoulli stepped beam with two 

elastic ends are calculated. Auciello, 1996 presented a detailed study an exact analysis of free 

vibration of of rectangular tapered beam with amass at the tip and flexible constraint.. The rotary 

inertia of the concentrated mass is considered along with its eccentricity. Lavendelis and . 

Zakrhevsky, 2000 presented the exact solution of differential equation in the linear case of free 

bending vibrations of nonuniform beam with rectangular cross-section using the factorization 
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method. This beam with constant width and parabolic thickness is a good approximation of the 

gear tooth profile. The case of the beam with a sharp end is considered. Turner and Wiehn 2001 

considered the dynamics of atomic force microscope (AFM) cantilevers in terms of flexural 

vibrations. They investigated the sensitivity of a nonuniform cantilever beam (triangular with 

constant width) against a uniform cantilever, and found that for values of a studied parameter (the 

normal contact stiffness relative to the stiffness of the cantilever) greater than 100, the overall 

sensitivity of the triangular cantilever is greater than or equal to that of the uniform beam. 

Caruntu 2004, studied free vibration of nonuniform rotating beam which has circular cross 

section and the differential equation in term of hypergeometic function Caruntu, 2007 studied 

the transverse vibration of beam in two cases of cross section where the first case of circular cross 

section which had both ends sharp and the second case was rectangular cross section for beam of 

one end sharp. The differential equation was solved analytically in term of orthogonal 

polynomials. Dumirtu I, Caruntu, 2009 This paper deals with free transverse vibrations of 

nonuniform homogeneous beams. Cantilevers of rectangular (or elliptical) cross-section with 

parabolic thickness variation, and cantilevers of circular cross-section with parabolic radius 

variation, are considered. Factoring their fourth order differential equations of transverse 

vibrations into a pair of second order differential equations leads to general solutions in terms of 

hypergeometric functions.Exact natural frequencies and exact mode shapes are reported for sharp 

parabolic cantilevers of various dimensionless lengths. Omer and Baki, 2010 The current study 

presents a mathematical model and numerical method for free vibration of tapered piles 

embedded in two-parameter elastic foundations. The method of Discrete Singular Convolution 

(DSC) is used for numerical simulation. Bernoulli-Euler beam theory is considered. Various 

numerical applications demonstrate the validity and applicability of the proposed method for free 

vibration analysis. The results prove that the proposed method is quite easy to implement, 

accurate and highly efficient for free vibration analysis of tapered beam-columns embedded in 

Winkler- Pasternak elastic foundations.  

In this paper, frequency equation, mode shape are obtained in analytic form of  cantilever 

beam which have tapered thickness and constant width for different ratio of thickness ration 

between free end to clamped end and estimate the characteristics of vibrations at different value 

of thickness at clamped end and different value of length also compare some of results with 

approximate method which called Raylieghs quotient. 

2. Theoretical analysis 

 Consider an abruptly varying thickness of cantilever beam of length L and the thickness 

at any position of part of length of beam can be derived as shown in(Fig. 1). 
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                         Fig.(1): Varying thickness of cantilever beam  
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After simplified above relation yields:- 
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L
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 Let
L

hfhc 
                   (3)                                                                                                                                                 

 Therefore eq.(2) becomes as shown below:  

xhcxh )(                               (4) 

The area of cross section at a distance x from length of beam can be writing as follow: 

A(x) = w * h(x)                                                     (5) 
Substitute eq.(4) in the eq. (5) yields: 

A(x) = w *(hc-βx)                                                 (6) 

Now we can be derive the natural frequency and mode shape for longitudinal motion of tapered 

thickness of cantilever beam. For extensional vibration it is assumed that cross section, which are 

initially plane and perpendicular to the axis of the beam, remain plane and perpendicular to that 

axis and that the normal stress in the axial direction is the only component of stress. The axis of 

the beam   coincides with the X-axis; the displacement at any section x is denoted by u 

[Warburton, 1976].  

Consider the schematic of the beam on Fig.2. Displacements, strains, and stresses are 

assume uniform at a given cross  section. From the figure, force P acts to the left and this force 

plus an undetermined increment dP acts to the right where dP=0 for static equilibrium. For 

dynamics problem,  sum of the forces equals the product of mass and acceleration.  Let the 

element  have a mass per unit length of m(x) (or alternatively m(x) = ρ(x) .A(x), where ρ(x) is the 

density and A(x) is the area of te cross section at x).      

                                                            u  
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                   Fig.(2): Schematic for the longitudinal vibration of beam  

 
Then, by Newton

 ,
s second law of motion for an element of length dx, 

  .
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)(),(),(
2

2

t

txu
dxxmtxPtxdPP




              (7) 

From the strength of materials, P = A E ε = A E xtxu  /),( . Therefore, the force differential is    

   ,
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),( dx
x

txP
txdP




                 (8) 
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ExA
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

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
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and   

















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After substituting eq. (6) in the eq.(10) and then differential eq. yields the relation:  

                      
2
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 
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    where λ = ρ/E                                 

Let   u(x,t) = U(x) . F(t)                                      (12) 

Differential eq. (12) for x & t and then substitute in eq. (11) can be obtained the following 

equation, 

0)()(
)()(

)( 2

2

2

 xUxhc
dx

xdU

dx

xUd
xhc           (13) 

Let   z = hc – βx  then find dz & d
2
z , this substitute in the eq. (13) and after arranged yields 

  0)(
)()( 2

2

2

 zU
dz

zdU

dz

zUd
z




                                                  (14) 

 To apply this to our problem it is necessary to determine appropriate boundary conditions 

to be applied at the clamped and free ends of beam., where U(x)x=0 = U(z)z=hc = 0 and  

(dU/dx)x=0=(dU/dz)z=hc  =0. 

 Identifying equation (14) with the general equation of Bessel  function (Wylli, 1987), 

therefore the final solution can be writing in form:   
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

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
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




2/1

2/1
22/1

2/1
1)(                            (15) 

For small z,  
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
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Now equation (15) becomes as follow: 
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But to satisfy the second boundary condition (dU/dz)z=hc = 0, we must set C1 = 0, causing solution 

eq.(15) to reduce to 














  zJzCzU 




2/1
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2)(                                                          (19) 

Applying the remaining boundary condition U(hc) = 0 to (19) gives 
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And this satisfied if either C2 = 0 or 













 hcJ 




2/1

= 0, the first result in the trivial solution 

u(z)=0 , which is no use. The second equation defines J-1/2, that is , C1≠ 0 and  
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From eq.(20) and (21) we obtained  2/1
20 hcC
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From eq.(22), we can solve for  ,    
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Equation (15) for the rth mode becomes  
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From divisions of z eq.(24) becomes 
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Since the modes can only be specified to a constant, it is customary to normalize them according 

to  

L

r dxxUxm

0

2 1)()(             .     [Benaroya, 1998  ]                             (26) 

Substituted eq.(25) in the eq.(26) 

yields:
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Put m(x) = ρ. A(x), mass per unit length, substituted m(x) in eq.(28) and integrated by part we can 

obtained the  constant Cr :- 

  
Lm

Cr

2/1)/( 
                                                                                                                        (29)  

Where,  m= ρ w  (hc + hf)/2 it is represented mass per unit length. Substituted eq.(29) in the 

eq.(25) and simplified we yields the modes shapes of vibrations in the following form 
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That is shown the natural frequency and mode shape of longitudinal vibration in analytical 

method but now we can obtain the natural frequency by using Rayliegh
' 
s quotient, where the 

natural frequency is equal potential energy divided by kinetic energy. In the longitudinal motion 

this relation can we shown below 
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Usually, one can only guess at the function Ur(x). The better the guess, the closer  (from above) 

will the approximate frequency be to the actual value. For the first mode, we can obtain 

reasonable approximate for 1 . For a cantilever beam, guess for U1(x) a function equal zero at 

x=0, that is, U1(0) = 0. At the free end, the deflection and slope must be not zero, and our guess 

U1(x) must be such that U1(L)≠ 0 and U'1(L)≠ 0. We can arrive at several possible guesses for the 

eigenfunction, but a simple one is, [Benaroya, 1998  ]                       
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Where a is a constant, substitute the expression for U1(x) into the equation (32) and then integrate 

the formula to find the approximation to be 
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3. Results  and  Discussion: 
          Table(1) shows the properties and dimensions of cantilever beam and table (2) shows the 

natural frequency of the first mode of the analytic method and Rayliegh
' 
s quotient for different 

value of thickness at clamped end and different value of length of beam. The approximate value is 

above the actual value since the approximate mode is always stiffer than the actual mode. Figures 

(3 to 8) show the natural frequency of the first two mode of vibration as a function of the 

thickness ratio of beam for different value of clamped thickness and different value of length of 

beam. It is shown that there is decreased in natural frequency with increasing the thickness ratio 

and increasing the clamped thickness which is cause increasing the mass according to the general 

relation in free vibrations ωn= massstifness /  declares effect the mass on the natural frequency, in 

the other wise the natural frequency also decreased with increasing the length of beam where the 

length effect directly on stiffness of beam and when increased causing decreased the stiffness of 

beam and finally caused decreased the natural frequency of beam at the same clamped thickness 

and thickness ratio, we can note that the frequency increased with increasing the number of mode 

(r=1,2), also can be seen the difference between three curves diminish when the thickness ratio 

(hf/hc) increases, this behavior can be explained by the fact the geometrical structure of beam 

approaches to uniform section when the ratio reaches to one, therefore the natural frequency equal 

to ( 257.1 L
E

 ), can be written ( 257.1 mL
AE ) that is mean the constant properties and the 

length of beam effect on natural frequency . Figs (9&10) show the natural frequency as a function 

of length of beam for different value of the thickness ratio and different thickness of clamped end 

it is noted also the natural frequency is decreased with increasing the clamped thickness and 

thickness ratio at the same value of length. It may be observe from figures the natural frequency 

quickly decreased until approaches to (3.5m) where slowly variation occurs, this is attributed to 

the fact of the structures for length less (3.5m) have very low stiffness when compare with 

increasing mass, but for high length the structure approaches to stability where the stiffness 

decreasing uniformly with increasing the mass. The main features of the mode shapes associated 

with the first two of natural frequency as a function of the length of cantilever beam are 

shown in Figs.(11 to 22) for variable clamped thickness and variable length of beam. It can 

be note that for two mode shapes the amplitude is decreased with increasing the length of 

beam, thickness ratio and thickness of clamped beam associated to equation (30), we 

obtained that the behavior of all mode are wave which is to describe the motion of beam 

through vibration for all modes. The displacements of motion for all modes are equal to 

zero at minimum length of beam because of there is no motion at clamped end but the 

displacement is the maximum value at the other end because it is free motion. The behavior 

of wave of displacement isn’t axisymetric because of the boundary condition for two end 

isn’t similar in the other wise the mass and the stiffener is tapered on the length of beam. 

4.Conclusions: 
From the results obtained, the main conclusion can be summarized as; the natural frequencies 

of the tapered thickness of cantilever beam are decreased with increasing the clamped thickness, 

thickness ratio and length of beam 

 



 

Table  ( 1 ) :  Specifications  of  the  tested models 

Parameter Symbol Value Units 

Length 

Thickness of clamped end 

Thickness of free end 

Width of beam 

Modulus  of  elasticity 

Density 

L 

hc 

hf 

w 

E 

ρ 

1- 5 

0.1, 0,15, 0.2 

0.1hc - 0.9hc 

0.1, 0.15, 0.2 

200 

7800 

m 

m 

m 

m 

Gpa 

kg / m
3
 

Table(2) :Natural frequencies of the first mode of varying thickness beam. 

Length of beam 

(L) m 

Clamped 

thickness hc(m) 

Free thickness 

hf (m) 

Rayliegh
' 
s 

quotient (R.M.) 

Analytic 

method 

1 0.1 

0.15 

0.2 

0.25 

0.3 

0.75hc 

0.65hc 

0..6hc 

0.5hc 

0.45hc 

12774 

12210.86 

11932.55 

11381.69 

11108.63 

12576 

12150 

11248.71 

11248.71 

10769.82 

2 0.1 

0.15 

0.2 

0.25 

0.3 

0.9hc 

0.8hc 

0.755hc 

0.7hc 

0.655hc 

6820.532 

6530.123 

6387.229 

6245.707 

6105.43 

5624.353 

6494.446 

6288.221 

6161.172 

6074.99 

3 0.1 

0.15 

0.2 

0.25 

0.3 

0.95hc 

0.9hc 

0.85hc 

0.8hc 

0.75hc 

3484.154 

3410.265 

3410.266 

3337.257 

3265.062 

2812.174 

3247.225 

2812.177 

3080.585 

3247.223 
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Fig. (3): Natural frequency as a function of 

thickness ratio of different value of clamped 

thickness for 1
st
 mode  at one meter length 

Fig. (4): Natural frequency as a function of 

thickness ratio of different value of clamped 

thickness for 2
nd

  mode  at one meter length 
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Fig. (5): Natural frequency as a function of 

thickness ratio of different value of clamped 

thickness for 1
st
 mode  at two meter length 

Fig. (6): Natural frequency as a function of 

thickness ratio of different value of clamped 

thickness for 2
nd

  mode  at two meter length 

Fig. (7): Natural frequency as a function of 

thickness ratio of different value of length 

for 1
st
 mode at clamped thickness = 10 cm 

Fig. (8): Natural frequency as a function of 

thickness ratio of different value of length 

for 1
st
 mode at clamped thickness = 15 cm 
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Fig. (9): Natural frequency as a function  of  

length of different value of thickness ratio 

for 1
st
 mode at clamped thickness = 10 cm 

Fig.(10): Natural frequency as a function  of  

length of different value of thickness ratio 

for 1
st
 mode at clamped thickness = 15 cm 

Fig.(11):Mode shapes associated with 

the first natural frequency of beam for 

different value of thickness ratio  respect 

to  one meter length at hc=10cm 

Fig.(12):Mode shapes associated with 

the second natural frequency of beam 

for different value of thickness ratio  

respect to one meter length at hc=10cm 
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Fig.(14):Mode shapes associated with 

the second natural frequency of beam 

for different value of thickness ratio  

respect to  one meter length at hc=15cm 

Fig.(13):Mode shapes associated with 

the first natural frequency of beam for 

different value of thickness ratio  respect 

to  one meter length at hc=15cm 

Fig.(15):Mode shapes associated with 

the first natural frequency of beam for 

different value of thickness ratio  respect 

to  one meter length at hc=20cm 

Fig.(16):Mode shapes associated with 

the second natural frequency of beam 

for different value of thickness ratio  

respect to  one meter length at hc=20cm 
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Fig.(17):Mode shapes associated with 

the first natural frequency of beam for 

different value of thickness ratio  respect 

to  three meter length at hc=10cm 

Fig.(18):Mode shapes associated with 

the second natural frequency of beam 

for different value of thickness ratio  

respect to three meter length at hc=10cm 

Fig.(19):Mode shapes associated with 

the first natural frequency of beam for 

different value of thickness ratio  respect 

to  three meter length at hc=15cm 

Fig.(20):Mode shapes associated with 

the second natural frequency of beam 

for different value of thickness ratio  

respect to three meter length at hc=15cm 
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