

 ١١٦٦

Designing Optimal Binary Search Tree Using
Parallel Genetic Algorithms

Bahaa Mohsen Zbeel
College Of Fine Art Babylon University

Abstract :-
 Evolutionary algorithms (EAs) are modern techniques for searching complex spaces for on
optimum . Genetic algorithms (GAs) are developed as random search methods, which have not so
sensitivity on primary data of the problems. They can be used in estimation of system parameters in
order to obtain the best result. This can be achieved by optimization of an objective function. Genetic
programming is a collection of methods for the automatic generation of computer programs that solve
carefully specified problems, via the core, but highly abstracted principles of natural selection. In this
paper, genetic algorithms and parallel genetic algorithms have been discussed as one of the best
solutions for optimization of the systems. Genetic and parallel genetic algorithms have been
investigated in Visual basic 6 Environment Then an optimal binary search tree has been selected as a
case study for decree sing of searching time. Also a dynamic programming method has been
accelerated by using of a parallel genetic algorithm. In this case, by increasing the size of data, speed-
up index will be increased.
Key words:
Optimization, Genetic Algorithm, Parallel Genetic Algorithm, Optimal Binary Search Tree

 -:الخلاصة

الخوارزمیـات الجینیـة . المعقـدة لوصـول الـى نتـائج مثلـى تالفـضائیاتقنیـات حدیثـة للبحـث فـي) EAs(التطوریـة تالخوارزمیانعتبر

)GAs (ممكـن ان تـستخدم . قد بینت كطرق بحث عشوائیة بحیث لا تكون حساسة بشكل كبیـر للبیانـات الرئیـسیة للمـسائل العاملـة علیهـا

البرمجــة الجینیـــة هـــي . ممكــن تحقیـــق ذلـــك بتحــسین دالـــة الهـــدف . مـــین معــاملات نظـــام مـــن اجــل الحـــصول علـــى نتیجــة افـــضل فــي تخ

 الخاصــة المبــادئ باســتخدام أساســا لبــرامج الحاســوب والتــي ممكــن ان تحــل بــشكل دقیــق مــسائل محــددة الآلــيمجموعــة مــن الطــرق للتولیــد

لتحــسین افــضل الحلــول ىكإحــدارزمیــات الجینــي والخوارزمیــات الجینیــة المتوازیــة قــد نوقــشت بالاختیــار الطبیعــي ، فــي هــذا البحــث ، الخو

 كأداة لبرمجة النظام وقد اختیرت افضل شجرة بحث ثنائي مـن حیـث اقـل وقـت للبحـث visual basic (6)النظام ، وقد استخدمت اللغة

 . وارزمیات الجینیة المتوازیة فیها وقد استخدمت طریقة البرمجة الدینامیة وسرعت باستخدام الخ

 -:كلمات مفتاحیة

 .التحسین ، الخوارزمیات الجینیة ، الخوارزمیات الجینیة المتوازیة ، شجرة بحث ثنائي مثلى

1. Introduction
Genetic algorithms are a part of evolutionary computing, which is a rapidly growing
area of artificial intelligence. Their basic working mechanism is as follows: the
algorithm is started with a set of solutions (represented by chromosomes) called
population. Solutions from one population are taken and used to form a new
population. This is motivated by a hope, that the new population will be better than
the old one [A. Kalynpur, M. Simon 2001, M. Obitco 2006 , J. Fernandez 2006].
Everything around us is part of some system. Researchers have tried to model it into
the system computer. The models were not complex enough to solve interesting
problems. Thus the models were not practical [Laurrens Jan Pit ١٩٩٥]. A system is a
black box with a set of input parameters.
The system developers measure the parameters of each subsystem separately, and
exhibit all them as a set of the system's parameters, but ignore the effect of sub-
systems on each other and disorders signals. In addition, the parameters should be set
so that the system conclude the best. For doing of this matter, it is needed to optimize
the output function of the system. It means that we should minimize or maximize it,
and consequently increase its performance. The goal of this research is achieving a

Journal of Babylon University/Pure and Applied Sciences/ No.(4)/ Vol.(21): 2013

 ١١٦٧

solution that these values are obtained faster without involving in internal properties
of the system. The optimal binary search tree has been considered as a case study.
Generally, there are three general methods for optimization and searching of these
optimal points [David E. Goldberg 1989] : The Calculus Based Searching method,
Enumerative Searching method and Random Searching method. The calculus based
searching method is divided to two branches : Direct and Indirect. In direct way, the
optimal points are btained by solution of some linear equations or non linear ones. In
indirect way, a limited of optimal pointes are obtained, then they are optimized by
Hill Climbing methods. In the enumerative searching method, the searching space of
the problem is processed and the value of objective function of the system is obtained
for each point, and finally optimal points are selected. Dynamic programming method
is of these cases. In random searching method, the space of searching problem is
searched by random for finding of optimal points. Genetic algorithm is a guided
random algorithm [David E. Goldberg 1989].
The two first methods aren’t cost effective and they don't effect if searching space of
the problem is expanded. Parallel algorithms are used to increase the speed and
performance of the optimization methods. The genetic algorithms are appropriate for
this purpose because of : 1) Independency to primary values of the parameters 2)
Independency to system's objective function properties (continuous, derivative, etc.)
3) Searching of greater space of the parameters values. The most important
characteristics of these algorithms is parallelism. It causes the increasing of the speed
and performance of the system and decrease the system's response time. Sometimes
due to existing the several objective functions in the system, using of genetic
algorithm will increase the system’s speed and will decrease the system's response
time.

2. Genetic Algorithms
Genetic algorithm can be viewed as a biological metaphor of Darwinian evolution
[Laurrens Jan Pit 1995]. It is a random searching method which creates a new
generation of the answers by selecting a collection of answers randomly, and
improves them in each stage, until finally it achieves an acceptable answer between
these answers. This algorithm have some components[Chong Fuey Sian,"A 1999,
David E. Goldberg 1989, Marek Obirko 1998, Ricardo Bianchini 1993]. These
components are :
Chromosome, Genetic population, fitness function, genetic operations, and genetic
algorithm parameters. By running of genetic algorithm, some chromosomes from
genetic algorithm are selected as parents. Next generation of chromosomes are created
by using the operators, and therefore the next genetic population is composed. This is
done by Select operator [Laurrens Jan Pit 1995, P. C. Chu and J. E 1995, Thomas Bak
1996].
Only selection of the parents is not enough for producing of the next generation of
chromosomes, but we should search for some methods for returning of the produced
chromosomes to the Genetic Population. This is also done by Replacement operator.
To doing of this case, after selecting the parents from Current population, they are
placed in the Intermediate population.

The genetic operation will be done on them until a new population of the
chromosomes will be created, then they will be placed in the Next population
[Laurrens Jan Pit 1995]. Permutation operator is used for recombination [Laurrens Jan
Pit 1995, Marek Obirko 1998]. The permutation operator is also another operator
which will cause innovation in the chromosomes of a genetic population. It also stops

 ١١٦٨

monotony in genetic population and stops involving the algorithm in the local
minimize or maximize points

3. Parallel Genetic Algorithms
For the first time, Holland, 1963, recognized the parallel nature of genetic algorithms,
and in 1976 Bethke calculate the complexity of doing the Genetic algorithm on
parallel machine, but he didn't simulate or implement it. Then in 1981, Grefenstette
presented some parallel implementation of genetic algorithms[David E. Goldberg
1989]. The way in which GAs can be parallelized depends on the following
elements[M. Nowostawski, R. Poli 1999]:
• How fitness is evaluated and mutation is applied

• If single or multiple subpopulations (demes) are used

• If multiple populations are used, how individuals are exchanged

• How selection is applied (globally or locally)
There have been some attempts to develop a unified taxonomy GAs which would
greatly help addressing this issue[R. Bianchini 1993]. There are several motivations
for parallelism of the genetic algorithms. One of them is intending for increasing
speed and performance of genetic algorithms using the parallel computers. The other
one is able to apply genetic algorithms for solving of greater problems in a reasonable
time and make it near to its own biologic structure in the nature. Also parallel genetic
algorithms show a high performance for solving the problems with multi-objective
functions.

3-1. Classes of parallel Genetic Algorithms
The parallel genetic algorithms are categorized to four classes : Global[Laurrens Jan
Pit 1995], Coarse-Grained [S. Lin, W. F. Punch 1994], Fine- Grained[T. Maruyama, T
1993], and Hybrid[Laurrens Jan Pit 1995]. A global genetic algorithm considers all
the population as a one. The population individuals are evaluated to obtaining their
fitness. Also the genetic operations act in parallel. The goal in this class is parallelism
of the genetic algorithm. These kinds of algorithms are implemented in two forms :
shared memory machines and distributed memory machines. In implementation of the
shared memory machines, the individuals of the genetic population will be stored in a
common memory, and each processor can access this memory. These processors get
some of individuals, and apply the genetic operators on them, and return them to the
common memory. Synchronization is necessary between processors in starting of
producing each generation. In the implementation of the distributed memory
machines, the genetic population is stored in the memory of a processor called Master
(or Farmer). This processor sends the individuals of the population to other processors
called Workers (or Slaves). The workers evaluate individuals and collect the results.
They also produce the next generations by using of genetic operators. This method
has two problems : 1) A great time is consumed to evaluating and the master is
unemployed. 2) If the master crash, the system will be stop. This model is presented
in three forms Synchronous, Asynchronous and Semi-Synchronous. In the
synchronous model, the processors are synchronized in the starting and ending of
each generation, therefore the master processor should wait for a slower processor. In
asynchronous or semi-synchronous models, the master processor doesn't wait. In here,
the master processor selects the individuals of the current population. Therefore the
processors will work asynchronously. The coarse-grained genetic algorithm divides
the genetic population to separate sub-populations. The separate genetic algorithm is
applied on the each subpopulation. The individuals are exchanged between
subpopulations in order to optimize the answers at special times. In other words, they

Journal of Babylon University/Pure and Applied Sciences/ No.(4)/ Vol.(21): 2013

 ١١٦٩

migrate between subpopulations. In most of the times, the size of subpopulations will
be taken equal. These kinds of algorithms usually are implemented on MIMD
computers with distributed memories. Some samples of these machines are such as :
CM-5, NCUBE, Intel's paragon, and etc.[Chong Fuey Sian 1999]. A point which
should be noted is that in this class, the communication between processors is very
lower than the calculated work which each processor do on their own sub-population.
A new operator called Migration operator, is presented here. This operator exchanges
the individuals between the sub-populations[Markus Schwehm 1996]. The following
actions is done by this operator :
• Selecting the emigrants: In this stage, the
emigrants of each sub-population are selected.
• Sending the emigrants: In this stage, the
emigrants of a sub-population are sent to the other one.
• Receiving the emigrants: In this stage, the emigrants are received from a sub-
population.
• Merging the emigrants: In this stage, the
emigrants are merged in a sub-population. By this operator, sending and receiving of
the individuals can be done in parallel message passing way. In this way, selecting
and merging of the emigrants cause a population of the best answers in each sub-
population. Migration models are presented in two forms: Island
model and Stepping-Stone model. In island model, the individuals are allowed to
migrate to each sub-population while in stepping-stone model, the migration limited
to the neighborhood sub-populations. In Island model, the individuals have freedom to
migrate, but the overhead of communication and delay are too much, while in
steppingstone model, the freedom of migration is limited but the overhead of
communication is decreased. The fine-grained genetic algorithm divides the genetic
population into several small sub-population (Deme), and sometimes it behaves with
each individual separately. In this algorithm, each one of the demes or individuals can
place on a separate processor and each individual can mates with its neighborhoods.
These kinds of algorithms also can be implemented on the parallel computers. The
first attempt in this field was done by Robertson in 1987 on SIMD computers, and this
algorithm was named ASPARAGOS [Chong Fuey Sian 1999, M. Gorges-Schleuter
1985]. In these kinds of algorithms, against of the coarse-grained genetic algorithms,
the communication between processors is more than the calculation work of each
processor. Also using these algorithms prevents from soon dominant of super
individuals on population. The hybrid genetic algorithm is a combination of two
previous algorithms. In here, two levels are considered for execution of algorithm
which in each level, a class of parallel genetic algorithms is applied. In 1994, Gruau
presented the hybrid genetic algorithm for the first time, and used it for Neural
Networks [Erick Cantu-Paz 1995].

3-2. Parallel population Models
Parallel population models state the following things
• How a population is divided to different subpopulations?

• How information is exchanged between subpopulations?
These models are divided into three general parts[Markus Schwehm 1996] : Global,
Regional, Local. In the global model, the population is not structured, the select
operation is general, the fitness of each individual is calculated related to all the
individuals, and each one of individuals can be selected as a parent for reproduction.
In regional model, the population is divided to several sub-populations (Region). The

 ١١٧٠

fitness of each individual is calculated related to the individuals of its sub-population,
and the parents are selected from that region. In the local model, the population has a
neighborhood structure. The fitness of each individual is determined related to its
local neighborhood, and parents are selected from the same neighborhood. Table1
shows the summary of related works with these three models [Markus Schwehm
1996]. Table 1:

Summary of Related Works with three Models

Reference Global Model Regional Model Local Model
GREFENSTETTE(1981)
MANDERICK et
al.(1989)
MACFARLANE et al.
(1990)
GORGESSCHLEUTER(
1992)
DORIGO et al. (1993)
WHITLEY(1993)
CANTU-PAZ(1995)

Master-Slave
R-Algorithm
Farming
Panmixia
-
Global Pop.
Global Par.

Network
Coarse Grain
Migration
Model
Migration
Model
Island Model
Island Model
Coarse Grain

Fine Grain
Diffusion Model
Diffusion Model
Neighborhood
Model
Cellular GA
Fine Grain

• They do less functional evaluation for finding the
optimized solutions.
• They are able to find several solutions.

• They can be synchronous or asynchronous.

• Their implementations accommodate with parallel architectures.

• They are fault tolerant.

• They are nearer to biological simile of evolution.

4. Designing of Optimal Binary Search Tree using the Parallel
Genetic Algorithms
• Definition: A binary tree T is the structure defined on a finite set of nodes that
either contains no nodes, or is composed of three disjoint sets of nodes: a root node, a
binary tree called its left sub-tree, and a binary tree called its right sub-tree [T.
Cormen 2001].

• Definition: A binary search tree (BST) is a binary tree whose nodes are organized
according to the binary search tree property: keys in the left sub tree are all less than
the key at the root; keys in the right sub-tree are all greater than the key at the root;
and both sub-trees are themselves BSTs. For any set of keys, there are many different
binary search trees. The time required to seek a given key can vary from tree to tree
depending on the depth of the node where the key is found, or the length of the branch
searched if the key is not present. An optimal binary search tree is a binary search tree
with minimum expected comparisons for special set of keys and their possibilities.
The number of comparisons is called Searching Time.
Suppose key1 , key2 , key3 , … key n are n keys, Pi
is the possibility of key i and C i is number of the
comparisons for finding of i key , then optimization of

Journal of Babylon University/Pure and Applied Sciences/ No.(4)/ Vol.(21): 2013

 ١١٧١

Binary Search Tree is minimizing of the following relation. It calculates the average
searching time for n keys in a binary search tree.

4-1. Dynamic Programming for Solving Problems
Suppose tree t1 is an optimal one for a case that key 1 is in the tree's root, tree t2 is
an optimal one for a case that key 2 is in the tree's root, and tree tn is an optimal one
for a case that n key is in the tree's root. Then we should search for a k , so that k key is
in the tree's root and searching time the tree for it be minimum. The same work is
repeated in left and right sub-trees, until an Optimal Binary Search Tree is formed.
This is shown with the.
following equation :

This equation calculates the minimum searching time. It means we should find a k so
make the time minimized. A is the cost function of the problem or in other words is
the minimum searching time, and R shows the tree's root in each stage. The execution
cost of this algorithm is equal with the cost of filling 2(m + n(n +1) / 2) + 2 memory
fields, because without considering the main diameter of matrixes, we should fill n
fields in the first line, n −1 fields in the second line, …, and 1 field in the last line of
each matrix. And if the elements of main diameters are considered, so we can reach to
above equation. In addition, we should choose the minimum values between different
k s which has cost of O(n) in the worst case. Then in total, the cost of this algorithm is
O(n2) ×O(n) = O(n3) . Of course, we can optimize this way, and in result decrease

time cost to O(n2) [John H. Holland 2005]. The above way was presented in 1959 by
Gilbert and was obtained in 1982 by Yaeu [John H. Holland 2005].

4-2. Genetic and Parallel Genetic Algorithms for
solving the Problems In the genetic algorithm, a collection of possible answers are
considered as C i s, and it is tried to find an optimal answer from them. Each array is
considered as an answer (or a chromosome). Each gene of this chromosome,
determine value of C for a key. And the internal number of each gene is value of C i
for key i. More over, we should consider the following case for each gene.
• 1 < Ci < n

• maximum number of 1s are 1, and maximum number
of 2 s are 2 , maximum number of 3 s are 4 , and in general, maximum number of k s
are 2k (regarding number of leaves in a level of complete binary tree).
• If the number of nodes for one level is m , so the

 ١١٧٢

number of next level can not be more than 2m .
 If this procedure is used, then coding of the problem will be difficult, and in each
stage of the algorithm, the above conditions should be controlled, that leads to lose the
time. On the other hand, in this kind of coding, the solution depends to specifications
of the problem. For removing this fault, instead using the objective function directly,
we can use another evaluation function, and change the genetic population
chromosomes (equation 2).
For this purpose, by using genetic and parallel genetic algorithms, it is tried to make
the dynamic programming of this problem faster and better. We use this solution,
because of easy implementing the dynamic programming of this problem in parallel
form. And the other hand, the introduced cost function can be used as the fitness
function, and the chromosomes of the genetic population can be used as ks. Therefore
instead using directly the objective function and obtaining Ci s, we try to obtain
suitable k by using of genetic algorithm in each stage of the dynamic programming.
We can decrease the algorithm execution cost by parallelism of this algorithm.
Fig. 2 and Fig. 3 state a summary of this method.

input : the number of keys (n) and set of their
possibilities (Array p)
Output : the optimal search time (t) and the set of
multipliers (Array c)
Parameters :
• genetic population size (popsize)
• length of the chromosome (lchrom)
• maximum of the generation number (maxgen)
• possibility of Crossover operator (pcross)
• possibility of the Mutation operator (pmutate)
• primary value of producing of random number (seed)
Properties :
• type of coding: Binary coding
• type of the Select operator: Roulette wheel

Journal of Babylon University/Pure and Applied Sciences/ No.(4)/ Vol.(21): 2013

 ١١٧٣

• type of the Crossover operator: Single point
• type of the Mutation operator: Inverting of selected
bits
• Condition of terminating of genetic algorithm:
maximum number of generations
• Objective function: a[i, k −1] + a[k +1, j]
• Fitness function: 1/(a[i, k −1] + a[k +1, j])
• Model of parallel population: Global
• Parallel architecture : Shared Memory
• Class of Parallel Algorithm : Global
(Semi-Synchronous Master-Slaves)
Fig. 2 Properties of Genetic Algorithm for the solution of Optimal Binary Search Tree

input(n,p)
input(popsizepercent ,maxgen ,pcross, pmutate, seed)
fork forall i:=1 to n do
fork a[i,i-1]:=0
fork r[t,i-1]:=0
fork w[i,i]:=p[i]
fork a[i,i]:=p[i]
r[i,i]:=i;
fork a[n,n+1]:=0
r[n,n+1]:=0
join
join
for d:=1 to n-1 do
forall i:=1 to n-d do
j:=i+d
k:=SGA(i,j)
fork r[i,j]:=k
w[i,j]:=w[i,j-1]+w[j,j]
a[i,j]:=a[i,k-1]+a[k+1,j]+w[i,j]
SGA(i,j):
popsize:=(j-i+1) * popsizepercent / 100
lchrom:=log j +1
gen:=0
initialize(gen)
repeat
gen:=gen+1
generate(gen)
k:=min(individuals)
oldpop:=newpop
until gen=maxgen
return(k)
generate(gen):
j:=1
repeat
fork mate1:=fitness_and_select(oldpop)
mate2:=fitness_and_select(oldpop)
join

 ١١٧٤

fork newpop[j]:=crossover_and_mutation
(mate1,mate2,pcross,pmutate)
newpop[j+1]:=crossover_and_mutation
(mate1,mate2,pcross,pmutate)
join
j:=j+2
until j > popsize
make_c(i,j,l):
k:=r[i,j]
if k<>0 then{
fork c[k]:=l
fork make_c(i,k-1,l+1)
make_c(k+1,j,l+1)}
t:=a[1,n]
output(c,t)
Fig. 3 The Genetic Algorithm for the solution of Optimal Binary Search Tree

In the mentioned algorithm, first the number of keys, array P include possibilities of
keys, and the genetic algorithm parameters are received from input, and then some
entries of matrixes such as a , r , w are initiated. This work is done according to
second part of equation 2. The matrix w stores the set of keys possibilities. In next
part of the algorithm, matrixes entries are filled in the form of diagonal and parallel
with the main diameter. This work is also done according to the first part of
equation2. As it is obvious from Figure1, a master process is created for each
secondary diameter and also main one. These processes create a worker for each
element of diameters. Each worker process executes a simple genetic algorithm until
the value of optimal k is calculated, and the obtained key is placed in matrix r . The
master processes also are created as serial and according to the figure2. Finally, output
array C is created according to matrix r , and the optimal searching time, a[1,n], is
sent to the output. In executing of the genetic algorithm, the binary coding has been
used. Each chromosome shows a value for k , and because of this, it's length shouldn't
be more than Log j +1 for each process. On the other hand, the maximum of the
genetic population for each process will be j − i +1. But for increasing the speed of the
algorithm execution, we only apply a percent of the population. Here, the type of
crossover is the common single point method. For creating the intermediate
population and selecting the parents, the Roulette wheel has been used. Since the
minimum value should be selected from the current population, the inverted objective
function has been used. Therefore in the Roulette wheel, the optimal value allocates
itself most of share, and in result the possibility of its selection will be more.
Regarding to the problem structure, the global method is used. And because the
processes work independently, and only they are synchronized in end of each stage, so
class of this algorithm is global and semi-synchronous. Ignoring the part related to the
genetic algorithm in the main body of the program, the algorithm execution has time
cost O(n), because the internal loop is executed in parallel. Notice in here, a processor
is allocated to each process. If the number of processes is N , so this cost will be O(n2
/ N) . Also in the genetic algorithm, there is a main loop which creates some
generation of chromosomes, that it's the execution cost is O(max gen) . Creating the
primary population and making the chromosomes depends on the length of
chromosomes. The time cost of creating a chromosome is O(chrome) , and it's
maximum will be happened in last stage of the algorithm. This value approximately is
equal with Log2 n Due to the number of these chromosomes are equal with the

Journal of Babylon University/Pure and Applied Sciences/ No.(4)/ Vol.(21): 2013

 ١١٧٥

genetic population, so time cost of creating a population is O(popsize×lchrom) . The
maximum size of genetic population is also n × popsizepercent . If the chromosomes
are created in parallel, so this value will be O(pop size) . In general, the executing
cost of the genetic algorithm will be O(max gen× popsize) , and finally the total time
cost will be O(n2 ×max gen× popsize / N) . Now if there are enough processors, and
operations are done in parallel, so the above cost will be simplified as follows : O(n
×max gen× pop size percent) If above parameters are suitable, then the algorithm cost
will be decreased, else the cost will be increased. It means that : max gen× pop size
percent < n .Of course we should note that suitable performance of the algorithm
depend on communication delay in the Network, time of creating and synchronizing
of the processors, and the random distribution function used in the algorithm. Also the
cost of consumed memory will be as follow :
O(n2 + max(pop size)×max(chrome)) Because the algorithm has applied three matrix
of (n +1)× (n +1) and one record conclude a multi chromosomes population.

5. Experimental Results
A Timer control in visual basic design environment are used as method for simulate
parallel processing environment to implement the presented genetic algorithm .
visual basic (6) is a simple high level language and machine independent language ,
and could simulate parallel architectures by its .
visual basic uses the global variables as common data structure , and it uses the
internal variables of block (or subroutine or a function) as a local case .
each parallel processing activity require its processor , in the research , the processor
is simulated by timer control in visual basic (6) programming language .
Here, results of different implementations of the algorithm are presented. Fig.4 shows
four different implementations of the program. These diagrams show the speed-up
and number of processors for different values of the genetic parameters. As it is seen,
for less values of n, speed-up is small, and when it is increased, so the number of
processors will be increased.

 ١١٧٦

Journal of Babylon University/Pure and Applied Sciences/ No.(4)/ Vol.(21): 2013

 ١١٧٧

Fig. 4 Four different implementations of the Program

 ١١٧٨

Fig.5 also shows speed-up of these four samples witheach other. As it is seen, when n
grows, the speed-up of sample 4 increase which it's genetic parameters are low, while
the speed-up of sample 2 decrease which it's genetic parameters values are high.

Fig. 5 Speed-up of the four Samples of Program

Fig.6 shows outputs of the algorithm execution with the same input values and
different genetic parameters (fig.1 and fig.2). As it is seen, the different executions of
this algorithm with the same inputs produce different outputs. And the output value
decrease when greater genetic parameters are selected.

Journal of Babylon University/Pure and Applied Sciences/ No.(4)/ Vol.(21): 2013

 ١١٧٩

6. Conclusion and future works
In this paper, a parallel genetic algorithm was presented for solution of the optimal
binary search tree. To implement of this algorithm and obtaining the experimental
results, a timer control in visual basic (6) design environment was used . First, a
dynamic programming method was implemented, and then a genetic algorithm was
added to it. Finally, by using of its parallel model and creating a semi-synchronous
architecture of master/slave shared memory global genetic algorithm, the problem of
optimal binary search tree was solved.
In general, we can refer to the following results:
• The simulation results show that speed-up will be increased when the number of
inputs grows.
• The simulation results show that overhead of the algorithm execution is high when
data is less, and their execution time is equal with usual methods.
• The simulation results show that executing of the genetic algorithm with the greater
input has high speed.
• Optimizing the dynamic programming method using parallel genetic algorithms,
increases the speed of the algorithm execution.
The works which can be done in this way are:
• Implementing other parallel genetic algorithms such as coarse grained and hybrid
one.
• Implementing the parallel genetic algorithms on the different topologies.

• Finding the suitable values for parallel genetic algorithm parameters so that we
reach to an answer with a high speed.
• Presenting a method for adjustment of population with parallel hardware.

References
Baase S., and . Gelder , A, 2000 “Computer Algorithms”, Introduction to Design

andAnalysis, Addison- Wesley, Pages 321-322
Bianchini, R., and Brown, C. ,1993 “Parallel Genetic Algorithms on Distributed-Memory
Architectures”,Technical Reports,The University of Rochester,New York 14627.,Page

436
Budd, T. 2001 , “Classic Data Structures in Java”, Addison-Wesley,. Pages 63 -65
Chu , P. C and . Beasley , J. E, 1995 "A Genetic Algorithm for the Set Partitioning

Problem",
The Management School Imperial College, Page 1,4-5
Cormen T, Leiserson, C. Rivest, R. and Stein , C, 2001, “Introduction to

Algorithms”, 2nd
ed, MIT Press,. Pages 113 , 114,115
David. , E. Goldberg, , 1989 "Genetic Algorithms in Search, Optimization, and

Machine
Learning", Addison-Wesley,. Pages 31- 33
Erick Cantu-Paz, , 1995., "A Summary of Research on Parallel Genetic Algorithms",

University of Illinois at Urbana-Champaign, Pages 1-12
Fernandez, J., 2006 , “Genetic Programming Network”,

http://www.geneticprogramming.com.
Goodrich , M. and Tamassia, R.. 1998. “Data Structures and Algorithms in Java”,

Wiley, Pages 23- 25
Hansen , S., and McCann, L. I., 2002 “Optimal Binary Search Tree Meet Object-

Oriented
Programming”,Computer Science Department,University of isconsin,WI53141,Pages

 ١١٨٠

25,26.
Holland , John H. , 2005, “Genetic Algorithms”,

http://www.econ.iastate.edu/tesfatsi/holland.GAIntro. htm Pages 2- 4
Kalynpur , A., M. Simon, , 2001, “Pacman using Genetic Programming and Neural

Networks”, Project Report for ENEE 459E, pages 421-430
Laurrens , J. Pit, , 1995 "Parallel Genetic Algorithms", Master Thesis, Leiden

University,. Pages 44-46
Lin, S, Punch, W. F., and Goodman, E. D. 1994 , “Coarse-Grain Parallel Genetic

Algorithms:
Categorization and New Approach”, in Proceedings of the Sixth IEEE Symposium on
Parallel and Distributed Processing,. Pages 1020-1022
Marek, S. Obirko, 1998"Genetic Algorithms",.Pages 130 -135
Markus P. Schwehm, 1996., "Parallel Population Models for Genetic

Algorithms",University of Erlangen-Nurnberg, Pages 2-8.
Maruyama, T. Hirose , T and Konagaya, A. 1993, “A Fine-Grained Parallel Genetic
Algorithm for Distributed Parallel Systems”, in Proceedings of the Fifth International
Conference on Genetic Algorithms, Stephanie Forrest, Ed., San Mateo, CA, Pages 20-

22
Nowostawski , M and . Poli , R, 1999. “Parallel Genetic Algorithm Taxonomy”,

Submitted to
Publication to: KES’99, Pages 51-52
Obitco, , M. 2006 , " Introduction to Genetic Algorithms”, Czech Technical

University,
http://cs.felk.cvut.cz/~xobitko/ga Pages 98 – 102
Ricardo, P. Bianchini and Christopher, T,. Brown, 1993 "Parallel Genetic Algorithms

on
Distributed Memory Architecture", Prentice-Hall, Pages 15, 16, 17
Robinson, A. , 2001, “Genetic Programming: Theory, Implementation, and the

Evolution of
Unconstrained Solutions”, Division III Thesis, Hampshire College,. Pages 311-322
Schaefer , M., 2006 "Optimal Binary Search Tree" Department of Computer Science,

DePaul
University, Chicago, Illinois 60604, USA,. , Page 198
Schleuter, M. Gorges, 1985, "ASPARAGOS : an Asynchronous Parallel Genetic

Optimization Strategy", in Schaffer, Pages 422-427
Sedgewick R., 1998, “Algorithms”, 2nd ed. Addison-Wesley, Pages 41 – 43
Sian, F.. 1999 , "A Java Based Distributed Approach to Genetic Programming on the
Internet", University of Birmingham School of Computer Science,. ,. Pages 11-16
Thomas , M. Bak 1996, "Evolutionary Algorithms in Theory and Practice", Oxford

University,. Pages 311- 313

