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Abstract :-  
      Evolutionary algorithms (EAs) are modern techniques for searching complex spaces for on 
optimum . Genetic algorithms (GAs) are developed as random search methods, which have not so 
sensitivity on primary data of the problems. They can be used in estimation of system parameters in 
order to obtain the best result. This can be achieved by optimization of an objective function. Genetic 
programming is a collection of methods for the automatic generation of computer programs that solve 
carefully specified problems, via the core, but highly abstracted principles of natural selection. In this 
paper, genetic algorithms and parallel genetic algorithms have been discussed as one of the best 
solutions for optimization of the systems. Genetic and parallel genetic algorithms have been 
investigated in Visual basic 6 Environment Then an optimal binary search tree has been selected as a 
case study for decree sing of searching time. Also a dynamic programming method has been 
accelerated by using of a parallel genetic algorithm. In this case, by increasing the size of data, speed-
up index will be increased. 
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   -:الخلاصة 

الخوارزمیـات الجینیـة .  المعقـدة لوصـول الـى نتـائج مثلـى تالفـضائیاتقنیـات حدیثـة للبحـث فـي ) EAs( التطوریـة تالخوارزمیانعتبر       

)GAs ( ممكـن ان تـستخدم . قد بینت كطرق بحث عشوائیة بحیث لا تكون حساسة بشكل كبیـر للبیانـات الرئیـسیة للمـسائل العاملـة علیهـا

البرمجــة الجینیـــة هـــي . ممكــن تحقیـــق ذلـــك بتحــسین دالـــة الهـــدف . مـــین معــاملات نظـــام مـــن اجــل الحـــصول علـــى نتیجــة افـــضل فــي تخ

 الخاصــة المبــادئ باســتخدام أساســا لبــرامج الحاســوب والتــي ممكــن ان تحــل بــشكل دقیــق مــسائل محــددة الآلــيمجموعــة مــن الطــرق للتولیــد 

لتحــسین  افــضل الحلــول ىكإحــدارزمیــات الجینــي والخوارزمیــات الجینیــة المتوازیــة قــد نوقــشت بالاختیــار الطبیعــي ، فــي هــذا البحــث ، الخو

 كأداة لبرمجة النظام وقد اختیرت افضل شجرة بحث ثنائي مـن حیـث اقـل وقـت للبحـث  visual basic (6)النظام ، وقد استخدمت اللغة 

  . وارزمیات الجینیة المتوازیة فیها وقد استخدمت طریقة البرمجة الدینامیة وسرعت باستخدام الخ

  -:كلمات مفتاحیة 

  .التحسین ، الخوارزمیات الجینیة ، الخوارزمیات الجینیة المتوازیة ، شجرة بحث ثنائي مثلى 

1. Introduction 
Genetic algorithms are a part of evolutionary computing, which is a rapidly growing 
area of artificial intelligence. Their basic working mechanism is as follows: the 
algorithm is started with a set of solutions (represented by chromosomes) called 
population. Solutions from one population are taken and used to form a new 
population. This is motivated by a hope, that the new population will be better than 
the old one [A. Kalynpur, M. Simon 2001, M. Obitco 2006 , J. Fernandez 2006]. 
Everything around us is part of some system. Researchers have tried to model it into 
the system computer. The models were not complex enough to solve interesting 
problems. Thus the models were not practical [Laurrens Jan Pit  ١٩٩٥ ]. A system is a 
black box with a set of input parameters. 
The system developers measure the parameters of each subsystem separately, and 
exhibit all them as a set of the system's parameters, but ignore the effect of sub-
systems on each other and disorders signals. In addition, the parameters should be set  
so that the system conclude the best. For doing of this matter, it is needed to optimize 
the output function of the system. It means that we should minimize or maximize it, 
and consequently increase its performance. The goal of this research is achieving a 
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solution that these values are obtained faster without involving in internal properties 
of the system. The optimal binary search tree has been considered as a case study. 
Generally, there are three general methods for optimization and searching of these 
optimal points [David E. Goldberg 1989] : The Calculus Based Searching method, 
Enumerative Searching method and Random Searching method. The calculus based 
searching method is divided to two branches : Direct and Indirect. In direct way, the 
optimal points are btained by solution of some linear equations or non linear ones. In 
indirect way, a limited of optimal pointes are obtained, then they are optimized by 
Hill Climbing methods. In the enumerative searching method, the searching space of 
the problem is processed and the value of objective function of the system is obtained 
for each point, and finally optimal points are selected. Dynamic programming method 
is of these cases. In random searching method, the space of searching problem is 
searched by random for finding of optimal points. Genetic algorithm is a guided 
random algorithm [David E. Goldberg 1989]. 
The two first methods aren’t cost effective and they don't effect if searching space of 
the problem is expanded. Parallel algorithms are used to increase the speed and 
performance of the optimization methods. The genetic algorithms are appropriate for 
this purpose because of : 1) Independency to primary values of the parameters 2) 
Independency to system's objective function properties (continuous, derivative, etc.) 
3) Searching of greater space of the parameters values. The most important 
characteristics of these algorithms is parallelism. It causes the increasing of the speed 
and performance of the system and decrease the system's response time. Sometimes 
due to existing the several objective functions in the system, using of genetic 
algorithm will increase the system’s speed and will decrease the system's response 
time. 

2. Genetic Algorithms 
Genetic algorithm can be viewed as a biological  metaphor of Darwinian evolution 
[Laurrens Jan Pit 1995]. It is a random searching method which creates a new 
generation of the answers by selecting a collection of answers randomly, and 
improves them in each stage, until finally it achieves an acceptable answer between 
these answers. This algorithm have some components[Chong Fuey Sian,"A 1999, 
David E. Goldberg 1989, Marek Obirko 1998, Ricardo Bianchini 1993]. These 
components are : 
Chromosome, Genetic population, fitness function, genetic operations, and genetic 
algorithm parameters. By running of genetic algorithm, some chromosomes from 
genetic algorithm are selected as parents. Next generation of chromosomes are created 
by using the operators, and therefore the next genetic population is composed. This is 
done by Select operator [Laurrens Jan Pit 1995, P. C. Chu and J. E 1995, Thomas Bak 
1996].  
Only selection of the parents is not enough for producing of the next generation of 
chromosomes, but we should search for some methods for returning of the produced 
chromosomes to the Genetic Population. This is also done by Replacement operator. 
To doing of this case, after selecting the parents from Current population, they are 
placed in the Intermediate population. 
 
The genetic operation will be done on them until a new population of the 
chromosomes will be created, then they will be placed in the Next population 
[Laurrens Jan Pit 1995]. Permutation operator is used for recombination [Laurrens Jan 
Pit 1995, Marek Obirko 1998]. The permutation operator is also another operator 
which will cause innovation in the chromosomes of a genetic population. It also stops 
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monotony in genetic population and stops involving the algorithm in the local 
minimize or maximize points 

3. Parallel Genetic Algorithms 
For the first time, Holland, 1963, recognized the parallel nature of genetic algorithms, 
and in 1976 Bethke calculate the complexity of doing the Genetic algorithm on 
parallel machine, but he didn't simulate or implement it. Then in 1981, Grefenstette 
presented some parallel implementation of genetic algorithms[David E. Goldberg 
1989]. The way in which GAs can be parallelized depends on the following 
elements[M. Nowostawski, R. Poli 1999]:  
• How fitness is evaluated and mutation is applied 

• If single or multiple subpopulations (demes) are used 

• If multiple populations are used, how individuals are exchanged 

• How selection is applied (globally or locally) 
There have been some attempts to develop a unified taxonomy GAs which would 
greatly help addressing this issue[R. Bianchini 1993]. There are several motivations 
for parallelism of the genetic algorithms. One of them is intending for increasing 
speed and performance of genetic algorithms using the parallel computers. The other 
one is able to apply genetic algorithms for solving of greater problems in a reasonable 
time and make it near to its own biologic structure in the nature. Also parallel genetic 
algorithms show a high performance for solving the problems with multi-objective 
functions. 

3-1. Classes of parallel Genetic Algorithms 
The parallel genetic algorithms are categorized to four classes : Global[Laurrens Jan 
Pit 1995], Coarse-Grained [S. Lin, W. F. Punch 1994], Fine- Grained[T. Maruyama, T 
1993], and Hybrid[Laurrens Jan Pit 1995]. A global genetic algorithm considers all 
the population as a one. The population individuals are evaluated to obtaining their 
fitness. Also the genetic operations act in parallel. The goal in this class is parallelism 
of the genetic algorithm. These kinds of algorithms are implemented in two forms : 
shared memory machines and distributed memory machines. In implementation of the 
shared memory machines, the individuals of the genetic population will be stored in a 
common memory, and each processor can access this  memory. These processors get 
some of individuals, and apply the genetic operators on them, and return them to the 
common memory. Synchronization is necessary between processors in starting of 
producing each generation. In the implementation of the distributed memory 
machines, the genetic population is stored in the memory of a processor called Master 
(or Farmer). This processor sends the individuals of the population to other processors 
called Workers (or Slaves). The workers evaluate individuals and collect the results. 
They also produce the next generations by using of genetic operators. This method 
has two problems : 1) A great time is consumed to evaluating and the master is 
unemployed. 2) If the master crash, the system will be stop. This model is presented 
in three forms Synchronous, Asynchronous and Semi-Synchronous. In the 
synchronous model, the processors are synchronized in the starting and ending of  
each generation, therefore the master processor should wait for a slower processor. In 
asynchronous or semi-synchronous models, the master processor doesn't wait. In here, 
the master processor selects the individuals of the current population. Therefore the 
processors will work asynchronously. The coarse-grained genetic algorithm divides 
the genetic population to separate sub-populations. The separate genetic algorithm is 
applied on the each subpopulation. The individuals are exchanged between 
subpopulations in order to optimize the answers at special times. In other words, they 
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migrate between subpopulations. In most of the times, the size of subpopulations will 
be taken equal. These kinds of algorithms usually are implemented on MIMD 
computers with distributed memories. Some samples of these machines are such as : 
CM-5, NCUBE, Intel's paragon, and etc.[ Chong Fuey Sian 1999]. A point which 
should be noted is that in this class, the communication between processors is very 
lower than the calculated work which each processor do on their own sub-population. 
A new operator called Migration operator, is presented here. This operator exchanges 
the individuals between the sub-populations[Markus Schwehm 1996]. The following 
actions is done by this operator : 
• Selecting the emigrants: In this stage, the 
emigrants of each sub-population are selected. 
• Sending the emigrants: In this stage, the 
emigrants of a sub-population are sent to the other one. 
• Receiving the emigrants: In this stage, the emigrants are received from a sub-
population. 
• Merging the emigrants: In this stage, the 
emigrants are merged in a sub-population. By this operator, sending and receiving of 
the individuals can be done in parallel message passing way. In this way, selecting 
and merging of the emigrants cause a population of the best answers in each sub-
population. Migration models are presented in two forms: Island 
model and Stepping-Stone model. In island model, the individuals are allowed to 
migrate to each sub-population while in stepping-stone model, the migration limited 
to the neighborhood sub-populations. In Island model, the individuals have freedom to 
migrate, but the overhead of communication and delay are too much, while in 
steppingstone model, the freedom of migration is limited but the overhead of 
communication is decreased. The fine-grained genetic algorithm divides the genetic 
population into several small sub-population (Deme), and sometimes it behaves with 
each individual separately. In this algorithm, each one of the demes or individuals can 
place on a separate processor and each individual can mates with its neighborhoods. 
These kinds of algorithms also can be implemented on the parallel computers. The 
first attempt in this field was done by Robertson in 1987 on SIMD computers, and this 
algorithm was named ASPARAGOS [Chong Fuey Sian 1999, M. Gorges-Schleuter 
1985]. In these kinds of algorithms, against of the coarse-grained genetic algorithms, 
the communication between processors is more than the calculation work of each 
processor. Also using these algorithms prevents from soon dominant of super 
individuals on population. The hybrid genetic algorithm is a combination of two 
previous algorithms. In here, two levels are considered for execution of algorithm 
which in each level, a class of parallel genetic algorithms is applied. In 1994, Gruau 
presented the hybrid genetic algorithm for the first time, and used it for Neural 
Networks [Erick Cantu-Paz 1995]. 

3-2. Parallel population Models 
Parallel population models state the following things 
• How a population is divided to different subpopulations? 

• How information is exchanged between subpopulations? 
These models are divided into three general parts[Markus Schwehm 1996] : Global, 
Regional, Local. In the global model, the population is not structured, the select 
operation is general, the fitness of each individual is calculated related to all the 
individuals, and each one of individuals can be selected as a parent for reproduction. 
In regional model, the population is divided to several sub-populations (Region). The 
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fitness of each individual is calculated related to the individuals of its sub-population, 
and the parents are selected from that region. In the local model, the population has a 
neighborhood structure. The fitness of each individual is determined related to its 
local neighborhood, and parents are selected from the same neighborhood. Table1 
shows the summary of related works with these three models [Markus Schwehm 
1996]. Table 1: 

 
Summary of Related Works with three Models 

    
Reference Global Model Regional Model Local Model 
GREFENSTETTE(1981) 
MANDERICK et 
al.(1989) 
MACFARLANE et al. 
(1990) 
GORGESSCHLEUTER( 
1992) 
DORIGO et al. (1993) 
WHITLEY(1993) 
CANTU-PAZ(1995) 
 

Master-Slave 
R-Algorithm 
Farming 
Panmixia 
- 
Global Pop. 
Global Par. 

Network 
Coarse Grain 
Migration 
Model 
Migration 
Model 
Island Model 
Island Model 
Coarse Grain 

Fine Grain 
Diffusion Model 
Diffusion Model 
Neighborhood 
Model 
Cellular GA 
Fine Grain 

• They do less functional evaluation for finding the 
optimized solutions. 
• They are able to find several solutions. 

• They can be synchronous or asynchronous. 

• Their implementations accommodate with parallel  architectures. 

• They are fault tolerant. 

• They are nearer to biological simile of evolution. 

4. Designing of Optimal Binary Search Tree using the Parallel 
Genetic Algorithms 
• Definition: A binary tree T is the structure defined on a finite set of nodes that 
either contains no nodes, or is composed of three disjoint sets of nodes: a root node, a 
binary tree called its left sub-tree, and a binary tree called its right sub-tree [T. 
Cormen 2001]. 
 

• Definition: A binary search tree (BST) is a binary tree whose nodes are organized 
according to the binary search tree property: keys in the left sub tree are all less than 
the key at the root; keys in the right sub-tree are all greater than the key at the root; 
and both sub-trees are themselves BSTs. For any set of keys, there are many different 
binary search trees. The time required to seek a given key can vary from tree to tree 
depending on the depth of the node where the key is found, or the length of the branch 
searched if the key is not present. An optimal binary search tree is a binary search tree 
with minimum expected comparisons for special set of keys and their possibilities. 
The number of comparisons is called Searching Time. 
Suppose  key1 , key2 , key3 , … key n are n keys, Pi 
is the possibility of key i and C i is number of the 
comparisons for finding of i key , then optimization of 
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Binary Search Tree is minimizing of the following relation. It calculates the average 
searching time for n keys in a binary search tree. 

 
 
 
 
 
 
4-1. Dynamic Programming for Solving Problems 
Suppose tree  t1 is an optimal one for a case that  key 1 is in the tree's root, tree  t2 is 
an optimal one for a case that  key 2 is in the tree's root, and tree tn is an optimal one 
for a case that n key is in the tree's root. Then we should search for a k , so that k key is 
in the tree's root and searching time the tree for it be minimum. The same work is 
repeated in left and right sub-trees, until an Optimal Binary Search Tree is formed. 
This is shown with the.  
following equation : 

 
 
 
 
 
This equation calculates the minimum searching time. It means we should find a k so 
make the time minimized. A is the cost function of the problem or in other words is 
the minimum searching time, and R shows the tree's root in each stage. The execution 
cost of this algorithm is equal with the cost of filling 2(m + n(n +1) / 2) + 2 memory 
fields, because without considering the main diameter of matrixes, we should fill n 
fields in the first line, n −1 fields in the second line, …, and 1 field in the last line of 
each matrix. And if the elements of main diameters are considered, so we can reach to 
above equation. In addition, we should choose the minimum values between different 
k s which has cost of O(n) in the worst case. Then in total, the cost of this algorithm is 
O(n2 ) ×O(n) = O(n3 ) . Of course, we can optimize this way, and in result decrease  
 
time cost to O(n2 ) [John H. Holland 2005]. The above way was presented in 1959 by 
Gilbert and was obtained in 1982 by Yaeu [John H. Holland 2005]. 

4-2. Genetic and Parallel Genetic Algorithms for 
solving the Problems In the genetic algorithm, a collection of possible answers are 
considered as C i s, and it is tried to find an optimal answer from them. Each array is 
considered as an answer (or a chromosome). Each gene of this chromosome, 
determine value of C for a key. And the internal number of each gene is value of C i 
for key i. More over, we should consider the following case for each gene. 
• 1 < Ci  < n 

• maximum number of 1s are 1, and maximum number 
of 2 s are 2 , maximum number of 3 s are 4 , and in general, maximum number of k s 
are 2k (regarding number of leaves in a level of complete binary tree). 
• If the number of nodes for one level is m , so the 
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number of next level can not be more than 2m . 
 If this procedure is used, then coding of the problem will be difficult, and in each 
stage of the algorithm, the above conditions should be controlled, that leads to lose the 
time. On the other hand, in this kind of coding, the solution depends to specifications 
of the problem. For removing this fault, instead using the objective function directly, 
we can use another evaluation function, and change the genetic population 
chromosomes (equation 2). 
For this purpose, by using genetic and parallel genetic algorithms, it is tried to make 
the dynamic programming of this problem faster and better. We use this solution, 
because of easy implementing the dynamic programming of this problem in parallel 
form. And the other hand, the introduced cost function can be used as the fitness 
function, and the chromosomes of the genetic population can be used as ks. Therefore 
instead using directly the objective function and obtaining Ci s, we try to obtain 
suitable k by using of genetic algorithm in each stage of the dynamic programming. 
We can decrease the algorithm execution cost by parallelism of this algorithm. 
Fig. 2 and Fig. 3 state a summary of this method. 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

 
input : the number of keys (n) and set of their 
possibilities (Array p) 
Output : the optimal search time (t) and the set of 
multipliers (Array c) 
Parameters : 
• genetic population size (popsize) 
• length of the chromosome (lchrom) 
• maximum of the generation number (maxgen) 
• possibility of Crossover operator (pcross) 
• possibility of the Mutation operator (pmutate) 
• primary value of producing of random number (seed) 
Properties : 
• type of coding: Binary coding 
• type of the Select operator: Roulette wheel 



Journal of Babylon University/Pure and Applied Sciences/ No.(4)/ Vol.(21): 2013 

 ١١٧٣

• type of the Crossover operator: Single point 
• type of the Mutation operator: Inverting of selected 
bits 
• Condition of terminating of genetic algorithm: 
maximum number of generations 
• Objective function: a[i, k −1] + a[k +1, j] 
• Fitness function: 1/(a[i, k −1] + a[k +1, j]) 
• Model of parallel population: Global 
• Parallel architecture : Shared Memory 
• Class of Parallel Algorithm : Global 
(Semi-Synchronous Master-Slaves) 
Fig. 2 Properties of Genetic Algorithm for the solution of Optimal Binary Search Tree 
 

input(n,p) 
input(popsizepercent ,maxgen ,pcross, pmutate, seed) 
fork forall i:=1 to n do 
fork a[i,i-1]:=0 
fork r[t,i-1]:=0 
fork w[i,i]:=p[i] 
fork a[i,i]:=p[i] 
r[i,i]:=i; 
fork a[n,n+1]:=0 
r[n,n+1]:=0 
join 
join 
for d:=1 to n-1 do 
forall i:=1 to n-d do 
j:=i+d 
k:=SGA(i,j) 
fork r[i,j]:=k 
w[i,j]:=w[i,j-1]+w[j,j] 
a[i,j]:=a[i,k-1]+a[k+1,j]+w[i,j] 
SGA(i,j): 
popsize:=(j-i+1) * popsizepercent / 100 
lchrom:=log j +1 
gen:=0 
initialize(gen) 
repeat 
gen:=gen+1 
generate(gen) 
k:=min(individuals) 
oldpop:=newpop 
until gen=maxgen 
return(k) 
generate(gen): 
j:=1 
repeat 
fork mate1:=fitness_and_select(oldpop) 
mate2:=fitness_and_select(oldpop) 
join 
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fork newpop[j]:=crossover_and_mutation 
(mate1,mate2,pcross,pmutate) 
newpop[j+1]:=crossover_and_mutation 
(mate1,mate2,pcross,pmutate) 
join 
j:=j+2 
until j > popsize 
make_c(i,j,l): 
k:=r[i,j] 
if k<>0 then{ 
fork c[k]:=l 
fork make_c(i,k-1,l+1) 
make_c(k+1,j,l+1)} 
t:=a[1,n] 
output(c,t) 
Fig. 3 The Genetic Algorithm for the solution of Optimal Binary Search Tree 

In the mentioned algorithm, first the number of keys, array P include possibilities of 
keys, and the genetic algorithm parameters are received from input, and then some 
entries of matrixes such as a , r , w are initiated. This work is done according to 
second part of equation 2. The matrix w stores the set of keys possibilities. In next 
part of the algorithm, matrixes entries are filled in the form of diagonal and parallel 
with the main diameter. This work is also done according to the first part of 
equation2. As it is obvious from Figure1, a master process is created for each 
secondary diameter and also main one. These processes create a worker for each 
element of diameters. Each worker process executes a simple genetic algorithm until 
the value of optimal k is calculated, and the obtained key is placed in matrix r . The 
master processes also are created as serial and according to the figure2. Finally, output 
array C is created according to matrix r , and the optimal searching time, a[1,n], is 
sent to the output. In executing of the genetic algorithm, the binary coding has been 
used. Each chromosome shows a value for k , and because of this, it's length shouldn't 
be more than Log j +1 for each process. On the other hand, the maximum of the 
genetic population for each process will be j − i +1. But for increasing the speed of the 
algorithm execution, we only apply a percent of the population. Here, the type of 
crossover is the common single point method. For creating the intermediate  
population and selecting the parents, the Roulette wheel has been used. Since the 
minimum value should be selected from the current population, the inverted objective 
function has been used. Therefore in the Roulette wheel, the optimal value allocates 
itself most of share, and in result the possibility of its selection will be more. 
Regarding to the problem structure, the global method is used. And because the 
processes work independently, and only they are synchronized in end of each stage, so 
class of this algorithm is global and semi-synchronous. Ignoring the part related to the 
genetic algorithm in the main body of the program, the algorithm execution has time 
cost O(n), because the internal loop is executed in parallel. Notice in here, a processor 
is allocated to each process. If the number of processes is N , so this cost will be O(n2 
/ N) . Also in the genetic algorithm, there is a main loop which creates some 
generation of chromosomes, that it's the execution cost is O(max gen) . Creating the 
primary population and making the chromosomes depends on the length of 
chromosomes. The time cost of creating a chromosome is O(chrome) , and it's 
maximum will be happened in last stage of the algorithm. This value approximately is 
equal with Log2 n Due to the number of these chromosomes are equal with the 
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genetic population, so time cost of creating a population is O( popsize×lchrom) . The 
maximum size of genetic population is also n × popsizepercent . If the chromosomes 
are created in parallel, so this value will be O( pop size) . In general, the executing 
cost of the genetic algorithm will be O(max gen× popsize) , and finally the total time 
cost will be  O(n2 ×max gen× popsize / N) . Now if there are enough processors, and 
operations are done in parallel, so the above cost will be simplified as follows : O(n 
×max gen× pop size percent) If above parameters are suitable, then the algorithm cost 
will be decreased, else the cost will be increased. It means that : max gen× pop size 
percent < n .Of course we should note that suitable performance of the algorithm 
depend on communication delay in the Network, time of creating and synchronizing 
of the processors, and the random distribution function used in the algorithm. Also the 
cost of consumed memory will be as follow :  
O(n2 + max( pop size)×max(chrome)) Because the algorithm has applied three matrix 
of (n +1)× (n +1) and one record conclude a multi chromosomes population. 

5. Experimental Results 
A Timer control in visual basic design environment are used as method for simulate 
parallel processing environment to implement the presented genetic algorithm . 
visual basic (6) is a simple high level language and machine independent language , 
and could simulate parallel architectures by its . 
visual basic uses the global variables as common data structure , and it uses the 
internal variables of block (or subroutine or a function) as a local case . 
each parallel processing activity require its processor , in the research , the processor 
is simulated by timer control in visual basic (6) programming language . 
Here, results of different implementations of the algorithm are presented. Fig.4 shows 
four different implementations of the program. These diagrams show the speed-up 
and number of processors for different values of the genetic parameters. As it is seen, 
for less values of n, speed-up is small, and when it is increased, so the number of 
processors will be increased. 
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Fig. 4 Four different implementations of the Program 
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Fig.5 also shows speed-up of these four samples witheach other. As it is seen, when n  
grows, the speed-up of sample 4 increase which it's genetic parameters are low, while 
the speed-up of sample 2 decrease which it's genetic parameters values are high. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Speed-up of the four Samples of Program 

Fig.6 shows outputs of the algorithm execution with the same input values and 
different genetic parameters (fig.1 and fig.2). As it is seen, the different executions of 
this algorithm with the same inputs produce different outputs. And the output value 
decrease when greater genetic parameters are selected. 
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6. Conclusion and future works 
In this paper, a parallel genetic algorithm was presented for solution of the optimal 
binary search tree. To implement of this algorithm and obtaining the experimental 
results, a timer control in visual basic (6) design environment was used . First, a 
dynamic programming method was implemented, and then a genetic algorithm was 
added to it. Finally, by using of its parallel model and creating a semi-synchronous 
architecture of master/slave shared memory global genetic algorithm, the problem of 
optimal binary search tree was solved.  
In general, we can refer to the following results: 
• The simulation results show that speed-up will be increased when the number of 
inputs grows. 
• The simulation results show that overhead of the algorithm execution is high when 
data is less, and their execution time is equal with usual methods. 
• The simulation results show that executing of the genetic algorithm with the greater 
input has high speed. 
• Optimizing the dynamic programming method using parallel genetic algorithms, 
increases the speed of the algorithm execution.  
The works which can be done in this way are: 
• Implementing other parallel genetic algorithms such as coarse grained and hybrid 
one. 
• Implementing the parallel genetic algorithms on the different topologies. 

• Finding the suitable values for parallel genetic algorithm parameters so that we 
reach to an answer with a high speed. 
• Presenting a method for adjustment of population with parallel hardware. 
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