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Abstract  
This paper proposes a neural controller to guide a nonholonomic mobile robot 

during trajectory tracking. The structure of the controller used consists of two models that 
describe the kinematical mobile robot system. These models are modified Elman neural 
networks (MENN) and feed forward multi-layer perceptron (MLP). The modified Elman 
neural networks model is trained with two stages; off-line and on-line, in order to 
guarantee that the outputs of the model accurately represent the actual outputs of the 
mobile robot system. The neural model, after being trained, acts as the position and 
orientation predictor. The feed forward multi-layer perceptron neural networks controller is 
trained on-line to find the inverse kinematical model, which controls the outputs of the 
mobile robot system. The general back propagation algorithm is used to learn the feed 
forward kinematics neural controller and the predictor. The results obtained from the 
conducted simulation show the effectiveness of the proposed neural control algorithm. This 
is demonstrated by the minimized tracking error and the smoothness of the control signal 
obtained. 
 

Keywords: Nonholonomic Mobile Robots, Neural Networks Controller, Trajectory 
Tracking. 

 
   الخلاصة

أن ھیكلیة المسیطر . ھذا البحث یقترح مسیطر عصبي لتوجیھ الإنسان الآلي اللاشمولي خلال تتابع المسار

وھذان النموذجان للشبكة العصبیة , العصبي المستخدم یتألف من نموذجین یصفان النظام الحركي للإنسان الآلي النقال

  .(Multi-Layer Perceptron)و  (Modified Elamn Neural Networks)ھما 

و ذلك لضمان دقة نتائج  On-lineو  Off-line یتم تدریبھا بمرحلتین  (MENN)أن النموذج للشبكة العصبیة 

یعمل نموذج  الشبكة العصبیة  بعد تدریبھ . الإخراج للنموذج مع الإخراج الفعلي لمنظومة الإنسان الآلي المتحرك

یجاد لإ online (MLP)العصبي ذو التغذیة الأمامیة والمتعدد الطبقات یتم تدریب المسیطر .كمتنبيء للموقع و الاتجاه

  .مخرجات الإنسان الآليالنموذج المعكوس الحركي الذي یسیطر على 

  .تم استخدام خوارزمیة الانتشار العكسي لتعلیم الشبكة العصبیة التنبؤي  والمسیطر العصبي الأمامي الحركي        

 .  التحكم .خوارزمیة السیطرة العصبیة المقترحة في التقلیل من خطأ التتابع و نعومة أشارةعالیة فان نتائج المحاكاة تبینّ 
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1. Introduction 
Mobile robots have been used in 

many applications such as moving 
material between work stations. They can 
also be found in many areas such as 
industrial, medical environmental and 
even domestic machines. Research on 
mobile robots has mounted and attracted 
so much attention in recent years, since 
they are increasingly used in a wide 
range of applications [1, 2]. Several 
controllers were proposed for mobile 
robots with nonholonomic constraints. 
The traditional control methods for path 
tracking the mobile robot use linear 
feedback control or non-linear feedback 
control and the artificial intelligent 
controller that carried out by using neural 
networks or fuzzy inference [3]. There 
are other techniques of the controllers 
such as predictive control technique that 
is a very important area of research and 
in the field of mobile robotics predictive 
approaches to path tracking also seem to 
be very promising because the reference 
trajectory is known beforehand. In [4] 
model predictive trajectory tracking 
control applied to a mobile robot and 
used linearise tracking error dynamics to 
predict future system behaviour and a 
control law is derived from a quadratic 
cost function penalizing the system 
trucking error and the control effort. 
A model predictive control algorithm  
developed for stabilizing a team of 
nonholonomic mobile robots navigating 
information within an obstacle-populated 
environment in order to avoid collisions 
and accomplish mission objectives is 
presented in [5]. In [6] a switched control 
algorithm to stabilize a car-like mobile 
robot which possesses the velocity level 
nonholonomic constraint and the control 
approach rests on splitting the system 
into several second-order subsystems and 
then stabilizing the system sequentially 
using finite-time controllers.  
An adaptive trajectory-tracking controller 
based on the robot dynamics, and its 

stability property is proven using the 
Lyapunov theory is proposed in [7]. 

A trajectory tracking control for a 
nonholonomic mobile robot by the 
integration of a kinematics controller and 
neural dynamic controller based on the 
sliding mode theory is presented in [8].  
In [9] an adaptive controller of nonlinear 
PID based analogue neural networks is 
developed for the velocity and 
orientation tracking control of a 
nonholonomic mobile robot. In [10] a 
variable structure control algorithm is 
proposed to study the trajectory tracking 
control based on the kinematics model of 
a 2-wheel differentially driven mobile 
robot by using of the back stepping 
method and virtual feedback parameter 
with the sigmoid function. The trajectory 
tracking controllers are designed by pole-
assignment approach for mobile robot 
model is presented in [11]. The model of 
the mobile robot obtained from the 
combination of kinematical and robust 

H dynamical tracking controller used to 
design the kinematical tracking controller 
by applying the Lyapunov stability 
theorem is proposed in [12].  
The design of a dynamic Petri recurrent 
fuzzy neural network (DPRFNN) 
structure is applied to the path-trajectory 
control of a nonholonomic mobile robot 
for verifying its validity and convergence 
of the path-tracking errors based on a 
discrete-type Lyapunov function is 
presented in [13]. In [14] two novel dual 
adaptive neural control schemes are 
proposed for dynamic control of 
nonholonomic mobile robots. The first 
scheme is based on Gaussian radial basis 
function (GaRBF) ANNs and the second 
on sigmoidal multilayer perceptron 
(MLP) ANNs, where ANNs are 
employed for real-time approximation of 
the robot's nonlinear dynamic functions  
assumed to be unknown.  

A novel linear interpolation based 
methodology to design control 
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algorithms for the trajectory tracking of 
mobile robotic systems is presented in 
[15] assuming that the evolution of the 
system can be approximated by a linear 
interpolation in each sampling time and 
knowing the desired state. A value for 
control action needed to force the system 
to go from its current state to a desired 
one can be obtained.   
The remainder of the paper is organized 
as follows. In section two there is a 
description of the kinematics model of 
the nonholonomic mobile robot. Section 
three the proposed neural controller is 
derived. The simulation results for the 
neural control obtained are presented in 
section four, and the conclusion is given 
in section five.  

2. The Kinematics Model of Mobile 
Robot 

 The nonholonomic mobile robot 
shown in figure (1) consists of a cart with 
two driving wheels mounted on the same 
axis and an omni-directional castor in the 
front of the cart, which carries the 
mechanical structure and keeps the 
platform more stable. 
Two independent servo DC motors are 
the actuators of left and right wheels for 
motion and orientation. The two wheels 
have the same radius denoted by r  and 
L  as the distance between the two 
wheels. The center of mass of the mobile 
robot is located at point c   which is the 
center of wheel axle. 

The pose of the mobile robot in the 
global coordinate frame  YXO ,,  and the 
pose vector in the surface is defined as:  

 

 
  Tyxq ),,(                  

                                                              (1)                                                                                                                      
Where x  and y  are the coordinates of 
point c , and   is the robotic orientation 
angle measured from X -axis and these 
three generalized coordinates can 

describe the configuration of the mobile 
robot. 

The mobile robot's motion can be 
determined by the two wheel velocities, 
the velocity of the left wheel VL, the 
velocity of the right wheel VR, the linear 
velocity Vl and the angular velocity Vw. 
The linear and angular velocities can be 
described in terms of the left and right 
velocities as follows [16]: 
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Then the mobile robot kinematics can be 
described by: 
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It is assumed that the mobile robot 
wheels are ideally installed in such a way 
that they have ideal rolling without 
skidding. Therefore, the mobile robot can 
be steered to any position in a free 
workspace [17]. However, the wheels of 
the mobile robot cannot move sideways. 
Therefore, the freedom of the motion is 
limited because no lateral slippage is 
allowed and the wheels must not slide 
orthogonally to the wheel plane and the 
velocity of the point c of the mobile 
robot must be in the direction of the axis 
of symmetry, the x-axis which is referred 
to as the nonholonomic constraint [18], 
as shown in Equation (5): 

 

0)(cos)()(sin)( 


ttyttx                              

  (5) 
To verify the controllability of the 
nonlinear MIMO system in equation (4), 
the accessibility rank condition is 
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globally satisfied, and this implies 
controllability. 
From equation (4), the mobile robot 
kinematics can be described by:  

)(][)(][][ tVgtVfq LR 
                     

       (6)  
Where f  and g can be defined by two 
vectors with components as: 
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Using the Jacobi-Lie-Bracket of f and 
g  , ],[ gf is found [19]. 
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                  (9) 
The determinant of the matrix in 
equation (9) is equal to 0)/1( 2 L , and 
then the full rank of the matrix is equal to 
3. Therefore, the system in equation (4) 
is controllable.               

3. Neural Control Methodology 
The control of a nonlinear MIMO 

mobile robot system is considered in this 
section. The approach used to control the 
mobile robot depends on the information 
available about the system and the 
control objectives. The information of 
the unknown nonlinear system can be 
known by the input-output data only and 
the system is considered as (modified 
Elman recurrent neural networks model). 
The first step in the procedure of building 
the control structure is the identification 
of the kinematical mobile robot from the 
input-output data, and then a feed 

forward kinematical neural networks 
controller is used because the inverse of 
the kinematical mobile robot depends on 
feed forward multi-layer perceptron 
neural networks.  

The integrated control structure that 
consists of the inverse of the kinematical 
system, the position and orientation 
neural networks predictor brings together 
the advantages of the inverse method 
with the robustness of feedback in order 
to achieve good tracking of the reference 
trajectory and to use minimum control 
effort.  

The proposed structure of the neural 
controller can be given in the form of the 
block diagram shown in figure (2). The 
neural controller applied to the mobile 
robot system consists of: 
1- Position and Orientation Neural 
Networks Predictor. 
2- Feed forward Kinematics Neural 
Networks Controller. 
In the following sections, each part of the 
proposed controller will be explained in 
detail. 

3.1 Position and Orientation Neural 
Networks Predictor 
This section focuses on nonlinear MIMO 
system identification of kinematics 
mobile robot (position and orientation) 
using the modified Elman recurrent 
neural network model to construct the 
position and orientation neural networks 
predictor as shown in figure (3) with  the 
nodes of input layer, context layer, 
hidden layer and output layer. The 
network uses two models configuration 
series-parallel and parallel identification 
structure, which is trained using dynamic 
back-propagation algorithm. 
The structure shown in figure 3 is based 
on the following equations: 

}),(),({)( VbbiaskhVCkGVHFkh o                      
   (10) 
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     (11) 
Where VH, VC and W are weight 
matrices, Vb  and Wb  are weight vectors 
and F is a non-linear vector function. The 
multi-layered modified Elman neural 
network is shown in Figure (3). It is 
composed of many interconnected 
processing units called neurons or nodes. 
The network weights are denoted as 
follows: 
VH : Weight matrix of the hidden layers. 
VC : Weight matrix of the context layers. 
Vb : Weight vector of the hidden layers. 
W : Weight matrix of the output layer. 
Wb : Weight vector of the output layer. 
L : Denotes linear node. 
H : Denotes nonlinear node with 
sigmoidal function 
In order to improve the network memory 
ability, self-connections (  fixed value) 
are introduced into the context units of 
the network in order to give these units a 
certain amount of inertia [20 & 21]. The 
introduction of self-connection in the 
context units increases the possibility of 
the Elman network to model high-order 
systems.  

The output of the context unit in the 
modified Elman network is given by: 

)1()1()(  khkhkh c
o
c

o
c                           

     (12) 

Where )(kh o
c  and )(khc are the output of 

the context unit and the hidden unit 
respectively.   is the feedback gain of 
the self-connections and  is the 
connection weight from the hidden units 
(cth) to the context units (cth) at the 
context layer.  The value of   and   are 
selected randomly between (0 and 1). 

To explain these calculations, consider 
the general jth neuron in the hidden layer 
and the inputs to this neuron consisting 
of an (i) – dimensional vector (i is the 
number of the input nodes). Each of the 
inputs has a weight VH and VC 
associated with it. 

Vb is the weight vector for the bias input 
that is set equal to -1 to prevent the 
neurons quiescent. The first calculation 
within the neuron consists of calculating 
the weighted sum jnet  of the inputs as 
[20]: 

j
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Where cj  . Cnh   Which is the 
number of the hidden nodes and context 
nodes, and G is the input vector 

The output of the predictor is the 
modelling pose vector in the surface and 
is defined as:  

T
mmmm yxq ),,(  , where mx  and my  are 

the modelling coordinates and m  is the 
modelling orientation angle. 

A learning algorithm is used to adjust the 
weights of dynamical recurrent neural 
network. Dynamic back propagation 
algorithm is used to train the Elman 
network. The sum of the square of the 
differences between the desired outputs 

Tyxq ),,(  and neural network predictor 
outputs T

mmmm yxq ),,(  is given by 
equation (14). 
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Where np is the number of patterns. 

The connection matrix between hidden 
layer and output layer is kjW   
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       (18) 
The connection matrix between input 
layer and hidden layer is jiVH   

ji
ji VH

EkVH



 )1(
                                           

     (19) 

ji

j

j

j

j

k

k

k

k

m

mji VH
net

net
h

h
net

net
o

o
kq

kq
E

VH
E





















 )1(

)1(        
     (20)  





K

k
kjkijji WeGnetfkVH

1

)()1(                

     (21)      

)1()()1(  kVHkVHkVH jijiji               
     (22) 

The connection matrix between context 
layer and hidden layer is jiVC   
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3.2 Feed forward Kinematics Neural 
Controller 

The feed forward kinematics neural 
controller is of prime importance in the 
structure of the proposed controller 
because of its necessity to track error in 
the transients and minimize steady-state 
error to zero. This means that the 
functions of the (FFKNC) )(1 kuff  and 

)(2 kuff  are to use the outputs of the 
mobile robot as the velocity of the left 
wheel VL and the velocity of the right 

wheel VR. Hence the (FFKNC) is 
supposed to learn the inverse kinematics 
of the mobile robot system on-line to 
calculate mobile robot inputs drive to 
keep the robot on a desired trajectory if 
there are any disturbances or initial state 
errors. 
 To achieve this, a multi-layer perceptron 
model is used as shown in figure (4). The 
system is composed of many 
interconnected processing units called 
neurons or nodes. The network notations 
are as follows: 
Vcont : Weight matrix of the hidden 
layers. 

cVb : Weight vector of the hidden layers. 
Wcont : Weight matrix of the output 
layer. 

cWb : Weight vector of the output layer. 

To explain these calculations, consider 
the general ath neuron in the hidden layer 
shown in figure (4). The inputs to this 
neuron consist of a (n) – dimensional 
vector and (n is the number of the input 
nodes). Each of the inputs has a weight 
Vcont  associated with it. The first 
calculation within the neuron consists of 
calculating the weighted sum anetc  of 
the inputs as [22]: 

a
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a
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     (27) 

Where nhc is the number of the hidden 
nodes. 

Next, the output of the neuron ah is 
calculated as the continuous sigmoid 
function of the anetc  as: 

)( aa netcHhc                                       (28)                                         

1
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     (29) 
Once the outputs of the hidden layer have 
been calculated, they are passed to the 
output layer. 
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In the output layer, two linear neurons 
are used to calculate the weighted sum 
(netco) of its inputs (the output of the 
hidden layer as in equation (30). 

b

nhc

a
abab WbcbiashcWcontnetco 

1

                     

     (30) 

Where baWcont  are the weights between 
the hidden neuron ahc  and the output 
neurons. Then, passes the sum ( bnetco ) 
through a linear activation function of 
slope 1 (another slope can be used to 
scale the output) as: 

)( bb netcoLOc           (31)                                               
    
 These outputs of the feed forward 
kinematics neural networks controller are 

)(1 kuff  and )(2 kuff .  

The training of the inverse kinematics is 
done on-line. It is dependent on the 
position and orientation neural network 
predictor which is used to find the mobile 
robot Jacobian through the neural 
predictor model. This approach is 
currently considered one of the better 
approaches that can be followed to 
overcome the lack of initial knowledge. 
The learning algorithm is utilised to 
adjust the weights of the feed forward 
kinematics neural networks controller.  
The dynamic back propagation algorithm 
is used to realize the training of multi-
layer perceptron neural network, the sum 
of the square of the differences between 
the desired posture T

rrrr yxq ),,(  and 
neural network posture 

T
mmmm yxq ),,(  is given by: 
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Where npc is number of patterns. 
The connection matrix between the 
hidden layer and the output layer is 

baWcont  and is defined as follows: 
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 This is done in the local coordinates 
with respect to the body of the mobile 
robot, which are the same outputs of the 
position and the orientation neural 
networks predictor, the configuration 
error can be represented by using this 
transformation matrix: 
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     (37) 

Where rx , ry and r are the reference 
position and orientation of the mobile 
robot respectively. 

)(
)1(

kuff
kqJacobian
b

m


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           (38)                                  

Where the outputs of the predictor are
T

mmmm yxq ),,(  . 



IJCCCE, VOL.11, NO.1, 2011                                                  Neural Controller for Nonholonomic Mobile Robot  
                                                                                                   System Based on Position and Orientation Predictor    
 

22 
 

)k(buff
jnet

jnet
jh

jh
knet

knet
)k(ko

)k(ko
)1k(mq

)k(buff
)1k(mq























       

     (39) 

The linear activation function in the 
outputs layers are going to be presented 
as follows: 
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And the nonlinear activation function in 
the hidden layers is: 
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     (41)   
Then substituting equations (41 and 36) 
into equation (35) will result in 

)1(  kWcontba  as follows: 
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The connection matrix between input 
layer and hidden layer is designated  
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Substituting equations (41 and 36) into 
equation (47) will give )1(  kVcontan in 
the following form: 
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(48) 
The outputs of the feed forward 
kinematics neural networks controller are 
equal to two. Figure (3) shows that 

)(1 kuff are exciting nodes 1jVH  and 
)(2 kuff are exciting nodes 2jVH  then 

(B=I=2).  
)1()()1(  kVcontkVcontkVcont ananan              

     (49) 

After the neural network has learned the 
inverse kinematics, )(1 kuff  and )(2 kuff  
are considered as the control action 
required to keep the output of the mobile 
robot at the reference trajectory, hence  
the velocity of the left wheel )(kVL and 
the velocity of the right wheel )(kVR  will 
be known.  

4. Simulation Results 
The proposed neural controller is verified 
using computer simulation. The 
simulation program was written using 
C++ language. The simulation is carried 
out by tracking a desired position (x, y) 
and orientation angle ( ) with a 
lemniscates trajectory in the tracking 
control of the nonholonomic mobile 
robot for which the kinematics model 
described in section 2 is used. The model 
parameter values of the nonholonomic 
wheeled mobile robot are taken from the 
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reference model [23] and have the 
following parameters: mass=9 kg, I=5 
kgm2, L=0.306 m and r=0.052 m. 
The proposed controller is implemented 
as shown in Figure (2). The first stage of 
operation is to set the (position and 
orientation) neural network predictor. 
This task is carried out using 
identification technique based on series-
parallel and parallel configuration with 
modified Elman recurrent neural 
networks model. The identification 
scheme of the nonlinear MIMO mobile 
robot system is needed for input-output 
training data pattern to provide enough 
information about the kinematics of the 
mobile robot model to be modelled. This 
can be achieved by injecting a 
sufficiently rich input signal to excite all 
process modes of interest while also 
ensuring that the training patterns 
adequately cover the specified operating 
region. A hybrid excitation signal has 
been used for the mobile robot model. As 
shown in figures (5a and b) the input 
signals (velocity of the right wheel VR 
and velocity of the left wheel VL) and 
(linear velocity Vl and angular velocity 
VW respectively) consists of a random 
amplitude PRBS signal with small 
amplitude of higher frequency PRBS 
signal superimposed. The training set is 
generated by feeding a series of PRBS 
signals, with a sampling time equal to 0.1 
second to the mobile robot model, and 
measure its corresponding outputs 
(position x, y and orientation ). By 
using back propagation learning 
algorithm with the structure of the 
modified Elman recurrent neural network 
which is given by 5-6-6-3; then the node 
number of input layer, hidden layer, 
context layer and output layer will be 5, 
6, 6, and 3 respectively as shown in 
figure (3). 
A training set of 125 patterns has been 
used with learning rate equal to 0.1. After 
1900 epochs, the predictor outputs of the 
neural network (position x, y and 

orientation ) are approximated to the 
actual outputs of the mobile robots model 
trajectory as shown in figures (6a, b and 
c), and the objective cost function MSE 
became less than 0.0005 as shown in 
figure (7). 

 In order to guarantee the similarity of 
outputs of the neural network predictor 
with the actual outputs of the mobile 
robot model trajectory, it should be used 
in parallel configuration. At 3357 the 
same training set patterns has been 
achieved with an MSE figure of less than 
7.3×10-6. The neural network predictor 
(position and orientation) outputs and the 
mobile robot model trajectory are shown 
in figure (8). 
The second stage of operation of the 
proposed controller is the feed forward 
kinematics neural network controller. It 
uses a multi-layer perceptron neural 
network 8-11-2 as shown in figure (4). 

The desired lemniscates trajectory can be 
described by these equations: 

)
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                         

     (52) 

This trajectory has been learned (on-line) 
by the feed forward kinematics neural 
controller using a back propagation 
algorithm, and after 5329 epochs, the 
objective cost function MSE became less 
than 0.0031, which is required to find the 
suitable control action.        
For simulation purposes, the desired 
trajectory is taken from equations (50 & 
51) and the desired orientation angle is 
taken from equation (52). The mobile 
robot model starts from the initial 
position and orientation 

]2/,1.0,75.0[)0( q  for initial conditions. 
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The demonstration mobile robot 
trajectory tracking obtained by the 
proposed neural controller is shown in 
figures (9a and b). From these figures, it 
can be noted that excellent position and 
orientation tracking performance has 
been obtained.  
The simulation results demonstrate the 
effectiveness of the proposed neural 
controller and show that it has the ability 
to generate small smooth values of the 
control input velocities (right wheel and 
left wheel) without sharp spikes. The 
actions that are described in figures (10a 
and b) shows that smaller power is 
required to drive the DC motors of the 
mobile robot model. In addition to that, 
the convergence of the (position and 
orientation) trajectory error for the 
mobile robot model motion is very 
evident in figures (11-a, b, c). 

5. Conclusion 
The neural trajectory tracking 

control methodology for nonholonomic 
mobile robot is presented in this paper. 
The proposed controller consisted of two 
parts: position and orientation neural 
network predictor and feed forward 
kinematics neural network controller. 
The aim of the proposed control scheme 
is to minimize the tracking errors as well 
as the control effort. It  uses two models 
of neural networks in the structure of the 
controller, multi-layer perceptron (MLP) 
and modified Elman neural network 
(MENN), which are trained off-line and 
on-line by using a back propagation 
algorithm with two configurations series-
parallel and parallel to guarantee that the 
model outputs of the neural network 
match those of the mobile robot model 
outputs. From observing the simulation 
results, the proposed neural controller 
model has the capability to generate 
smooth and suitable velocity commands 
(VR and VL) without sharp spikes. This 
behaviour led to smoother drive of the 
mobile robot. The proposed controller 
has demonstrated the capability to track 

the desired trajectory and minimize the 
tracking error to zero approximation. 
Therefore, the proposed neural control 
methodology can be considered to be 
capable of effectively eradicating the 
tracking errors for the nonholonomic 
mobile robot model. 
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Figure (3): The Position and Orientation Neural Networks Predictor 
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Figure 1: Schematic of the nonholonomic mobile robot. 
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Figure 4: The Multi-Layer Perceptron Neural Networks. 
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         Figure (5-a): The PRBS input signals used to excite the mobile robot 
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Figure (5-b): The linear and angular velocity inputs to the mobile robot 
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Figure (6-a): The response of the neural network predictor with the actual mobile robot 
model output in the X-coordinate. 
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Figure (6-b): The response of the neural network predictor with the actual mobile robot 
model output in the Y-coordinat. 
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Figure (6-c): The response of the neural network predictor with the actual mobile robot 



IJCCCE, VOL.11, NO.1, 2011                                                  Neural Controller for Nonholonomic Mobile Robot  
                                                                                                   System Based on Position and Orientation Predictor    
 

29 

model output in the  orientation. 

 

Figure (7): The objective cost function MSE 

 

Figure (8): The response of the modified Elman neural network predictor with the actual 
mobile robot model outputs for the training patterns. 

 

 

Figure (9-a): Mobile Robot actual position and desired trajectory. 
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Figure (9-b): Mobile Robot actual orientation and desired trajectory. 
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Figure (10-a): The velocity of the right and left wheel action for the neural controller. 
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Figure (10-b): The linear velocity and angular velocity of the mobile robot. 
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Figure (11-a): X-coordinate error. 
 

 

 

 

 

 

 

 

 

 

 

 
         Sec. 

 

Figure (11-b): Y-coordinate error  
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Figure (11-c): Orientation error. 
 


