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Abstract

This paper proposes a neural controller to guide a nonholonomic mobile robot
during trajectory tracking. The structure of the controller used consists of two models that
describe the kinematical mobile robot system. These models are modified Elman neural
networks (MENN) and feed forward multi-layer perceptron (MLP). The modified Elman
neural networks model is trained with two stages; off-line and on-line, in order to
guarantee that the outputs of the model accurately represent the actual outputs of the
mobile robot system. The neural model, after being trained, acts as the position and
orientation predictor. The feed forward multi-layer perceptron neural networks controller is
trained on-line to find the inverse kinematical model, which controls the outputs of the
mobile robot system. The general back propagation algorithm is used to learn the feed
forward kinematics neural controller and the predictor. The results obtained from the
conducted simulation show the effectiveness of the proposed neural control algorithm. This
is demonstrated by the minimized tracking error and the smoothness of the control signal
obtained.

Keywords: Nonholonomic Mobile Robots, Neural Networks Controller, Trajectory
Tracking.
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1. Introduction

Mobile robots have been used in
many applications such as moving
material between work stations. They can
also be found in many areas such as
industrial, medical environmental and
even domestic machines. Research on
mobile robots has mounted and attracted
S0 much attention in recent years, since
they are increasingly used in a wide
range of applications [1, 2]. Several
controllers were proposed for mobile
robots with nonholonomic constraints.
The traditional control methods for path
tracking the mobile robot use linear
feedback control or non-linear feedback
control and the artificial intelligent
controller that carried out by using neural
networks or fuzzy inference [3]. There
are other techniques of the controllers
such as predictive control technique that
is a very important area of research and
in the field of mobile robotics predictive
approaches to path tracking also seem to
be very promising because the reference
trajectory is known beforehand. In [4]
model predictive trajectory tracking
control applied to a mobile robot and
used linearise tracking error dynamics to
predict future system behaviour and a
control law is derived from a quadratic
cost function penalizing the system
trucking error and the control effort.

A model predictive control algorithm
developed for stabilizing a team of
nonholonomic mobile robots navigating
information within an obstacle-populated
environment in order to avoid collisions
and accomplish mission objectives is
presented in [5]. In [6] a switched control
algorithm to stabilize a car-like mobile
robot which possesses the velocity level
nonholonomic constraint and the control
approach rests on splitting the system
into several second-order subsystems and
then stabilizing the system sequentially
using finite-time controllers.

An adaptive trajectory-tracking controller
based on the robot dynamics, and its
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stability property is proven using the
Lyapunov theory is proposed in [7].

A trajectory tracking control for a
nonholonomic mobile robot by the
integration of a kinematics controller and
neural dynamic controller based on the
sliding mode theory is presented in [8].

In [9] an adaptive controller of nonlinear
PID based analogue neural networks is
developed for the velocity and
orientation tracking control of a
nonholonomic mobile robot. In [10] a
variable structure control algorithm is
proposed to study the trajectory tracking
control based on the kinematics model of
a 2-wheel differentially driven mobile
robot by using of the back stepping
method and virtual feedback parameter
with the sigmoid function. The trajectory
tracking controllers are designed by pole-
assignment approach for mobile robot
model is presented in [11]. The model of
the mobile robot obtained from the
combination of kinematical and robust

deynamical tracking controller used to
design the kinematical tracking controller
by applying the Lyapunov stability
theorem is proposed in [12].

The design of a dynamic Petri recurrent
fuzzy neural network (DPRFNN)
structure is applied to the path-trajectory
control of a nonholonomic mobile robot
for verifying its validity and convergence
of the path-tracking errors based on a
discrete-type Lyapunov function is
presented in [13]. In [14] two novel dual
adaptive neural control schemes are
proposed for dynamic control of
nonholonomic mobile robots. The first
scheme is based on Gaussian radial basis
function (GaRBF) ANNSs and the second
on sigmoidal multilayer perceptron
(MLP) ANNs, where ANNs are
employed for real-time approximation of
the robot's nonlinear dynamic functions
assumed to be unknown.

A novel linear
methodology  to

interpolation  based
design  control
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algorithms for the trajectory tracking of
mobile robotic systems is presented in
[15] assuming that the evolution of the
system can be approximated by a linear
interpolation in each sampling time and
knowing the desired state. A value for
control action needed to force the system
to go from its current state to a desired
one can be obtained.

The remainder of the paper is organized
as follows. In section two there is a
description of the kinematics model of
the nonholonomic mobile robot. Section
three the proposed neural controller is
derived. The simulation results for the
neural control obtained are presented in
section four, and the conclusion is given
in section five.

2. The Kinematics Model of Mobile
Robot

The nonholonomic mobile robot
shown in figure (1) consists of a cart with
two driving wheels mounted on the same
axis and an omni-directional castor in the
front of the cart, which carries the
mechanical structure and keeps the
platform more stable.

Two independent servo DC motors are
the actuators of left and right wheels for
motion and orientation. The two wheels
have the same radius denoted by r and
L as the distance between the two
wheels. The center of mass of the mobile
robot is located at point C which is the
center of wheel axle.

The pose of the mobile robot in the
global coordinate frame [o,x,y] and the
pose vector in the surface is defined as:

q=(xy.0)
1)
Where x and y are the coordinates of
pointc, and @ is the robotic orientation

angle measured from x-axis and these
three  generalized coordinates can
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describe the configuration of the mobile
robot.

The mobile robot's motion can be
determined by the two wheel velocities,
the velocity of the left wheel V., the
velocity of the right wheel Vg, the linear
velocity V| and the angular velocity V..
The linear and angular velocities can be
described in terms of the left and right
velocities as follows [16]:

WORAGEAG
)
OB
@)

Then the mobile robot kinematics can be
described by:

(4)

It is assumed that the mobile robot
wheels are ideally installed in such a way
that they have ideal rolling without
skidding. Therefore, the mobile robot can
be steered to any position in a free
workspace [17]. However, the wheels of
the mobile robot cannot move sideways.
Therefore, the freedom of the motion is
limited because no lateral slippage is
allowed and the wheels must not slide
orthogonally to the wheel plane and the
velocity of the point Cof the mobile
robot must be in the direction of the axis
of symmetry, the x-axis which is referred
to as the nonholonomic constraint [18],
as shown in Equation (5):

x(t)
y(©) | =

0.5co0s0(t) 0.5cos0(t)
0.5sin6(t) 0.5sin 6(t)
1/L -1/L

VR(Y)
VLY

|

o(t)

—X(t)sin 6(t) + y(t)cosO(t) = 0

()
To verify the controllability of the
nonlinear MIMO system in equation (4),
the accessibility rank condition is
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globally satisfied, and this
controllability.
From equation (4), the mobile robot

kinematics can be described by:
[9]= [T Vo () +[g]V, (1

implies

(6)
Where f and gcan be defined by two

vectors with components as:

f =r.50050(t)] and
(7)

0.5sin O(t)
/L

Using the Jacobi-Lie-Bracket of f and

g, [f,g]is found [19].

0.5sin 6(t)

0.5cos0(t)
g =
-1/L

-1.
[f.q] lTsm9(t)
[f.91=|[f, o |= Icosf?(t)
[f.9F 0
(@)
rank{f,q,[f,q]} =
0.5cos0(t) 0.5cosO(t) %sine(t)
rank| 0.5sin 6(t)  0.5sin 6(t) %cose(t)
1/L -1/L 0
)
The determinant of the matrix in

equation (9) is equal to(/L?) =0, and
then the full rank of the matrix is equal to
3. Therefore, the system in equation (4)
is controllable.

3. Neural Control Methodology

The control of a nonlinear MIMO
mobile robot system is considered in this
section. The approach used to control the
mobile robot depends on the information
available about the system and the
control objectives. The information of
the unknown nonlinear system can be
known by the input-output data only and
the system is considered as (modified
Elman recurrent neural networks model).
The first step in the procedure of building
the control structure is the identification
of the kinematical mobile robot from the
input-output data, and then a feed
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forward kinematical neural networks
controller is used because the inverse of
the kinematical mobile robot depends on
feed forward multi-layer perceptron
neural networks.

The integrated control structure that
consists of the inverse of the kinematical
system, the position and orientation
neural networks predictor brings together
the advantages of the inverse method
with the robustness of feedback in order
to achieve good tracking of the reference
trajectory and to use minimum control
effort.

The proposed structure of the neural
controller can be given in the form of the
block diagram shown in figure (2). The
neural controller applied to the mobile
robot system consists of:

1- Position and Orientation Neural
Networks Predictor.

2- Feed forward Kinematics Neural
Networks Controller.

In the following sections, each part of the
proposed controller will be explained in
detail.

3.1 Position and Orientation Neural
Networks Predictor

This section focuses on nonlinear MIMO
system identification of kinematics
mobile robot (position and orientation)
using the modified Elman recurrent
neural network model to construct the
position and orientation neural networks
predictor as shown in figure (3) with the
nodes of input layer, context layer,
hidden layer and output layer. The
network uses two models configuration
series-parallel and parallel identification
structure, which is trained using dynamic
back-propagation algorithm.

The structure shown in figure 3 is based
on the following equations:

h(k) = F{VHG(k),VCh° (), biasVb}
(10)

O(k) = (Wh(k), biasWhb)
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(11)

Where VH, VC and W are weight
matrices, vo and wb are weight vectors
and F is a non-linear vector function. The
multi-layered modified Elman neural
network is shown in Figure (3). It is
composed of many interconnected
processing units called neurons or nodes.
The network weights are denoted as
follows:

VH : Weight matrix of the hidden layers.
VC : Weight matrix of the context layers.

Vb : Weight vector of the hidden layers.
W : Weight matrix of the output layer.

Wb : Weight vector of the output layer.
L : Denotes linear node.
H: Denotes nonlinear
sigmoidal function

node with

In order to improve the network memory
ability, self-connections (¢ fixed value)
are introduced into the context units of
the network in order to give these units a
certain amount of inertia [20 & 21]. The
introduction of self-connection in the
context units increases the possibility of
the Elman network to model high-order
systems.

The output of the context unit in the
modified Elman network is given by:

h (k) = ah? (k —1) + ph, (k1)
(12)

Where h; (k) and h, (k) are the output of

the context unit and the hidden unit
respectively. « is the feedback gain of
the self-connections and pgis the

connection weight from the hidden units
(c™) to the context units (c") at the
context layer. The value of o and g are

selected randomly between (0 and 1).

To explain these calculations, consider
the general j"™ neuron in the hidden layer
and the inputs to this neuron consisting
of an (i) — dimensional vector (i is the
number of the input nodes). Each of the
inputs has a weight VH and VC
associated with it.
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Vbis the weight vector for the bias input
that is set equal to -1 to prevent the
neurons quiescent. The first calculation
within the neuron consists of calculating
the weighted sum net; of the inputs as

[20]:

nh C
net; = > VH; xG, +) VC,, xh? +biasxVb;
c=1

7 (13)
Where j=c.nh=C  Which is the
number of the hidden nodes and context
nodes, and G is the input vector

The output of the predictor is the
modelling pose vector in the surface and
is defined as:

q, =(x,,y,.0,)"» where x_, and vy, are
the modelling coordinates and 6, is the
modelling orientation angle.

A learning algorithm is used to adjust the
weights of dynamical recurrent neural
network. Dynamic back propagation
algorithm is used to train the Elman
network. The sum of the square of the
differences between the desired outputs
q=(xy,eyrand neural network predictor

outputs g, =(x,,Y,.0,)" 1S given by
equation (14).
E =22 () (- Y) +(0-0,))

(14)

Where np is the number of patterns.

The connection matrix between hidden
layer and output layer is W,

AW, (K +1) = -7 a?/kaj
(15)
OE  O0E 0q,(k+1) 0o, oOnet,
oW, oq,(k+1) do,  Onet, oW,
(16)
AW,;(k+1) =nxh; xe,
(17)

W, (K +1) =W, (K) + AW, (k +1)
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(18)

The connection matrix between input
layer and hidden layer is VH ;

E
OVH,

AVH ,(k +1) =

(19)
E _ & a,k+D o anef dy net
H, agk+) do  anet ahy aney VH,

(20)

K
AVH ; (k+1) =nx f(net;)’' xG, > e W,
k=1
(21)
VH ; (k +1) =VH ;; (k) + AVH ; (k +1)
(22)

The connection matrix between context
layer and hidden layer is VC

OE
AVC (k+)=—n——
e (k+1)=-n e,
(23)
°oE oE Om (k+1) ook .
VCjc odqm(k+1) dox  onety
onet Ohj  onetg
6hJ anetc 6VCJC
(24)
K
AVC  (k+1) =5 x f(net;)' xh? > e W,
k=1
(25)
VC  (k+1)=VC, (k) + AVC  (k +1)
(26)

3.2 Feed forward Kinematics Neural
Controller

The feed forward kinematics neural
controller is of prime importance in the
structure of the proposed controller
because of its necessity to track error in
the transients and minimize steady-state
error to zero. This means that the
functions of the (FFKNC) uff,(k) and

uff,(k) are to use the outputs of the

mobile robot as the velocity of the left
wheel V_ and the velocity of the right
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wheel Vg. Hence the (FFKNC) is
supposed to learn the inverse kinematics
of the mobile robot system on-line to
calculate mobile robot inputs drive to
keep the robot on a desired trajectory if
there are any disturbances or initial state
errors.

To achieve this, a multi-layer perceptron
model is used as shown in figure (4). The
system is composed of many
interconnected processing units called
neurons or nodes. The network notations
are as follows:

Vcont: Weight matrix of the hidden
layers.

Vb : Weight vector of the hidden layers.
Wcont: Weight matrix of the output
layer.

Whc : Weight vector of the output layer.

To explain these calculations, consider
the general a™ neuron in the hidden layer
shown in figure (4). The inputs to this
neuron consist of a (n) — dimensional
vector and (n is the number of the input
nodes). Each of the inputs has a weight
Vcont associated with it. The first
calculation within the neuron consists of
calculating the weighted sum netc, of

the inputs as [22]:

nhc
netc, = Y Veont,, x Z, +hias xVhc,

a=1

(27)

Where nhc is the number of the hidden
nodes.

Next, the output of the neuron Mis
calculated as the continuous sigmoid
function of the netc, as:

hc, = H (netc,) (28)

2
H(netc,) = ————
(netc,) o
(29)
Once the outputs of the hidden layer have

been calculated, they are passed to the
output layer.
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In the output layer, two linear neurons
are used to calculate the weighted sum
(netco) of its inputs (the output of the
hidden layer as in equation (30).

nhc
netco, = » Wcont,, x hc, +bias xWhc,

a=1

(30)
Where Wcont,, are the weights between
the hidden neuron hc, and the output

neurons. Then, passes the sum (netco,)

through a linear activation function of
slope 1 (another slope can be used to
scale the output) as:

Oc, = L(netco,) (31)

These outputs of the feed forward
kinematics neural networks controller are
uff, (k) and uff, (k).

The training of the inverse kinematics is
done on-line. It is dependent on the
position and orientation neural network
predictor which is used to find the mobile
robot Jacobian through the neural
predictor model. This approach is
currently considered one of the better
approaches that can be followed to
overcome the lack of initial knowledge.
The learning algorithm is utilised to
adjust the weights of the feed forward
kinematics neural networks controller.
The dynamic back propagation algorithm
is used to realize the training of multi-
layer perceptron neural network, the sum
of the square of the differences between

the desired posture q, =(x,,Y,,6,)" and
neural network posture
q, = (X,,Y,,60,)" is given by:

npc

Ec= 1
2
(32)

Where npc is number of patterns.

The connection matrix between the
hidden layer and the output layer is

Z((Xr _Xm)2 +(yr _ym)2 +(9r _em)z)
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Weont,, and is defined as follows:

oEc

AWcont,, (K +1) = - ——
(K +D) T awcont,,
(33)
OEc OEc  oqm(k+1) .
oWcontphy  dqm(k+1) ouffp (k)
ouffp (k) docp  Onetcy

oocp onetcy oWcontpy

(34)
OEc
oWceont py
OEc  Oqm(k+1) ouffp (k)
m(k+1) ouffp(k) docp

f'(netcy)hcy

(35)
OEc 3
oqm (k+1)

a%z(m —xm)2 +(yr —ym)2+©r —6m)?)

oqm (k+1)
(36)

This is done in the local coordinates
with respect to the body of the mobile
robot, which are the same outputs of the
position and the orientation neural
networks predictor, the configuration
error can be represented by using this
transformation matrix:

ex, cosd, singd, O x, —x,
ey, |=|-sing, cos6, Oy, -y,
eo, 0 0 16 -6,
(37)
Wherex,, y,and 6, are the reference

position and orientation of the mobile
robot respectively.
oq,, (k +1)
auff, (k)
Where the outputs of the predictor are
qm = (Xm1ym’0m)T '

(38)

Jacobian =
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aqm (k+1)
ouffp (k)

o (k+1) doy (k) onet Shj  onet;

00k (k)  dnety 8hj 8netj8uffb(k)
(39)
The linear activation function in the

outputs layers are going to be presented
as follows:

oq, (k +1) onet, oh;  onet
ouff,(k) ~ oh; onet; ouff, (k)

(40)

And the nonlinear activation function in
the hidden layers is:

oq,, (k +1)

nh
=>» f(net.)VH,
auff, (k) 2 T (net;)VH,,

K

ZWkJ'
j=1 k=1

(41)
Then substituting equations (41 and 36)
into equation (35) will result in

AWcont,, (k +1) as follows:

nh
AWecontpg (k+1) =nhcg x X f(netj)'VHjp
j=1
((exm (k+DWaj) +(eym (k+1)W2j)
+(e0m (k+1)W3j))
(42)
Weont,, (k +1) =Wecont,, (k) + AWcont,, (k +1)
(43)
The connection matrix between input

layer and hidden layer is designated
Vceont,,

oEc
Aveont_, (k+1) =—
conty, (k+1) n6Vcontan
(44)
0Ec  OEc X(fiuffb(k)X ooc, 5
ovcont,, ouff (k) 0doc,  onetc,
onetc,  dhc, 5 onetc,
ohc, onetc, dVcont,,
(45)
OEC O0Ec  oq,(k+1) auffb(k)X

aveont,  aq, (k+1) auff, (k)
ooc, ><anetcb “ ohc, “ onetc,
onetc, ohc, oJnetc, oVcont,,

ooc,

a

22

Neural Controller for Nonholonomic Mobile Robot
System Based on Position and Orientation Predictor

(46)
6Ec  0oEc  dqm(k+1) .
oveontgn  ddm (k+1) ouffp (k)
B
> Weontp xf(netcy ) xZp
b=1
(47)

Substituting equations (41 and 36) into
equation (47) will give AVcont,, (k+1)in
the following form:
AVcontyp (K +1) = nZpf (netey)’

B nh [
bZWcontba 2 f(netj) X VHji ((exm(k + )Wj)

=1 J= i=1
+(eym(K+DWoj) + (e0m (k +1)W5j))

(48)

The outputs of the feed forward
kinematics neural networks controller are
equal to two. Figure (3) shows that
uff1(k) are exciting nodes VH, and

uff 2(k) are exciting nodes VH;, then
(B=1=2).
Vcont,, (k +1) =Vcont,, (k) + AVcont,, (k +1)

(49)
After the neural network has learned the
inverse kinematics, uff, (k) and uff,(k)
are considered as the control action
required to keep the output of the mobile
robot at the reference trajectory, hence
the velocity of the left wheel V (k)and
the velocity of the right wheel V, (k) will
be known.

4. Simulation Results

The proposed neural controller is verified
using  computer  simulation.  The
simulation program was written using
C++ language. The simulation is carried
out by tracking a desired position (X, Y)
and orientation angle (0) with a
lemniscates trajectory in the tracking
control of the nonholonomic mobile
robot for which the kinematics model
described in section 2 is used. The model
parameter values of the nonholonomic
wheeled mobile robot are taken from the
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reference model [23] and have the
following parameters: mass=9 kg, =5
kgm?, L=0.306 m and r=0.052 m.

The proposed controller is implemented
as shown in Figure (2). The first stage of
operation is to set the (position and
orientation) neural network predictor.
This task is carried out using
identification technique based on series-
parallel and parallel configuration with
modified Elman  recurrent  neural
networks model. The identification
scheme of the nonlinear MIMO maobile
robot system is needed for input-output
training data pattern to provide enough
information about the kinematics of the
mobile robot model to be modelled. This
can be achieved by injecting a
sufficiently rich input signal to excite all
process modes of interest while also
ensuring that the training patterns
adequately cover the specified operating
region. A hybrid excitation signal has
been used for the mobile robot model. As
shown in figures (5a and b) the input
signals (velocity of the right wheel Vg
and velocity of the left wheel V) and
(linear velocity V, and angular velocity
Vw respectively) consists of a random
amplitude PRBS signal with small
amplitude of higher frequency PRBS
signal superimposed. The training set is
generated by feeding a series of PRBS
signals, with a sampling time equal to 0.1
second to the mobile robot model, and
measure its corresponding outputs
(position x, y and orientation 0). By
using back  propagation learning
algorithm with the structure of the
modified EIman recurrent neural network
which is given by 5-6-6-3; then the node
number of input layer, hidden layer,
context layer and output layer will be 5,
6, 6, and 3 respectively as shown in
figure (3).

A training set of 125 patterns has been
used with learning rate equal to 0.1. After
1900 epochs, the predictor outputs of the
neural network (position X, y and
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orientation ©) are approximated to the
actual outputs of the mobile robots model
trajectory as shown in figures (6a, b and
c), and the objective cost function MSE
became less than 0.0005 as shown in
figure (7).

In order to guarantee the similarity of
outputs of the neural network predictor
with the actual outputs of the mobile
robot model trajectory, it should be used
in parallel configuration. At 3357 the
same training set patterns has been
achieved with an MSE figure of less than
7.3x10°. The neural network predictor
(position and orientation) outputs and the
mobile robot model trajectory are shown
in figure (8).

The second stage of operation of the
proposed controller is the feed forward
kinematics neural network controller. It
uses a multi-layer perceptron neural
network 8-11-2 as shown in figure (4).

The desired lemniscates trajectory can be
described by these equations:

X,(t) =0.75+0.75x Sin(%‘)

(50)
_4nt
y ()= Sln(ﬁ)
(51)
0. (t) = atan 2(Y: D =Y =D)Ly
(x, (t) - x, (t=1))/t
(52)

This trajectory has been learned (on-line)
by the feed forward kinematics neural
controller using a back propagation
algorithm, and after 5329 epochs, the
objective cost function MSE became less
than 0.0031, which is required to find the
suitable control action.

For simulation purposes, the desired
trajectory is taken from equations (50 &
51) and the desired orientation angle is
taken from equation (52). The mobile
robot model starts from the initial
position and orientation

9(0) =[0.75-0.1 7/ 2] for initial conditions.
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The demonstration  mobile  robot
trajectory tracking obtained by the
proposed neural controller is shown in
figures (9a and b). From these figures, it
can be noted that excellent position and
orientation tracking performance has
been obtained.

The simulation results demonstrate the
effectiveness of the proposed neural
controller and show that it has the ability
to generate small smooth values of the
control input velocities (right wheel and
left wheel) without sharp spikes. The
actions that are described in figures (10a
and b) shows that smaller power is
required to drive the DC motors of the
mobile robot model. In addition to that,
the convergence of the (position and
orientation) trajectory error for the
mobile robot model motion is very
evident in figures (11-a, b, c).

5. Conclusion

The neural trajectory tracking
control methodology for nonholonomic
mobile robot is presented in this paper.
The proposed controller consisted of two
parts: position and orientation neural
network predictor and feed forward
kinematics neural network controller.
The aim of the proposed control scheme
is to minimize the tracking errors as well
as the control effort. It uses two models
of neural networks in the structure of the
controller, multi-layer perceptron (MLP)
and modified Elman neural network
(MENN), which are trained off-line and
on-line by using a back propagation
algorithm with two configurations series-
parallel and parallel to guarantee that the
model outputs of the neural network
match those of the mobile robot model
outputs. From observing the simulation
results, the proposed neural controller
model has the capability to generate
smooth and suitable velocity commands
(Vr and V) without sharp spikes. This
behaviour led to smoother drive of the
mobile robot. The proposed controller
has demonstrated the capability to track
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the desired trajectory and minimize the
tracking error to zero approximation.
Therefore, the proposed neural control
methodology can be considered to be
capable of effectively eradicating the
tracking errors for the nonholonomic
mobile robot model.
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Figure 2: The proposed structure of the neural controller for the mobile robot system
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Figure (6-c): The response of the neural network predictor with the actual mobile robot
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