Some Properties On Orlicz Sequence Λ_M and $\Lambda_M(\Delta)$ Spaces

NADA MOHAMMED ABBAS

Debarment of Mathematics, College of Education For Pure Sciences Babylon University.

ABSTRACT:

This paper is devoted to the study of the general properties of Λ_M and $\Lambda_M(\Delta)$ Orlicz sequence space.

الخلاصة

- في هذا البحث قمنا بدراسة الخصائص العامة لفضاء متتابعات اورلسز
$$\Lambda_{
m M}$$
 و $\Lambda_{
m M}(\Delta)$.

1-Introduction:

A complex sequence whose k^{th} term is x_k will denoted by (x_k) or simply x. A sequence $x = (x_k)$ is said to be analytic if $\sup_k |x_k|^{\frac{1}{k}} < \infty$. The vector space of all

analytic sequence will be denoted by Λ . A sequence $x = (x_k)$ is said to be entire if

 $\lim_{k\to\infty} |x_k|^{\frac{1}{k}} = 0$ The vector space of all entire sequence will be denoted by Γ .A

sequence $x=(x_k)$ is said to be gai sequence if $\lim_{k\to\infty}(K!|x_k|^{\frac{1}{k}})=0$. The vector

space of all gai sequence will be denoted by χ . Kizmaz[H.Kizmaz,(1981)]defined the

following difference sequence spaces $Z(\Delta) = \{x = (x_k): \Delta x \in Z\}$ for $Z = \ell_{\infty}, c, c_0$ where

 $\Delta x = (\Delta x)_{k=1}^{\infty} = (x_k - x_{k+1})_{k=1}^{\infty}$ and showed that these are Banach spaces with norm $||x|| = |x_1| + ||\Delta x||_{\infty}$.

Orlicz [W.Orlicz,(1936)]used the idea of Orlicz function to construct the space (L^M) . J. Lindenstrass and L. Tzafriri [J.Lindenstrauss and L.Tzafriri, (1971)] investigated Orlicz sequence spaces in more detail, and they proved that every Orlicz sequence spaces ℓ_M contains a subspace isomorphic to ℓ_p $(1 \le p < \infty)$. Subsequently different classes of sequence spaces were defined by Parashar and Choudhary [S.D.Parashar and B.Choudhary,(1994)], Mursaleen et al. [M.Mursaleen, M.A.Khan and Qamaruddin,(1999)], Bektas and

مجلة جامعة بابل / العلوم الصرفة والتطبيقية / العدد (٧) / المجلد (١٦) : ٢٠١٣

Altin [C.Bektas and Y.Altin,(2003)], Tripathy et al. [B.C.Tripathy, M.Etand Y.Altin,(2003)], Rao and Subramanian [K.Chandrasekhara Rao and N.Subramanian, (2004)], and many others the Orlicz sequence spaces are the special cases of Orlicz spaces studied in [M.A.Krasnoselskii and Y.B.Rutickii, (1961)].

An Orlicz function is a function $M: [0,\infty) \to [0,\infty)$ which is continuous, nondecreasing, and convex with M(0) = 0, M(x) > 0 for x > 0, and $M(x) \to \infty$ as $x \to \infty$. if the convexity of Orlicz function M is replaced by

 $M(x + y) \le M(x) + M(y)$, then this function is called a modulus function, defined and discussed by Ruckle [W.H.Ruckle,(1973)] and Maddox [I.J.Maddox,(1986)].

An Orlicz function M is said to satisfy the Δ_2 - condition for all values of u if there exists a constant K>0 such that $M(2u) \leq KM(u)$ ($u \geq 0$). the Δ_2 - condition is equivalent is equivalent to $M(\ell u) \leq K.\ell M(u)$, for all values of u and for $\ell>1$. Lindenstrass and L. Tzafriri [J.Lindenstrauss and L.Tzafriri, (1971)] used the idea of Orlicz function M to construct the sequence spaces ℓ_M of all sequence such that

$$\ell_{M} = \left\{ x \in \omega \colon \sum_{k=1}^{\infty} M\left(\frac{|x_{k}|}{\rho}\right) < \infty, for \; some \; \rho > 0 \right\} \dots (1.1)$$

where $\omega = \{\text{all complex sequences}\}\$

The space ℓ_M becomes a Banach space with the norm.

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\} ... (1.2)$$

which is called an Orlicz sequence space.

2-Basic Definition:-

In this section we introduce the definition of Orlicz sequence space Λ_M , normal function and the difference Orlicz space of analytic sequence that we need in all our work.

Definition(2.1):- [J.Lindenstrauss and L.Tzafriri, (1971)]

Let M be modulus function and x be any sequence in ω . Then the space which consisting of all sequences x in ω such that

$$sup_k\left(M\left(\frac{|x_k|^{\frac{1}{k}}}{\rho}\right)\right) < \infty \dots (2.1.1)$$

for some arbitrary fixed $\rho > 0$.is denoted by Λ_M .

Definition(2.2):- [M.Mursaleen ,M.A.Khan and Qamaruddin,(1999)]

Let ω denote the set of all complex sequence $x = (x_k)_{k=1}^{\infty}$, $\Delta: \omega \to \omega$ be the difference operator defined by

 $\Delta x = (x_k - x_{k+1})_{k=1}^{\infty}$, and $M: [0, \infty) \to [0, \infty)$ be an Orlicz function then $\Lambda_M(\Delta) = \{x \in \omega : \Delta x \in \Lambda_M\}$

Definition(2.3): - [K.Chandrasekhara Rao and N.Subramanian, (2004)]

Let F be a sequence space and x, y be the arbitrary of F. Then F is called solid or normal if $(\alpha_k \ x_k) \in F$ whenever $(x_k) \in F$ and for all sequences of scalars (α_k) with $|\alpha_k| \le 1$

3-Main Results

In this section we introduce our main results.

Proposition(3.1):- if M is modulus function, then Λ_M is a linear set over the set of complex numbers \mathbb{C} .

Proof:- Let $x, y \in \Lambda_M$ and $\alpha, \beta \in \mathbb{C}$.

Then there exist positive real numbers ρ_1 , ρ_2 such that

$$sup_k\left(M\left(\frac{|x_k|^{\frac{1}{k}}}{\rho_1}\right)\right) < \infty \dots (3.1.1)$$

$$sup_k M\left(\frac{\mid x_k \mid^{\frac{1}{k}}}{\rho_2}\right) < \infty \dots (3.1.2)$$

Since M is a non decreasing and modulus function then we have

$$\begin{split} \sup_k \left(M \bigg(\frac{|\alpha \, x_k + \beta \, y_k \, |^{\frac{1}{k}}}{\rho_{\mathtt{S}}} \bigg) \bigg) &\leq \, \sup_k \left(M \bigg(\frac{|\alpha \, x_k |^{\frac{1}{k} + |\beta \, y_k |^{\frac{1}{k}}}}{\rho_{\mathtt{S}}} \bigg) \right) \\ &\leq \sup_k \left(M \bigg(\frac{|\alpha \, |^{\frac{1}{k}} \, | \, x_k \, |^{\frac{1}{k}}}{\rho_{\mathtt{S}}} + \frac{|\beta \, |^{\frac{1}{k}} \, | \, y_k \, |^{\frac{1}{k}}}{\rho_{\mathtt{S}}} \bigg) \right) \end{split}$$

$$\leq \sup_{k} \left(M \left(\frac{(\alpha) |x_{k}|^{\frac{1}{k}}}{\rho_{3}} + \frac{(\beta) |y_{k}|^{\frac{1}{k}}}{\rho_{3}} \right) \right)$$

Let ρ_3 be any positive real numbers such that $\frac{1}{\rho_3} = \min \left\{ \frac{1}{|\alpha|} \frac{1}{\rho_4}, \frac{1}{|\beta|} \frac{1}{\rho_2} \right\}$

$$sup_{k}\left(M\left(\frac{|\alpha x_{k}+\beta y_{k}|^{\frac{1}{k}}}{\rho_{3}}\right)\right) \leq sup_{k}\left(M\left(\frac{|x_{k}|^{\frac{1}{k}}}{\rho_{1}}+\frac{|y_{k}|^{\frac{1}{k}}}{\rho_{2}}\right)\right)$$

مجلة جامعة بابل / العلوم الصرفة والتطبيقية / العدد (٧) / المجلد (١٦) : ٢٠١٣

$$\leq \sup_{k} \left[M \left(\frac{\mid x_{k} \mid^{\frac{1}{k}}}{\rho_{1}} \right) + M \left(\frac{\mid y_{k} \mid^{\frac{1}{k}}}{\rho_{2}} \right) \right]$$

$$\leq \sup_{k} \left(M \left(\frac{\mid x_{k} \mid^{\frac{1}{k}}}{\rho_{1}} \right) \right) + \sup_{k} \left(M \left(\frac{\mid y_{k} \mid^{\frac{1}{k}}}{\rho_{2}} \right) \right)$$

$$< \infty$$

By (3.1.1) and (3.1.2) we have
$$\sup_{k} \left(M\left(\frac{|\alpha x_k + \beta y_k|^{\frac{1}{k}}}{\rho_s}\right) \right) < \infty$$

So $(\alpha x_k + \beta y_k) \in \Lambda_M$. Therefore Λ_M is a linear space.

Proposition (3.2):-let M and M_1 be two Orlicz functions if M satisfies the Δ_2 - condition then $\Lambda_{M_1} \subseteq \Lambda_{M^*M_1}$

Proof: let
$$x \in \Lambda_{M_1}$$
, then we have $\sup_{k} \left(M_1 \left(\frac{|x_k|^{\frac{1}{k}}}{\rho} \right) \right) < \infty$ for some $\rho > 0$

Since M is non decreasing and satisfies the Δ_2 – condition, so we have

$$sup_k\left(M\left(M_1\left(\frac{\mid x_k\mid^{\frac{1}{k}}}{\rho}\right)\right)\right) \leq C \ sup_k\left(M_1\left(\frac{\mid x_k\mid^{\frac{1}{k}}}{\rho}\right)\right) < \infty$$

Hence $x \in \Lambda_{M^*M_{\underline{a}}}$. therefore $\Lambda_{M_{\underline{a}}} \subseteq \Lambda_{M^*M_{\underline{a}}}$

Proposition (3.3):- let M_1 and M_2 be two Orlicz functions, then

$$\Lambda_{M_1} \cap \Lambda_{M_2} \subseteq \Lambda_{M_1+M_2}$$

Proof:- let $x \in \Lambda_{M_1} \cap \Lambda_{M_2}$. Then there exist ρ_1 and ρ_2 such that $\sup_k \left(M_1 \left(\frac{|x_k|^{\frac{1}{k}}}{\rho_1} \right) \right) < \infty \dots (3,3.1)$

$$\text{And} \quad sup_k\left(M_2\left(\frac{|x_k|^{\frac{1}{k}}}{\rho_2}\right)\right) < \infty \dots (3.3.2) \,, \text{Put } \rho = \min\left[\frac{1}{\rho_1} \,, \frac{1}{\rho_2}\right]$$

Since *M* is non decreasing and modulus function then we have

$$\sup\nolimits_{k}\left((M_{1}+M_{2})\left(\frac{\mid_{X_{k}\mid^{\frac{1}{k}}}}{\rho}\right)\right)\leq \sup\nolimits_{k}\left(M_{1}\left(\frac{\mid_{X_{k}\mid^{\frac{1}{k}}}}{\rho_{1}}\right)\right)+\sup\nolimits_{k}\left(M_{2}\left(\frac{\mid_{Y_{k}\mid^{\frac{1}{k}}}}{\rho_{2}}\right)\right)$$

By (3.3.1) and (3.3.2) we have
$$\sup_{k} \left((M_1 + M_2) \left(\frac{|x_k|^{\frac{1}{k}}}{\rho} \right) \right) < \infty$$
. So $x \in \Lambda_{M_1 + M_2}$

Proposition (3.4):- $\Lambda_M(\Delta)$ is a complete metric space under the metric

$$d(x,y) = \inf \left\{ \rho > 0 : \sup_{k} \left(M\left(\frac{|\Delta x_{k} - \Delta y_{k}|^{\frac{1}{k}}}{\rho}\right) \right) \le 1 \right\}$$

Where $x = (x_k) \in \Lambda_M(\Delta)$ and $y = (y_k) \in \Lambda_M(\Delta)$

Proof:- let $(x^{(n)})$ be a Cauchy sequence in $\Lambda_M(\Delta)$

Then given any $\varepsilon > 0$ there exists a positive integer N depending on ε such that $d(x^{(n)}, x^{(m)}) < \varepsilon$ for all $n, m \ge N$. So that,

$$d\left(x^{(n)},x^{(m)}\right) = \inf \left\{ \rho > 0 \colon \sup_{k} \left(M\left(\frac{\left|\Delta x^{(n)}_{k} - \Delta x^{(m)}_{k}\right|^{\frac{1}{k}}}{\rho}\right) \right) \leq 1 \right\} \\ < \varepsilon \; , \forall n \geq N \; , m \geq N \; , m$$

Consequently, $\left\{M\left(\frac{\left|\Delta x^{(n)}_{k}\right|}{\rho}\right)\right\}$ is a Cauchy sequence in the metric \mathbb{C} of complex numbers.

But \mathbb{C} is complete, so there exist $(x_k) \in \mathbb{C}$ such that $\left\{ M\left(\frac{|\Delta x^{(n)}|_k}{\rho}\right) \right\} \to \left\{ M\left(\frac{|\Delta x_k|}{\rho}\right) \right\}$

as $n \to \infty$. Hence for any $\varepsilon > 0$ there exists a positive integer n_{ε} such that

$$d\left(x^{(n)},x\right)=\inf\left\{\rho>0\colon \sup_{k}\left(M\left(\frac{\left|\Delta x^{(n)}_{k}-\Delta x_{k}\right|^{\frac{1}{k}}}{\rho}\right)\right)\leq1\right\}<\varepsilon\text{ , for all }n\geq n.$$

In particular, we have
$$\left(M\left(\frac{\left|\Delta x^{(n)}_{k}-\Delta x_{k}\right|^{\frac{1}{k}}}{\rho}\right)\right)<\varepsilon...(3.4.1)$$

مجلة جامعة بابل / العلوم الصرفة والتطبيقية / العدد (٧) / المجلد (١٦) : ٢٠١٣

$$\text{Now , } \sup_{k} \left(M \left(\frac{\mid \Delta x_{k} \mid^{\frac{1}{k}}}{\rho} \right) \right) \leq \sup_{k} \left(M \left(\frac{\mid \Delta x^{(n)}_{k} - \Delta x_{k} \mid^{\frac{1}{k}}}{\rho} \right) \right) + \sup_{k} \left(M \left(\frac{\mid \Delta x^{(n)}_{k} \mid^{\frac{1}{k}}}{\rho} \right) \right)$$

Since
$$(x^{(n)}_{k})$$
 is bounded and by (3.4.1) implies, $\sup_{k} \left(M \left(\frac{|\Delta x_{k}|^{\frac{1}{k}}}{\rho} \right) \right) \in \Lambda_{M}(\Delta)$

REFRENCES

- B.C.Tripathy ,M.Etand Y.Altin ,(2003) , Generalized difference sequence spaces defined by Orlicz functions in a locally convex space , J.Analysis and Applicatios 175-192 .
- C.Bektas and Y.Altin, (2003), The sequence space $\ell_M(p,q,s)$ on seminormed spaces, Indian J.Pure Appl. Math., 529-534.
- H.Kizmaz,(1981), Oncertain sequence spaces, Canada Math. Bull., 169-176.
- I.J.Maddox,(1986),Sequence spaces defined by a modulus,Math.Proc.Cambridge Philos.Soc,161-166.
- J.Lindenstrauss and L.Tzafriri, (1971), On Orlicz sequence spaces, Israel J.Math, 379-390
- K.Chandrasekhara Rao and N.Subramanian , (2004) , The Orlicz space of entire sequences , Int.J.Math.Sci.,3755-3764.
- M.A.Krasnoselskii and Y.B.Rutickii, (1961), Convex functions and Orlicz spaces, Gorningen, Netherlands.
- M.Mursaleen ,M.A.Khan and Qamaruddin,(1999), Difference sequence spaces defined by Orlicz functions, Demonstratio Math.,145-150
- S.D.Parashar and B.Choudhary,(1994),Sequences spaces defined by Orlicz functions , Indian J.Pure Appl.Math .,419-428.
- W.H.Ruckle,(1973) ,FK spaces in which the sequence of coordinate vectors in bounded , Canada.J.Math . 973-978.
- W.Orlicz, (1936), \ddot{U} ber Raume (L^{M}) Bull.Int.Acad.Polon.Sci.A, (1936), 93-107.