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Abstract  

Induction heating system has a number of inherent benefits compared to traditional 
heating systems. Many analytical and numerical approaches have been applied to solve the 
problem of induction heating. Artificial Neural Networks possess many advantages and  have 
the ability to tackle problems that cannot be accomplished by more analytical and numerical 
methods. This paper involves modeling many artificial neural networks, and training them 
based on the results of analysis induction heating systems, by using ANSYS package, to enable 
them to evaluate the heat distribution inside the workpiece of any induction heating system. 
Also neural networks are used to specify the time and the power supply required for any desired 
heat distribution inside the workpiece. The neural networks are simulated by using Neural 
Network Toolbox in MATLAB, and the networks are trained according to supervised scaled 
conjugate gradient algorithm  until the performance function (mean square error) reach the goal 
(=10-4). Artificial Neural Networks show a good success in solving the problem of induction 
heating through obtaining results with high accuracy and very short run time. 
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   الخلاصھ

میزات التسخین الحثي . منظومات التسخین الحثي تمتلك عده میزات مقارنة بمنظومات التسخین التقلیدیھ
العددیھ عدد كبیر من الطرق التحلیلیھ و. رجعلتھ یشكل الحصھ الرئیسیھ من سوق معدات التسخین و الصھ

الشبكات العصبیھ الاصطناعیھ لھا عده فوائد فھي قادره على . ظومات التسخین الحثيیم مناستخدمت لتحلیل و تصم
في ھذه الدراسھ  التعامل مع الافران الحثیھ. معالجھ مشاكل لا یمكن لاكثر الطرق التحلیلیھ و العددیھ التعامل معھا

یم عده شبكات عصبیھ و تدریبھا اعتمادا تم تصم  ي ھذا البحثف. اعتمد على الفوائد التي تقدمھا الشبكات العصبیھ
لتقوم الشبكات العصبیھ باستنتاج التوزیع ,  ANSYSباستخدام برنامج التحلیل , على نتائج تحلیل الافران الحثیھ 

الحراري داخل قطعھ الشغل لاي منظومھ تسخین حثي و كذلك یمكن للشبكات العصبیھ تحدید الزمن و متطلبات 
في ھذا البحث تم تصمیم  .للحصول على التوزیع الحراري المطلوب داخل قطعھ الشغل مجھز القدره اللازمین

 , MATLAB برنـامج ضمن صندوق ادوات الشـبكھ العصـبیھ الشبكات العصبیھ الاصطناعیھ باستخدام وتمثیل
 Scaled conjugate gradient(تم باسـتخدام خوارزمــیة تدریـب المـیل المرافق المتدرج  ھا فقدتدریـباما 

training algorithm ( حیث استمرت عملیات التدریب لغایھ ھبوط دالھ الاداء)للھدف  )متوسط مربع الخطأ
التسخین الحثي من خلال  اثبتت نجاحھا في معالجھ مشاكلو الشبكات العصبیھ الاصطناعیھ . 4-10) (=المحدد

 .دقھ عالیھ و بزمن تنفیذ قصیر جداالحصول على نتائج ذات 
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1 Introduction  
The basic electromagnetic phenomena 

of induction heating are quite simple. An 
alternating voltage applied to an induction coil 
(e.g. solenoid coil) will result in an alternating 
current in the coil circuit. An alternating coil 
current will produce, in its surrounding, a 
time-variable magnetic field. This magnetic 
field induces eddy currents in the workpiece 
located inside the coil. These induced currents 
have the same frequency as the coil current 
but their direction is opposite to the coil 
current. These currents produce heat by the 
Joule effect [1]. The induction coil is always 
constructed of single layer multi turn winding. 
The range of application of induction heating 
at mains frequency can be increased if a 
multi-layered coil is used instead of the 
conventional single layer winding [2]. 

 
2 Analysis of Induction Heating Furnaces 
by ANSYS Package  

Employment of ANSYS package to 
simulate and analyze induction heating 
systems has demonstrated great advantages. A 
full description of the mathematical model 
used to simulate the induction heating systems 
under ANSYS environment is published in 
reference [3]. Despite  the several advantages 
of this model, the following imperfections 
have to be pointed out: 
1- Analyzing one furnace requires relatively 

long time, and the analysis of a multilayer 
induction furnace with more layers 
requires more time. For example, the 
running time for one case  takes about 78 
minutes [4].  

2- There is no ability to take advantage of 
previous results to deduce a result of a 
new case even if there are many close and 
solved cases. 

3- ANSYS package provides only the forward 
solver (i.e. power density or temperature 
distribution inside workpiece etc.) and it 
is obtained when the values of frequency, 
induction current density and the heating 
time are available. ANSYS cannot be 
rearranged to estimate an inverse solver 
i.e. frequency, current density and the 
time cannot be obtained although the heat 
distribution is available [4]. 

These imperfections can be overcome 
by using artificial neural networks. Artificial 

Neural Networks (ANN) are computational 
models that share some of the properties of 
the brain. These networks consist of many 
simple units, called neurons, working in 
parallel with no central control [5]. One of the 
various applications of the neural network is 
large scale function approximation where the 
neural network is employed to construct the 
function that generates approximately the 
same output for a given vector based on the 
available training data [6]. 

In this paper, the neural networks are 
modeled and simulated by using Neural 
Network Toolbox in MATLAB (R2007a). 
The networks are trained according to 
supervised scaled conjugate algorithm. 

In most of training algorithms a learning 
rate is used to determine the length of the 
weight update (step size) but in the Conjugate 
Gradient Algorithms a search is made along 
the conjugate gradient direction to determine 
the step size which minimizes the error 
function along that line. Each of the 
Conjugate Gradient Algorithms requires a line 
search at each iteration, and that is 
computationally expensive. The Scaled 
Conjugate Gradient (SCG) Algorithm was 
designed to avoid the time consuming line 
search [7]. 

The simulations of the single layer 
induction heater include 64 cases and these 
cases are listed in table (1), eight different 
frequencies (1st column on the left) were used 
and for each frequency, there are eight power 
supply levels (current densities). The 
simulations of multilayer induction heater 
include 64 cases and these cases are listed in 
table (2), eight different numbers of layers (1st 
column on left) were used and for each 
number of layers, there are eight power supply 
levels (current densities). By simulating any 
induction furnace, a table of heat distribution 
can be obtained at any time during the heating 
cycle. For each one of the cases tabulated in 
tables (1) and (2), eight tables were prepared; 
these tables display the heat distribution of the 
workpiece at every 30 seconds. The total 
number of tables obtained is 512 tables for 
single layer furnaces and 512 tables for 
multilayer furnaces. Since the heat 
distribution is symmetrical in the upper and 
lower parts of the workpiece,   it is enough to 
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tabulate only the temperatures in the lower 
half of the workpiece (400 elements). 
 
3 Neural Networks for Forward Solver  
3.1 Modeling of the Forward Solver Neural 
Network  

The forward solver can be defined as a 
solution method that has the heat distribution 
as an output and the following items as an 
input: heating cycle period, induction current 
density and one of  the frequencies or number 
of layers for the single or multilayer furnace, 
respectively. By training an appropriate neural 
network on data obtained by ANSYS 
package, a forward solver can be achieved. 
The best model of the neural network is 
reached by trial and error. These attempts 
include changing the parameters and 
observing the performance of the network. 
The final model of the neural network acting 
as a forward  solver  involves  the  parameter     
listed  in  table  (3),  and a schematic diagram 
of the neural network is shown in figure (1).  

 
3.2 Training the Forward Solver Neural 
Networks  

Before training the network, the weights 
and the biases must be initialized. Random 
initial values within range of (-1,1) are used. 
Once the network has been initialized, it is 
ready for training. First , the network was 
trained on single layer induction furnace cases 
with 512 sets of examples, and these sets are 
arranged as input and target matrices, the 
input matrix is of 5123  size and the target 
matrix is of 512400  size.  

During training, weights and biases of 
the network are iteratively adjusted until the 
performance function (MSE) drops below a 
certain threshold (goal), since the data size is 
very large, and the training of the neural 
network has to take a long time. A suitable 
technique is used depending on saving the 
values of the weights and biases after a 
specific number of epochs, and the stored 
values become the initial values of the 
weights and biases for the next run of the 
training processes. By using this technique 
and after a series of training processes, the 
goal is achieved. The parameters of training 
the neural network for single layer induction 
furnaces data are listed in table (4), and the 

training plot of the training process is shown 
in figure (2). For multilayer induction 
furnaces, the same neural network is used to 
be trained on the data of the multilayer 
furnaces, which are input matrix of 5123  
size and target matrix of 512400 size. The 
training parameters are listed in table (5), and 
training plot of the training process is shown 
in figure (3). 
 
4 Neural Networks for Inverse Solver: 
4.1 Modeling of the Inverse Solver Neural 
Network  

Inverse solver can be defined as a 
solution method that has the heat distribution 
through the workpiece as an input and the 
following items as an output: heating cycle 
period, induction current density and one of  
the frequencies or number of layers for the 
single or multilayer furnace, respectively [8]. 
Inverse solver can be achieved by training an 
artificial neural network on data obtained by 
ANSYS. The model of the network acting as 
an inverse solver involves the parameters 
listed in table(6), and a schematic diagram of 
the neural network shown in figure(4). 
 
4.2 Training the Inverse Solver Neural 
Network  

Weights and biases of the neural 
network are initiated as random values. The 
input matrix has a size of 512400  and the 
target matrix has a size of 5123 . The 
parameters of the training process for the data 
of the single layer induction furnaces are 
listed in table(7), and the training plot of the 
training process is shown in figure(5). The 
parameters of training the network for the data 
of multilayer furnaces are listed in table(8), 
and the training plot of the training process is 
shown in figure(6). 

 
 
5 Simulations of Neural Networks  

The performance of a trained neural 
network can be measured to some extent by 
the Mean Square Error (MSE) on the training, 
but it is often useful to investigate the network 
response by performing regression analysis 
between the network output and the 
corresponding desired target. The following 
figures illustrate the graphical output of 



IJCCCE, VOL. 10 ,NO.1  ,2010                                                   Modeling of Induction Heating Systems 
                                                                                 Using Artificial Neural Networks 

 

59 
 

regression analysis. The network outputs are 
plotted versus the targets as open circles. The 
best linear fit is indicated by a solid line, and 
the perfect fit (outputs equal to targets) is 
indicated by a dashed line. Figure (7) shows 
regression analysis of forward solver neural 
network for single layer furnaces. Figure (8) 
shows regression analysis of forward solver 
neural network for multilayer furnaces. Figure 
(9) shows regression analysis of inverse solver 
neural network for single layer furnaces. 
Figure (10) shows regression analysis of 
inverse solver neural network for multilayer 
furnaces. In figures (7) to (10), it is difficult to 
distinguish the best linear fit line from the 
perfect fit line, because the fit is so good, 
which indicates that the neural networks have 
undergone adequate training, and they can 
perform good estimation with low error. 
 
6 Results of the Neural Networks  
6.1 Results of the Forward Solver Neural 
Networks  

For single layer furnaces, by applying 
25 kHz, 7.5A/mm2 and 190 second as an 
input, the temperature distribution inside the 
workpiece obtained by ANSYS program is 
shown in figure (11a). Temperature 
distribution, obtained by neural network, is 
shown in figure (11b), and the percentage 
error is shown in figure (11c).The percentage 
errors for other cases are shown in figure (12). 
For multilayer induction furnaces, by applying 
5A/mm2, 6 layer induction coil and 150 
second as an input, the temperature 
distribution inside the workpiece obtained by 
ANSYS program is shown in figure (13a), the 
temperature distribution obtained by neural 
network is shown in figure (13b), and the 
percentage error is shown in figure (13c). The 
percentage errors for other cases are shown in 
figure (14). From the results shown in figures 
(11) to (14), it is observed that the estimated 
values of the neural networks are in a good 
agreement with the reference values obtained 
by ANSYA program. Therefore, the forward 
solver neural networks can be used to obtain 
an accurate temperature distribution for any 
single or multilayer induction furnace with nil 
run time. 
 
 

6.2 Results of the Inverse Solver Neural 
Networks  

For the neural network of single layer 
induction furnaces, the temperature 
distribution shown in figure (15) is applied as 
an input and the values of the number of 
layers, frequency, current density and time are 
obtained. To verify the accuracy of the results 
of inverse solver neural network, the results 
are compared with reference values used by 
ANSYS program to obtain the temperature 
distribution of figure (15). The results of 
neural network, the reference values and the 
percentage error are listed in table (9). More 
cases of single layer induction furnaces are 
listed in table (10). For the neural network of 
multilayer induction furnaces, the temperature 
distribution, shown in figure (16), is applied 
as an input and the values of the number of 
layers, current density and time are obtained. 
To verify the accuracy of the results of inverse 
solver neural network, the results are 
compared with reference values used by 
ANSYS program to obtain the temperature 
distribution of figure (16). The results of 
neural network, the reference values and the 
percentage error are listed in table (11). More 
cases of multilayer induction furnaces are 
listed in table (12). Tables (9) to (12) show 
clearly the ability of the inverse solver neural 
networks to estimate the supply requirements 
for any desired temperature distribution with 
high accuracy and nil run time. 
 
 
7 Conclusions  

In this paper, attempts are made to 
support the numerical methods of analysis of 
induction furnaces by the advantages of neural 
networks. The neural networks were used to 
perform: a) Analysis of the induction heating 
furnaces. b) Specifying the power supply 
requirements of the induction furnace 
depending on the desired temperature 
distribution inside the workpiece. 
 Processing a large-scale data set requires a 
very large neural network. High accuracy 
results need a long training time. Many 
training algorithms fail to train the large-scale 
neural networks, where “out of memory “ 
error occurs with Levenberg-Marquardt 
training algorithm, and the required training 
goal is never reached with Resilient 
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Backpropagation training algorithm. The 
Scaled conjugate gradient training algorithm 
is used and it offered a good performance by 
reaching the training goal. 
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Fig. (1) Schematic diagram of the forward solver neural network 
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Fig. (2) Training plot for forward solver (single layer furnaces) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3) Training plot for forward solver (multilayer furnaces) 
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Fig. (4) Schematic diagram of the inverse solver neural network 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. (5) Training plot for inverse solver (single layer furnaces) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6) Training plot for inverse solver (multilayer furnaces) 
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Fig. (7) Regression analysis of forward solver for single layer furnaces 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8) Regression analysis of forward solver for multilayer furnaces 
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Fig. (9) Regression analysis of inverse solver for single layer furnaces 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10) Regression analysis of inverse solver for multilayer furnaces 
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Fig. (11) a-Temperature distribution (oC) (by ANSYS), b- Temperature distribution (oC) (by 

neural network), c- The percentage error for forward solver neural network (single layer 

furnaces) 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (12) Percentage errors for forward solver neural network (single layer furnaces) 
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Fig. (13)  a-Temperature distribution (oC) (by ANSYS), b- Temperature distribution (oC) (by 

neural network), c-The percentage error for forward solver neural network (multilayer furnaces) 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. (14) Percentage errors for forward solver neural network (multilayer furnaces) 
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Fig. (15) Sample of temperature distribution used as an input to inverse solver neural network  

(single layer induction furnaces)  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig (16) Sample of temperature distribution used as an input to inverse solver neural network  

(multilayer induction furnaces) 
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Table (1) Frequency and current density of simulated single layer furnaces 

Frequency(kHz) Current density (A/mm2) 

1 19 20 21 22 23 24 25 26 

5 12 13 14 15 16 17 18 19 

10 9 10 11 12 13 14 15 16 

15 8 9 10 11 12 13 14 15 

20 7 8 9 10 11 12 13 14 

25 5 6 7 8 9 10 11 12 

30 4 5 6 7 8 9 10 12 

40 4 5 6 7 8 9 10 11 

 

Table (2) Number of layer and current density of simulated multilayer furnaces 

Number  of layers Current density (A/mm2) 

5 6 7 8 9 10 11 12 13 

10 3 4 5 5.5 6 6.5 7 7.5 

15 1 2 2.5 3 3.5 4 4.5 5 

20 1 1.5 2 2.5 3 3.25 3.5 3.75 

25 1 1.5 2 2.25 2.5 2.75 3 3.25 

30 1 1.25 1.5 1.75 2 2.25 2.5 2.75 

35 1 1.25 1.5 1.75 2 2.25 2.5 2.75 

40 0.5 0.75 1 1.25 1.5 1.75 2 2.25 

 

Table (3) Parameters of the forward solver neural network 

Number of layers 3 

Number of neurons in input layer 3 

Number of neurons in 1st hidden layer 3 

Number of neurons in 2nd  hidden layer 80 

Number of neurons in output layer 400 

Minimum values for input elements 0 

Maximum values for input elements 50 

Transfer function of the hidden layers tan-sigmoid 

Transfer function of the output layer Linear 

Network training algorithm SCG 

Performance function  MSE 
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Table (4) Parameter of training forward solver on single layer furnaces data 

Initial weights and biases Random 

Goal 10-4 

Number of epoch 705840 

Time for one epoch 0.53 second 

Number of training examples 512 

 

 

Table (5) Parameter of training forward solver on multilayer furnaces data 

Initial weights and biases random 

Goal 10-4 

Number of epoch 1866426 

Time for one epoch 0.74 second 

Number of training examples 512 

 

Table (6) Parameters of the inverse solver neural network 

Number of layers 3 

Number of neurons in input layer 400 

Number of neurons in 1st hidden layer 400 

Number of neurons in 2nd  hidden layer 800 

Number of neurons in output layer 3 

Minimum values for input elements 20 

Maximum values for input elements 1000 

Transfer function of the hidden layers Tan-sigmoid 

Transfer function of the output layer Linear 

Network training algorithm SCG 

Performance function  MSE 

Total number of weights and biases 483603 
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Table (7) Parameter of training inverse solver on single layer furnaces data 

Initial weights and biases Random 

Goal 10-4 

Number of epoch 444061 

Time for one epoch 3.64 second 

Number of training examples 512 

 

Table (8) Parameter of training inverse solver for multilayer furnaces data 

Initial weights and biases random 

Goal 10-4 

Number of epoch 55714 

Time for one epoch 3.84 second 

Number of training examples 512 

 

Table (9) Verifying the accuracy of inverse solver neural network (single layer furnaces) 

 
Reference values 

(ANSYS) 

Estimated values 

(Neural network) 

Percentage 

error (%) 

Frequency(kHz) 11 10.67 3 
Current density(A/mm2) 10 9.96 0.4 

Time (second) 175 175.2 0.114 
 

Table (10) Result of inverse solver neural network  (single layer furnaces) 

Reference values (ANSYS) Estimated values(neural network) Percentage  error   ( % ) 

Frequency 

(kHz) 

Current 

density 

(A/mm2) 

Time 

(second) 

Frequency 

(kHz) 

Current 

density 

(A/mm2) 

Time 

(second) 
Frequency  

Current 

density  
Time  

40 4 125 39.93 3.97 124.8 0.17 0.755 0.160 

25 6.5 180 24.59 6.5 180.6 1.66 0 0.332 

25 6.5 185 24.56 6.45 185.4 1.791 0.775 0.215 

23 7 120 22.67 7.05 121.2 1.455 0.709 0.99 

30 7.1 115 30.4 7.14 115.2 1.315 0.560 0.173 
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Table (11) Verifying the accuracy of inverse solver neural network  

(multilayer furnaces) 

 
Reference values 

(ANSYS) 

Estimated values 

(Neural network) 

Percentage 

error (%) 

Number of layers 20 20.01 0.05 
Current density(A/mm2) 3.29 3.31 0.607 

Time (second) 120 120 0 
 
 

Table (12) result of inverse solver neural network  

(multilayer furnaces) 

Reference values (ANSYS) 
Estimated values 

(neural network) 
Percentage  error   ( % ) 

No. 

of 

layers 

Current 

density 

(A/mm2) 

Time 

(sec.) 

No. 

of 

layers 

Current 

density 

(A/mm2) 

Time 

(sec.) 

No. 

of 

layers 

Current 

density 

(A/mm2) 

Time 

(sec.) 

25 2.71 60 24.99 2.72 60 0.040 0.367 0 

5 10.93 240 5.02 10.95 240 0.398 0.182 0 

22 3.25 210 22.07 3.26 210 0.317 0.306 0 

40 1 95 40.04 0.97 95.4 0.099 3.092 0.419 

35 1.75 155 35 1.71 154.8 0 2.339 0.129 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


