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Abstract

Induction heating system has a number of inherent benefits compared to traditional
heating systems. Many analytical and numerical approaches have been applied to solve the
problem of induction heating. Artificial Neural Networks possess many advantages and have
the ability to tackle problems that cannot be accomplished by more analytical and numerical
methods. This paper involves modeling many artificial neural networks, and training them
based on the results of analysis induction heating systems, by using ANSYS package, to enable
them to evaluate the heat distribution inside the workpiece of any induction heating system.
Also neural networks are used to specify the time and the power supply required for any desired
heat distribution inside the workpiece. The neural networks are simulated by using Neural
Network Toolbox in MATLAB, and the networks are trained according to supervised scaled
conjugate gradient algorithm until the performance function (mean square error) reach the goal
(=10). Artificial Neural Networks show a good success in solving the problem of induction
heating through obtaining results with high accuracy and very short run time.
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1 Introduction

The basic electromagnetic phenomena
of induction heating are quite simple. An
alternating voltage applied to an induction coil
(e.g. solenoid coil) will result in an alternating
current in the coil circuit. An alternating coil
current will produce, in its surrounding, a
time-variable magnetic field. This magnetic
field induces eddy currents in the workpiece
located inside the coil. These induced currents
have the same frequency as the coil current
but their direction is opposite to the coil
current. These currents produce heat by the
Joule effect [1]. The induction coil is always
constructed of single layer multi turn winding.
The range of application of induction heating
at mains frequency can be increased if a
multi-layered coil is used instead of the
conventional single layer winding [2].

2 Analysis of Induction Heating Furnaces
by ANSYS Package

Employment of ANSYS package to

simulate and analyze induction heating
systems has demonstrated great advantages. A
full description of the mathematical model
used to simulate the induction heating systems
under ANSYS environment is published in
reference [3]. Despite the several advantages
of this model, the following imperfections
have to be pointed out:

1- Analyzing one furnace requires relatively
long time, and the analysis of a multilayer
induction furnace with more layers
requires more time. For example, the
running time for one case takes about 78
minutes [4].

2- There is no ability to take advantage of
previous results to deduce a result of a
new case even if there are many close and
solved cases.

3- ANSYS package provides only the forward
solver (i.e. power density or temperature
distribution inside workpiece etc.) and it
is obtained when the values of frequency,
induction current density and the heating
time are available. ANSYS cannot be
rearranged to estimate an inverse solver
i.e. frequency, current density and the
time cannot be obtained although the heat
distribution is available [4].

These imperfections can be overcome
by using artificial neural networks. Artificial
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Neural Networks (ANN) are computational
models that share some of the properties of
the brain. These networks consist of many
simple units, called neurons, working in
parallel with no central control [5]. One of the
various applications of the neural network is
large scale function approximation where the
neural network is employed to construct the
function that generates approximately the
same output for a given vector based on the
available training data [6].

In this paper, the neural networks are
modeled and simulated by using Neural
Network Toolbox in MATLAB (R2007a).
The networks are trained according to
supervised scaled conjugate algorithm.

In most of training algorithms a learning
rate is used to determine the length of the
weight update (step size) but in the Conjugate
Gradient Algorithms a search is made along
the conjugate gradient direction to determine
the step size which minimizes the error
function along that line. Each of the
Conjugate Gradient Algorithms requires a line
search at each iteration, and that is
computationally expensive. The Scaled
Conjugate Gradient (SCG) Algorithm was
designed to avoid the time consuming line
search [7].

The simulations of the single layer
induction heater include 64 cases and these
cases are listed in table (1), eight different
frequencies (1% column on the left) were used
and for each frequency, there are eight power
supply levels (current densities). The
simulations of multilayer induction heater
include 64 cases and these cases are listed in
table (2), eight different numbers of layers (1%
column on left) were used and for each
number of layers, there are eight power supply
levels (current densities). By simulating any
induction furnace, a table of heat distribution
can be obtained at any time during the heating
cycle. For each one of the cases tabulated in
tables (1) and (2), eight tables were prepared;
these tables display the heat distribution of the
workpiece at every 30 seconds. The total
number of tables obtained is 512 tables for
single layer furnaces and 512 tables for
multilayer  furnaces. Since the heat
distribution is symmetrical in the upper and
lower parts of the workpiece, it is enough to
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tabulate only the temperatures in the lower
half of the workpiece (400 elements).

3 Neural Networks for Forward Solver
3.1 Modeling of the Forward Solver Neural
Network

The forward solver can be defined as a
solution method that has the heat distribution
as an output and the following items as an
input: heating cycle period, induction current
density and one of the frequencies or number
of layers for the single or multilayer furnace,
respectively. By training an appropriate neural
network on data obtained by ANSYS
package, a forward solver can be achieved.
The best model of the neural network is
reached by trial and error. These attempts
include changing the parameters and
observing the performance of the network.
The final model of the neural network acting
as a forward solver involves the parameter
listed in table (3), and a schematic diagram
of the neural network is shown in figure (1).

3.2 Training the Forward Solver Neural
Networks

Before training the network, the weights
and the biases must be initialized. Random
initial values within range of (-1,1) are used.
Once the network has been initialized, it is
ready for training. First , the network was
trained on single layer induction furnace cases
with 512 sets of examples, and these sets are
arranged as input and target matrices, the
input matrix is of 3x512 size and the target
matrix is of 400x 512 size.

During training, weights and biases of
the network are iteratively adjusted until the
performance function (MSE) drops below a
certain threshold (goal), since the data size is
very large, and the training of the neural
network has to take a long time. A suitable
technique is used depending on saving the
values of the weights and biases after a
specific number of epochs, and the stored
values become the initial values of the
weights and biases for the next run of the
training processes. By using this technique
and after a series of training processes, the
goal is achieved. The parameters of training
the neural network for single layer induction
furnaces data are listed in table (4), and the
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training plot of the training process is shown
in figure (2). For multilayer induction
furnaces, the same neural network is used to
be trained on the data of the multilayer
furnaces, which are input matrix of 3x512
size and target matrix of 400x512size. The
training parameters are listed in table (5), and
training plot of the training process is shown
in figure (3).

4 Neural Networks for Inverse Solver:
4.1 Modeling of the Inverse Solver Neural
Network

Inverse solver can be defined as a
solution method that has the heat distribution
through the workpiece as an input and the
following items as an output: heating cycle
period, induction current density and one of
the frequencies or number of layers for the
single or multilayer furnace, respectively [8].
Inverse solver can be achieved by training an
artificial neural network on data obtained by
ANSYS. The model of the network acting as
an inverse solver involves the parameters
listed in table(6), and a schematic diagram of
the neural network shown in figure(4).

4.2 Training the Inverse Solver Neural
Network

Weights and biases of the neural
network are initiated as random values. The
input matrix has a size of 400x512 and the
target matrix has a size of 3x512. The
parameters of the training process for the data
of the single layer induction furnaces are
listed in table(7), and the training plot of the
training process is shown in figure(5). The
parameters of training the network for the data
of multilayer furnaces are listed in table(8),
and the training plot of the training process is
shown in figure(6).

5 Simulations of Neural Networks

The performance of a trained neural
network can be measured to some extent by
the Mean Square Error (MSE) on the training,
but it is often useful to investigate the network
response by performing regression analysis
between the network output and the
corresponding desired target. The following
figures illustrate the graphical output of
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regression analysis. The network outputs are
plotted versus the targets as open circles. The
best linear fit is indicated by a solid line, and
the perfect fit (outputs equal to targets) is
indicated by a dashed line. Figure (7) shows
regression analysis of forward solver neural
network for single layer furnaces. Figure (8)
shows regression analysis of forward solver
neural network for multilayer furnaces. Figure
(9) shows regression analysis of inverse solver
neural network for single layer furnaces.
Figure (10) shows regression analysis of
inverse solver neural network for multilayer
furnaces. In figures (7) to (10), it is difficult to
distinguish the best linear fit line from the
perfect fit line, because the fit is so good,
which indicates that the neural networks have
undergone adequate training, and they can
perform good estimation with low error.

6 Results of the Neural Networks
6.1 Results of the Forward Solver Neural
Networks

For single layer furnaces, by applying
25 kHz, 7.5A/mm? and 190 second as an
input, the temperature distribution inside the
workpiece obtained by ANSYS program is
shown in figure (11la). Temperature
distribution, obtained by neural network, is
shown in figure (11b), and the percentage
error is shown in figure (11c).The percentage
errors for other cases are shown in figure (12).
For multilayer induction furnaces, by applying
5A/mm?, 6 layer induction coil and 150
second as an input, the temperature
distribution inside the workpiece obtained by
ANSY'S program is shown in figure (13a), the
temperature distribution obtained by neural
network is shown in figure (13b), and the
percentage error is shown in figure (13c). The
percentage errors for other cases are shown in
figure (14). From the results shown in figures
(11) to (14), it is observed that the estimated
values of the neural networks are in a good
agreement with the reference values obtained
by ANSYA program. Therefore, the forward
solver neural networks can be used to obtain
an accurate temperature distribution for any
single or multilayer induction furnace with nil
run time.
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6.2 Results of the Inverse Solver Neural
Networks

For the neural network of single layer
induction furnaces, the temperature
distribution shown in figure (15) is applied as
an input and the values of the number of
layers, frequency, current density and time are
obtained. To verify the accuracy of the results
of inverse solver neural network, the results
are compared with reference values used by
ANSYS program to obtain the temperature
distribution of figure (15). The results of
neural network, the reference values and the
percentage error are listed in table (9). More
cases of single layer induction furnaces are
listed in table (10). For the neural network of
multilayer induction furnaces, the temperature
distribution, shown in figure (16), is applied
as an input and the values of the number of
layers, current density and time are obtained.
To verify the accuracy of the results of inverse
solver neural network, the results are
compared with reference values used by
ANSYS program to obtain the temperature
distribution of figure (16). The results of
neural network, the reference values and the
percentage error are listed in table (11). More
cases of multilayer induction furnaces are
listed in table (12). Tables (9) to (12) show
clearly the ability of the inverse solver neural
networks to estimate the supply requirements
for any desired temperature distribution with
high accuracy and nil run time.

7 Conclusions

In this paper, attempts are made to
support the numerical methods of analysis of
induction furnaces by the advantages of neural
networks. The neural networks were used to
perform: a) Analysis of the induction heating
furnaces. b) Specifying the power supply
requirements of the induction furnace
depending on the desired temperature
distribution inside the workpiece.
Processing a large-scale data set requires a
very large neural network. High accuracy
results need a long training time. Many
training algorithms fail to train the large-scale
neural networks, where “out of memory “
error occurs with  Levenberg-Marquardt
training algorithm, and the required training
goal is never reached with Resilient



IJCCCE, VOL. 10 ,NO.1 ,2010

Backpropagation

training algorithm. The

Scaled conjugate gradient training algorithm
is used and it offered a good performance by
reaching the training goal.
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Fig. (2) Training plot for forward solver (single layer furnaces)
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Fig. (3) Training plot for forward solver (multilayer furnaces)
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Fig. (4) Schematic diagram of the inverse solver neural network
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Fig. (5) Training plot for inverse solver (single layer furnaces)
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Fig. (6) Training plot for inverse solver (multilayer furnaces)
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Fig. (7) Regression analysis of forward solver for single layer furnaces
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Fig. (8) Regression analysis of forward solver for multilayer furnaces
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Fig. (9) Regression analysis of inverse solver for single layer furnaces
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Fig. (10) Regression analysis of inverse solver for multilayer furnaces

64



IJCCCE, VOL. 10,NO.1 ,2010 Modeling of Induction Heating Systems
Using Artificial Neural Networks

[~
162
160 13
160
158 1.25
158
1585
1.2
158 154
1.15
154 152
1.1
152 150
1.05
150 148
’
148 145
146 144 —J 0.95

—a- -b- -C-

[+]
W

(-)O
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Fig. (12) Percentage errors for forward solver neural network (single layer furnaces)
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Fig. (14) Percentage errors for forward solver neural network (multilayer furnaces)
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Table (1) Frequency and current density of simulated single layer furnaces

Frequency(kHz) Current density (A/mm?)

1 19 20 21 22 23 24 25 26

5 12 13 14 15 16 17 18 19
10 9 10 11 12 13 14 15 16
15 8 9 10 11 12 13 14 15
20 7 8 9 10 11 12 13 14
25 5 6 7 8 9 10 11 12
30 4 5 6 7 8 9 10 12
40 4 5 6 7 8 9 10 11

Table (2) Number of layer and current density of simulated multilayer furnaces

Number of layers

Current density (A/mm?)

5 6 7 8
10 3 4 5
15 1 2 2.5
20 1 1.5 2
25 1 1.5 2
30 1 125 | 15
35 1 125 | 15
40 0.5 | 0.75 1

9
5.5
3
2.5
2.25
1.75
1.75
1.25

10 11 12 13
6 6.5 7 7.5
35 4 45 5
3 325 | 35| 375
25 | 275 3 3.25
2 225 | 25| 275
2 225 | 25| 275
15 | 1.75 2 2.25

Table (3) Parameters of the forward solver neural network

Number of layers 3
Number of neurons in input layer 3
Number of neurons in 1° hidden layer 3
Number of neurons in 2" hidden layer 80
Number of neurons in output layer 400
Minimum values for input elements 0
Maximum values for input elements 50
Transfer function of the hidden layers tan-sigmoid
Transfer function of the output layer Linear
Network training algorithm SCG
Performance function MSE
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Table (4) Parameter of training forward solver on single layer furnaces data

Initial weights and biases Random
Goal 10"
Number of epoch 705840
Time for one epoch 0.53 second
Number of training examples | 512

Table (5) Parameter of training forward solver on multilayer furnaces data

Initial weights and biases random
Goal 10"
Number of epoch 1866426
Time for one epoch 0.74 second
Number of training examples 512

Table (6) Parameters of the inverse solver neural network

Number of layers 3
Number of neurons in input layer 400
Number of neurons in 1°** hidden layer 400
Number of neurons in 2" hidden layer 800
Number of neurons in output layer 3
Minimum values for input elements 20
Maximum values for input elements 1000
Transfer function of the hidden layers Tan-sigmoid
Transfer function of the output layer Linear
Network training algorithm SCG
Performance function MSE
Total number of weights and biases 483603
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Table (7) Parameter of training inverse solver on single layer furnaces data

Table (8) Parameter of training inverse solver for multilayer furnaces data

Modeling of Induction Heating Systems
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Initial weights and biases Random
Goal 10"
Number of epoch 444061
Time for one epoch 3.64 second
Number of training examples 512

Initial weights and biases random
Goal 10"
Number of epoch 55714
Time for one epoch 3.84 second
Number of training examples 512

Table (9) Verifying the accuracy of inverse solver neural network (single layer furnaces)

Reference values | Estimated values | Percentage
(ANSYYS) (Neural network) | error (%)
Frequency(kHz) 11 10.67
Current density(A/mm?) 10 9.96 0.4
Time (second) 175 175.2 0.114

Table (10) Result of inverse solver neural network (single layer furnaces)

Reference values (ANSYS) Estimated values(neural network) Percentage error (%)

Current . Current )
Frequency . Time Frequency . Time Current )
density density Frequency . Time
(kHz) ,. | (second) (kHz) ,. | (second) density

(A/mm?) (A/mm®)

40 4 125 39.93 3.97 124.8 0.17 0.755 | 0.160

25 6.5 180 24.59 6.5 180.6 1.66 0 0.332

25 6.5 185 24.56 6.45 185.4 1.791 0.775 | 0.215

23 7 120 22.67 7.05 121.2 1.455 0.709 | 0.9

30 7.1 115 304 7.14 115.2 1.315 0.560 | 0.173
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Table (11) Verifying the accuracy of inverse solver neural network

(multilayer furnaces)

Reference values | Estimated values | Percentage
(ANSYYS) (Neural network) | error (%)
Number of layers 20 20.01 0.05
Current density(A/mm?) 3.29 3.31 0.607
Time (second) 120 120 0

Table (12) result of inverse solver neural network

(multilayer furnaces)

Estimated values
Reference values (ANSYS) Percentage error (%)
(neural network)

No. Current ) No. Current ) No. Current )
) Time ) Time ) Time
of density of density of density
) (sec.) ) (sec.) - | (sec)
layers | (A/mm?) layers | (A/mm®) layers | (A/mm°)
25 2.71 60 24.99 2.72 60 0.040 | 0.367 0

5 10.93 240 5.02 10.95 240 0.398 | 0.182 0

22 3.25 210 22.07 3.26 210 0.317 | 0.306 0

40 1 95 40.04 0.97 95.4 0.099 3.092 0.419

35 1.75 155 35 171 154.8 0 2.339 | 0.129
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