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Abstract

The object of the present paper is to compare maximum likelihood estimator and some
Bayes' estimators for the scale parameter of Laplace distribution. Two prior information
functions are considered; the extension of Jeffreys prior and a new suggested prior which we
call the modified inverse gamma prior. Two loss functions were considered: the squared and
the modified squared error loss functions. We explore the performance of these estimators
numerically under different conditions. The comparison was based on a Monte Carlo
simulation study. The efficiency for the estimators was compared according to the mean
square error (MSE) and the mean percentage error (MPE).

The results of comparison by MSE and MPE showed that the Bayes' estimator of the scale
parameter with the modified inverse gamma prior was the best particularly when A is large.
The maximum likelihood estimator was the second best estimator. While comparison with
respect to loss functions showed that Bayes' estimators under modified squared error loss
function gives better results than the squared error loss function.

Key words: Laplace distribution, Loss functions, Jeffreys prior information, modified inverse
gamma prior information.
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Introduction

The difference between Maximum Likelihood estimation and Baysian estimation is
that in maximum likelihood estimation the parameters are not random variables.

In Bayesian analysis the unknown parameter is regarded as being the value of a
random variable from a given probability distribution, with the knowledge of some
information about its value prior to observing the data X1, X»... X, (Ross, 2009).
Laplace distribution also referred to as the double exponential distribution has wide
applications. It can be used to model the difference between the waiting times of two
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events generated by two random processes. It can also be used to describe breaking
strength data, modeling the differences in flood stages, etc. (Krishnamoorthy, 2006).
(Julia and Vives-Rego, 2008) presented an application of the skew-Laplace
distribution to flow cytometry data. (Abbasi, 2011) has dealt with the aspect of the
Bayesian inference of the discrete Laplace distribution; she made comparison between
the Bayes' estimator and the maximum entropy estimator for discrete Laplace
distribution. (Ali,S., 2010) submitted Baysian analysis of simple and mixture of
Laplace distribution; he presented an overall comparison using various types of
informative and non informative priors under different types of loss functions.

In this study we present comparison of maximum likelihood estimator and some
Bayes' estimators for the scale parameter b, of Laplace distribution. It is arranged as
follows: Maximum likelihood estimator, Bayes' estimators with the extension of
Jeffreys prior and new suggested prior called the modified inverse gamma prior are
presented under the squared and modified squared error loss functions. Comparison
was made through a Monte Carlo simulation study on the performance of these
estimators. The results are summarized in tables and followed by the conclusions.

Laplace Distribution

The classical Laplace distribution with mean zero and variance o> was introduced
by Laplace in 1774. The distribution is symmetrical and leptokurtic (Wu F., 2006).

This distribution has been used for modeling data that have heavier tails than those of
the normal distribution.

Let us consider X3, X2, ... X, to be a random sample of n independent observations from
a Laplace distribution having pdf:

1 |x—al
f[x|a,b]=ﬁexp[— . ] —<x <00 (1)
—wm=a=<w ph>0
where a is the location parameter and b is the scale parameter.
The cumulative distribution function is given by:
a—Xx

b

1
1—Eexp[ ] forx =a

F(x| a,b) =

%exp[x; ] forx<a

Maximum Likelihood Estimator

The likelihood function for the Laplace pdf is given by:

L(Ii:ﬂ,b] = (i)n exp l— wl

By taking the log and differentiating partially with respect to b, we get:

A In Lix;ab) -n ¥ |xi—al
o 5 T e o)
db b B2
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Then the MLE of b is the solution of equation (2) after equating the first derivative to
zero.
Hence:

_ 1N
b=—Z|xi—a
n
i=1

Bayes' Estimators

Bayes' estimators for the scale parameter b, was considered with two different
priors and under two loss functions:

The squared error loss function L, (5,b) = (5 — b)°

The modified squared error loss function L, (5 — b) = 57(5 — b)’
Following is the derivation of these estimators:

i) The extension of Jeffreys prior information, which is given by:

9:(b) =k, wherekaconstant, c € R* 3)

The posterior distribution for the parameter b given the data (X1, X»... x;) is:

n E?:JJ‘EE _a| j.-|.
1_I': f{xﬂbjg{bj & ph+zc
hiblx) = =1 —
( I ) fumn?:if{xf|bjg{b]db E?:1|.:r:z. —a| .
fom g b pn¥Ic  gp
Let

y = B e —al
b - - - -
Then the posterior distribution become as follows:
Iitylxi—al
i = L
_{E:_‘t:j-le_al:]n+zc—1 & B

BM+ZC  [(n+2c-1) (4)

h(b|x) =

According to the squared error loss function, the corresponding Bayes' estimator for
the scale parameter b of Laplace distribution with the posterior distribution (4) is such
that:

bi = E(b|x)
where
E(blx) = [ b h(b|x) db (5)
I, ||
= [7b (B, lxg—al)™*2 o D db
~Jo B+2C [in+2c—1)
. nlxi—al)
_ —EE:’;lle—aD””“lfe (I i Jdb
B T(n+2c—1) prt2e-1
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Let
I lxi—al
= —
} b
Then
n nite—1 o nt+2c—1 -
E(b|x) = _(21:1'3‘5:' — al) Fel f o ¥ _Ez’=1|xz' —al dv
T(n+2c—1) ", lx, —al y? )
0
= Z?:j_le _ Gl',l me—}' v:—:+2:—3 dv
I'n+2c—1) J, i l
Hence,
n i
b = e ©

n+2c—2

Now, according to the modified squared error loss function, the corresponding
Bayes' estimator for the scale parameter b of Laplace distribution with the posterior
distribution (4) is such that:

. E(br-l-llxj
TP
where
E(b7|x) = [ b"h(b|x) db (7

Substituting (4) in (7), we get:

(Zﬂ_.lx[—ﬂl‘
-

_ " - n+2e—1 b
E’[b?"lx:] — (E:—llx: ﬂ-l:] J-e — db
T(n+2c—1) prntie-r
Let
V= E—?:ﬂ:i_al
Then
_ n o n+lo—1 w ntlc—r _vn o
E(b"|x) = [Ef_[ﬂz-t;z |:::|]1j fe_}. (%) E=-1|i¥= al dy
L c— i=1 X —a ¥-
Hence,
In+2c—r-1)
E(b"|x) = Xy —a)” ———— (8)

In+2c-1)
In the same manner, we find the numerator of bj as follows:

E(b™1x) =J bt h(b|x) db
¢ (E?‘:.Ix[—ﬂl‘
-(B=areel)

E(b™)x) = db

_[E;::llxi _ al]n+ﬂc—1J-e
I(n+2c—1) prtie=r—1

o
26— +2c-r—1
—(Zr,lx, —al)te=t 0 y TR 3 |k, — al
= e i — - 000 d};r
I'n+2c—1) y2

n
i= 1|xi - I51'

Hence,
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r+1 _ n _ r+1 [n+2e-r-2)
EQ™%) = Qi —a)™ o ®)
And from (8) and (9), we get:
« _ Dizglxi—al
2 (n+2e—r—2) (10)

i) Modified inverse gamma Prior Information

This is a new suggested prior; we call it modified inverse gamma prior information
because of its analogy with the inverse gamma distribution. It is given by:

A
g.(b) = i e b where 1>0 (11)
The posterior distribution for the parameter b given the data (1, X2... x,) is:
E?::IJIE' _a|+‘1 i
_ MR flyblge) e B Uik

h(blx] - JrDW H:tzlf{leb:]g{b:] db - o E?=1|J.'E- —|SI.|+.1 1

J"D g b pit+1 db
Let

B ey —al+a
=
) b
Then the posterior distribution become as follows:

n+1
g
Il lxi—al+d
. p FT _[E?:1|.rz-—a|+ﬂ.} ;
o ¢ E?:1|.:r:z-—a|+j_ ¥2 Y

ntl

h(b|x) =

e ¥ y

- —(Er lx,—al +4) [T evynldy

” :!t __ H_‘ i
_(M) (=52 |zl +2)"

b
a

= pnti I'(n) (12)

According to the squared error loss function, the corresponding Bayes' estimator
for the scale parameter b of Laplace distribution with the posterior distribution (12) is
such that:

b; = E(b|x)
I ~(Z lxj—al+ )" & b
E(blx) = f, b rrr— db
" _(En:,l:rl-—rzlhljl
_ _[E?:j_lxg' - ﬂ.',l +-A-:]n g b
E(blx) = T(n) J. o db
Let
N E?:j_lx:' - ﬂrl + 4
= b
Then
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(Z 1|x ﬂ,l —|—,.:|,] ¥ " _(E?Zj_lxg' - ﬂll +-;|'j
Pk = T f ( —al+ A) = Y
_E?:j_lxg' - ﬂl + 4 = . -
- T(n) J; er Yy
Hence,

. I lxi—al+a
b: = % (13)

And finally according to the modified squared error loss function, the corresponding
Bayes' estimator for the scale parameter b of Laplace distribution with the posterior
distribution (11) is such that:

. E(br+1|xj
by = E(b7|x)
E(b7|x) = [ b"h(b|x) db

_(E;l:,lx[—rzlh-lj
= Jm b e i (_E?=1|xi —al + A)" db
o Ib:'2+1 1—-[:“:]
- _(Zfl:,l:rl-—ﬂlhljl
_ _[E?:j_lxi - Ell +-;|fjn e b b
- ]_"(ﬂj pr—ril
0
Let
_ T lxi—al+d
v =
o B
Then
v —Ealx —al + A" j y T v —al+ 2
E(b7|x) = ) S ir—a A 2 dy
(E 1|.’?€ —fll +:1:] o=¥ ymr1 gy
I'(n) 0 ’ -
Hence,
Tin—r)
E(bT|x) = (XLl —al+4)7 To0 (14)

In the same manner, we find the numerator of bz as follows:
E(b"*x) = f b™*t h(b|x) db

V]

- _(Eﬂ:.|x£—rz|+.-lj
—(Zkylx,—al+ )" [e
E(bt = : : J db
( |x) T(n) pn+i

_ —(ZEylx—al+ A" J Tk, —al+ A g
B IT'(n) Gz — a:l +4 32 Y

Hence,
E(b"x) = By lx; — al+ )7
And from (14) and (15), we get:

Iln—r-1)

I'(n) (15)
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. E?:j_le_al + 4
b =

(n—r—1)
Simulation and Results

In the simulation study, we generated R = 3000 samples of sizes n = 20, 50,
and100 from Laplace distribution with b =1, 3. In order to compare the Bayes'
estimators under two different loss functions and two priors, we chose the values of
the extension of Jeffreys constants; (¢ = 2, 5) and (r = 1.5, 3), and for the quasi-
exponential prior (/=1, 3). After estimating the value of b, comparison was made
depending on the calculation of the mean square error (MSE) and the mean
percentage error (MPE) as an index for precision to compare the efficiency of each of
the five estimators, where:

R i 2 R |b_ b|
MSE (B) = w and MPE (B) = %

The results were summarized and tabulated in the following tables for each

estimator and for all sample sizes.

Table 1: E (b), MSE and MPE of the estimated scale parameter with
b=1,¢c=2,2=3

- b b
n Criteria b by < =
r=1.5 r=3 r=1.5 r=3

E(b) 0.6924 | 0.6295 | 0.6755 0.7289 | 0.8868 | 0.9628 | 1.0553
20 MSE 0.1259 | 0.1632 | 0.1351 0.1082 | 0.0475 | 0.0423 | 0.0518
MPE | 0.3193 | 0.3746 | 0.3335 0.2908 | 0.1831 | 0.1667 | 0.1757
E(b) 0.6929 | 0.6663 | 0.6860 | 0.7070 | 0.7683 | 0.7925 | 0.8184
50 MSE 0.1062 | 0.1224 | 0.1102 0.0982 | 0.0661 | 0.0562 | 0.0470
MPE | 0.3077 | 0.3340 | 0.3145 0.2940 | 0.2348 | 0.2127 | 0.1904
E(b) 0.6919 | 0.6783 | 0.6884 0.6887 | 0.7292 | 0.7404 0.7520
100 MSE 0.1010 | 0.1093 | 0.1030 | 0.0968 | 0.0795 | 0.0737 | 0.0681
MPE | 0.3081 | 0.3217 | 0.3116 | 0.3011 | 0.2709 | 0.2597 | 0.2483
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Table 2: E (b), MSE and MPE of the estimated scale parameter with
b=1,c=521=1

ﬁ b b;

n Criteria b bf r=1.5 r=3 b;‘ r=1.5 r=3

E(b) | 0.6924 | 0.4946 | 0.5226 | 0.5539 | 0.7815 | 0.8485 | 0.9280

20 MSE | 0.1259 | 0.2714 | 0.2458 | 0.2190 | 0.0825 | 0.0639 | 0.0541

MPE | 0.3193 | 0.5055 | 0.4776 | 0.4467 | 0.2496 | 0.2142 | 0.1911

E(b) | 0.6929 | 0.5973 | 0.6132 | 0.6299 | 0.7275 | 0.7504 | 0.7749

50 MSE | 0.1062 | 0.1710 | 0.1589 | 0.1468 | 0.0867 | 0.0755 | 0.0647

MPE | 0.3077 | 0.4027 | 0.3868 | 0.3701 | 0.2740 | 0.2522 | 0.2297

E(b) | 0.6919 | 0.6406 | 0.6497 | 0.6589 | 0.7090 | 0.7199 | 0.7311

100 MSE | 0.1010 | 0.1343 | 0.1281 | 0.1218 | 0.0908 | 0.0848 | 0.0788

MPE | 0.3081 | 0.3594 | 0.3504 | 0.3411 | 0.2911 | 0.2802 | 0.2690

Table 3: E (b), MSE and MPE of the estimated scale parameter with
b=3,c=2,2=3

o - . b3 . by
n Criteria b by 15 T 3 ba 15 3
r=1. r= r=1. r=

E(b) | 2.0772 | 1.8884 | 2.0266 | 2.1866 | 2.3445 | 2.5454 | 2.7841
20 MSE | 1.1333 | 1.4686 | 1.2158 | 0.9740 | 0.7420 | 0.5748 | 0.4871
MPE | 0.3193 | 0.3746 | 0.3335 | 0.2908 | 0.2496 | 0.2142 | 0.1911

E(b) | 2.0787 | 1.9988 | 2.0581 | 2.1211 | 2.1824 | 2.2513 | 2.3247
50 MSE | 0.9557 | 1.1014 | 0.9920 | 0.8838 | 0.7799 | 0.6791 | 0.5824
MPE | 0.3077 | 0.3340 | 0.3145 | 0.2940 | 0.2740 | 0.2522 | 0.2297

E(b) | 2.0756 | 2.0349 | 2.0653 | 2.0966 | 2.1269 | 2.1596 | 2.1934
100 MSE | 0.9087 | 0.9834 | 0.9273 | 0.8714 | 0.8176 | 0.7632 | 0.7095
MPE | 0.3081 | 0.3217 | 0.3116 | 0.3011 | 0.2911 | 0.2802 | 0.2690

Table 4: E (b), MSE and MPE of the estimated scale parameter with
b=3,c=51=1

n Criteria b by r=1.5 r=3 r=1.5 r=3

E(b) | 2.0772 | 1.4838 | 1.5677 | 1.6618 | 2.2392 | 2.4311 | 2.6591
20 MSE | 1.1333 | 2.4428 | 2.2119 | 1.9712 | 0.8911 | 0.6918 | 0.5567
MPE | 0.3193 | 0.5055 | 0.4776 | 0.4467 | 0.2766 | 0.2377 | 0.2075

E(b) | 2.0787 | 1.7920 | 1.8396 | 1.8897 | 2.1415 | 2.2092 | 2.2812
50 MSE | 0.9557 | 1.5388 | 1.4304 | 1.3211 | 0.8483 | 0.7439 | 0.6430
MPE | 0.3077 | 0.4027 | 0.3868 | 0.3701 | 0.2873 | 0.2657 | 0.2433

E(b) | 2.0756 | 1.9219 | 1.9490 | 1.9768 | 2.1067 | 2.1391 | 2.1725
100 MSE | 0.9087 | 1.2088 | 1.1525 | 1.0961 | 0.8533 | 0.7981 | 0.7435
MPE | 0.3081 | 0.3594 | 0.3504 | 0.3411 | 0.2978 | 0.2870 | 0.2759
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Discussion

In general, comparison by MSE and MPE shows that Bayes' estimator for the scale
parameter b of the Laplace distribution with the suggested modified inverse gamma
prior and under the modified squared error loss function, was the best estimator,
particularly when A is large.

We can also notice that, in Bayes' estimators, each of MSE and MPE decreases as r
increases, but they both get worse as ¢ increases from 2 to 5.
In the comparison between maximum likelihood and Bayes' estimators, results
showed that maximum likelihood estimator gave better results than Bayes' estimators
only with the extension of Jeffreys prior information.

And finally, comparison of MSE and MPE with respect to the loss functions; results
shows for all sample sizes and both priors that Bayes' estimators under the modified
squared error loss function gives better results than estimators under the squared error
loss function.
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