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Abstract 
    The object of the present paper is to compare maximum likelihood estimator and some 

Bayes' estimators for the scale parameter of Laplace distribution. Two prior information 

functions are considered; the extension of Jeffreys prior and a new suggested prior which we 

call the modified inverse gamma prior. Two loss functions were considered: the squared and 

the modified squared error loss functions. We explore the performance of these estimators 

numerically under different conditions. The comparison was based on a Monte Carlo 

simulation study. The efficiency for the estimators was compared according to the mean 

square error (MSE) and the mean percentage error (MPE). 

    The results of comparison by MSE and MPE showed that the Bayes' estimator of the scale 

parameter with the modified inverse gamma prior was the best particularly when 𝜆 is large. 

The maximum likelihood estimator was the second best estimator. While comparison with 

respect to loss functions showed that Bayes' estimators under modified squared error loss 

function gives better results than the squared error loss function.   

 

Key words: Laplace distribution, Loss functions, Jeffreys prior information, modified inverse 

gamma prior information.  

                                                                                                                      

 خلاصة
يهدف البحث الى مقارنة مقدرات الارجحية العظمى مع بعض مقدرات بيز لمعلمة المقياس لتوزيع لابلاس. أخذنا       

بالأعتبار دالتين للاسبقية هما:دالة اسبقية جفريز الموسعة ودالة أسبقية جديدة مقترحة أطلقنا عليها تسمية دالة أسبقية 
بار كذلك دالتين للخسارة هما: دالة الخسارة التربيعية ودالة الخسارة التربيعية المعدلة. معكوس كاما المحورة. أخذنا بالأعت

ومتوسط الخطأ  (MSE)بأستخدام معياري متوسط مربعات الخطأ   جرت المقارنة بأستخدام أسلوب مونت كارلو للمحاكاة
 في مقارنة كفاءة المقدرات.  (MPE)النسبي

الكبيرة وان طريقة الأرجحية  λقدر بيز ذو دالة الاسبقية المقترحة كان الافضل عند قيم وقد أظهرت نتائج المقارنة ان م
العظمى كانت في المرتبة الثانية من حيث الكفاءة. بينما أظهرت نتائج المقارنة بالنسبة لدوال الخسارة أن دالة الخسارة 

 التربيعية المعدلة أعطت نتائج افضل من دالة الخسارة التربيعية.

Introduction 

    The difference between Maximum Likelihood estimation and Baysian estimation is 

that in maximum likelihood estimation the parameters are not random variables.  

In Bayesian analysis the unknown parameter is regarded as being the value of a 

random variable from a given probability distribution, with the knowledge of some 

information about its value prior to observing the data x1, x2… xn (Ross, 2009). 

    Laplace distribution also referred to as the double exponential distribution has wide 

applications. It can be used to model the difference between the waiting times of two 
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events generated by two random processes. It can also be used to describe breaking 

strength data, modeling the differences in flood stages, etc.
 
(Krishnamoorthy, 2006). 

   (Julia and Vives-Rego, 2008) presented an application of the skew-Laplace 

distribution to flow cytometry data. (Abbasi, 2011) has dealt with the aspect of the 

Bayesian inference of the discrete Laplace distribution; she made comparison between 

the Bayes' estimator and the maximum entropy estimator for discrete Laplace 

distribution. (Ali,S., 2010) submitted Baysian analysis of simple and mixture of 

Laplace distribution; he presented an overall comparison using various types of 

informative and non informative priors under different types of loss functions. 

     In this study we present comparison of maximum likelihood estimator and some 

Bayes' estimators for the scale parameter b, of Laplace distribution. It is arranged as 

follows: Maximum likelihood estimator, Bayes' estimators with the extension of 

Jeffreys prior and new suggested prior called the modified inverse gamma prior are 

presented under the squared and modified squared error loss functions. Comparison 

was made through a Monte Carlo simulation study on the performance of these 

estimators. The results are summarized in tables and followed by the conclusions. 

 

Laplace Distribution 

    The classical Laplace distribution with mean zero and variance σ
2
 was introduced 

by Laplace in 1774. The distribution is symmetrical and leptokurtic (Wu F., 2006). 

 This distribution has been used for modeling data that have heavier tails than those of 

the normal distribution. 

Let us consider x1, x2,  …, xn to be a random sample of n independent observations from 

a Laplace distribution having pdf:
 

 

 (1) 

              , b > 0 

where a is the location parameter and b is the scale parameter. 

The cumulative distribution function is given by: 

 
 

Maximum Likelihood Estimator 

The likelihood function for the Laplace pdf is given by: 

 
 

By taking the log and differentiating partially with respect to b, we get: 

 

                                                                 (2) 
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Then the MLE of b is the solution of equation (2) after equating the first derivative to 

zero. 

Hence: 

 
 

Bayes' Estimators 

     Bayes' estimators for the scale parameter b, was considered with two different 

priors and under two loss functions: 

The squared error loss function  

The modified squared error loss function   

 Following is the derivation of these estimators: 

 

i) The extension of Jeffreys prior information, which is given by:     

  ,    where k a constant,                                                 (3) 

The posterior distribution for the parameter b given the data (x1, x2… xn) is: 

                                  

Let 

  

Then the posterior distribution become as follows: 

 

                                  (4) 

    According to the squared error loss function, the corresponding Bayes' estimator for 

the scale parameter b of Laplace distribution with the posterior distribution (4) is such 

that: 

 
where  

                                                                                (5) 

db 
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Let 

  

Then  

 
 

 
Hence,  

                                                                                              (6)    

      Now, according to the modified squared error loss function, the corresponding 

Bayes' estimator for the scale parameter b of Laplace distribution with the posterior 

distribution (4) is such that: 

 
where  

                                                                                    (7)                                                                    

 
Substituting (4) in (7), we get: 

 
Let 

  

Then  

 
Hence,  

                                                     (8)       

  In the same manner, we find the numerator of    as follows: 

 

 

 
Hence, 

 



Journal of Babylon University/Pure and Applied Sciences/ No.(3)/ Vol.(22): 2014 

 

 979 

                                             (9) 

And from (8) and (9), we get: 

                                                                                                     (10)                                          

 

ii) Modified inverse gamma Prior Information  

 This is a new suggested prior; we call it modified inverse gamma prior information 

because of its analogy with the inverse gamma distribution. It is given by: 

 , where 𝜆 > 0                                                                                (11) 

The posterior distribution for the parameter b given the data (x1, x2… xn) is: 

                                  

Let 

  

Then the posterior distribution become as follows: 

                      

 

 
   

                                                                   (12) 

     According to the squared error loss function, the corresponding Bayes' estimator 

for the scale parameter b of Laplace distribution with the posterior distribution (12) is 

such that: 

 

db 

 
Let 

 
Then  
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Hence,  

                                                                                       (13)   

  And finally according to the modified squared error loss function, the corresponding 

Bayes' estimator for the scale parameter b of Laplace distribution with the posterior 

distribution (11) is such that: 

 
      

                                                                     

 
 

 
Let 

  

Then  

 
 

 
Hence,  

                                                  (14)    

In the same manner, we find the numerator of    as follows: 

 

 

 
Hence, 

                                        (15) 

And from (14) and (15), we get: 
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Simulation and Results  

     In the simulation study, we generated R = 3000 samples of sizes n = 20, 50, 

and100 from Laplace distribution with b =1, 3. In order to compare the Bayes' 

estimators under two different loss functions and two priors, we chose the values of 

the extension of Jeffreys constants; (c = 2, 5) and (r = 1.5, 3), and for the quasi-

exponential prior (𝜆=1, 3). After estimating the value of b, comparison was made 

depending on the calculation of the mean square error (MSE) and the mean 

percentage error (MPE) as an index for precision to compare the efficiency of each of  

the five estimators, where: 

 
     The results were summarized and tabulated in the following tables for each 

estimator and for all sample sizes.  
 

Table 1: E (b), MSE and MPE of the estimated scale parameter with 

b= 1, c = 2, 𝜆 = 3 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n Criteria   
 

 
 

r=1.5 r=3 r=1.5 r=3 

20 

E(b) 0.6924 0.6295 0.6755 0.7289 0.8868 0.9628 1.0553 

MSE 0.1259 0.1632 0.1351 0.1082 0.0475 0.0423 0.0518 

MPE 0.3193 0.3746 0.3335 0.2908 0.1831 0.1667 0.1757 

50 

E(b) 0.6929 0.6663 0.6860 0.7070 0.7683 0.7925 0.8184 

MSE 0.1062 0.1224 0.1102 0.0982 0.0661 0.0562 0.0470 

MPE 0.3077 0.3340 0.3145 0.2940 0.2348 0.2127 0.1904 

100 

E(b) 0.6919 0.6783 0.6884 0.6887 0.7292 0.7404 0.7520 

MSE 0.1010 0.1093 0.1030 0.0968 0.0795 0.0737 0.0681 

MPE 0.3081 0.3217 0.3116 0.3011 0.2709 0.2597 0.2483 
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 Table 2: E (b), MSE and MPE of the estimated scale parameter with 

b= 1, c = 5, 𝜆 = 1 

 

n Criteria   
 

 
 

r=1.5 r=3 r=1.5 r=3 

20 

E(b) 0.6924 0.4946 0.5226 0.5539 0.7815 0.8485 0.9280 

MSE 0.1259 0.2714 0.2458 0.2190 0.0825 0.0639 0.0541 

MPE 0.3193 0.5055 0.4776 0.4467 0.2496 0.2142 0.1911 

50 

E(b) 0.6929 0.5973 0.6132 0.6299 0.7275 0.7504 0.7749 

MSE 0.1062 0.1710 0.1589 0.1468 0.0867 0.0755 0.0647 

MPE 0.3077 0.4027 0.3868 0.3701 0.2740 0.2522 0.2297 

100 

E(b) 0.6919 0.6406 0.6497 0.6589 0.7090 0.7199 0.7311 

MSE 0.1010 0.1343 0.1281 0.1218 0.0908 0.0848 0.0788 

MPE 0.3081 0.3594 0.3504 0.3411 0.2911 0.2802 0.2690 
 

Table 3: E (b), MSE and MPE of the estimated scale parameter with 

b= 3, c = 2, 𝜆 = 3 

 

n Criteria   
 

 
 

r=1.5 r=3 r=1.5 r=3 

20 

E(b) 2.0772 1.8884 2.0266 2.1866 2.3445 2.5454 2.7841 

MSE 1.1333 1.4686 1.2158 0.9740 0.7420 0.5748 0.4871 

MPE 0.3193 0.3746 0.3335 0.2908 0.2496 0.2142 0.1911 

50 

E(b) 2.0787 1.9988 2.0581 2.1211 2.1824 2.2513 2.3247 

MSE 0.9557 1.1014 0.9920 0.8838 0.7799 0.6791 0.5824 

MPE 0.3077 0.3340 0.3145 0.2940 0.2740 0.2522 0.2297 

100 

E(b) 2.0756 2.0349 2.0653 2.0966 2.1269 2.1596 2.1934 

MSE 0.9087 0.9834 0.9273 0.8714 0.8176 0.7632 0.7095 

MPE 0.3081 0.3217 0.3116 0.3011 0.2911 0.2802 0.2690 

         
 

Table 4: E (b), MSE and MPE of the estimated scale parameter with 

b= 3, c = 5, 𝜆 = 1 

      

n Criteria   
 

 
 

r=1.5 r=3 r=1.5 r=3 

20 

E(b) 2.0772 1.4838 1.5677 1.6618 2.2392 2.4311 2.6591 

MSE 1.1333 2.4428 2.2119 1.9712 0.8911 0.6918 0.5567 

MPE 0.3193 0.5055 0.4776 0.4467 0.2766 0.2377 0.2075 

50 

E(b) 2.0787 1.7920 1.8396 1.8897 2.1415 2.2092 2.2812 

MSE 0.9557 1.5388 1.4304 1.3211 0.8483 0.7439 0.6430 

MPE 0.3077 0.4027 0.3868 0.3701 0.2873 0.2657 0.2433 

100 

E(b) 2.0756 1.9219 1.9490 1.9768 2.1067 2.1391 2.1725 

MSE 0.9087 1.2088 1.1525 1.0961 0.8533 0.7981 0.7435 

MPE 0.3081 0.3594 0.3504 0.3411 0.2978 0.2870 0.2759 

 



Journal of Babylon University/Pure and Applied Sciences/ No.(3)/ Vol.(22): 2014 

 

 983 

Discussion  
      In general, comparison by MSE and MPE shows that Bayes' estimator for the scale 

parameter b of the Laplace distribution with the suggested modified inverse gamma 

prior and under the modified squared error loss function, was the best estimator, 

particularly when 𝜆 is large. 

 

    We can also notice that, in Bayes' estimators, each of MSE and MPE decreases as r 

increases, but they both get worse as c increases from 2 to 5. 

 In the comparison between maximum likelihood and Bayes' estimators, results 

showed that maximum likelihood estimator gave better results than Bayes' estimators 

only with the extension of Jeffreys prior information. 

 

And finally, comparison of MSE and MPE with respect to the loss functions; results 

shows for all sample sizes and both priors that Bayes' estimators under the modified 

squared error loss function gives better results than estimators under the squared error 

loss function. 
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