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Abstract- This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses
Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the
number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used
to classify the reduced moments between two classes. The proposed method’s performance is tested and compared
with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with
5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The
proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it is obvious that the
number of moments selected by the SP should exceed 30% of the overall EEG samples for accuracy to be over
90%.
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I. INTRODUCTION

Brain-computer interface (BCI) technology enables people to control and interact with their surroundings [1]. BCI

includes applications ranging from education and entertainment to environmental communication and control based on the

evaluation of noninvasive EEG [2 - 4]. A prevalent paradigm for implementing a BCI system involves measuring EEG

during distinct motor imagery tasks (e.g., left- and right-hand motor imagery). The EEG data collected during these motor

imagery tasks are classified to control the BCI system.

Extracting the relevant features from the gathered EEG data is the key to producing control signals that will aid in

categorizing different mental activities. Many techniques were used to extract features from different signals [5], [6].

Tchebichef polynomials (TP), Krawtchouk polynomials (KP), and Hahn polynomials are all examples of discrete

orthogonal polynomials [7]. Although the TP shows notable energy compaction (EC) [8], the KP is superior to the TP

in signal extraction of local features. On the basis that the Orthogonal Polynomial (OP) can be obtained by multiplying

two orthogonal polynomials, numerous hybrid variants of KP and TP have been developed. Jassim et al. [9] proposed

the Tchebichef-Krawtchouk polynomial (TKP), Mahmmod et al. [10] proposed the Krawtchouk-Tchebichef polynomial

(KTP), and Abdulhussain et al. [11] recently offered the squared Krawtchouk-Tchebichef polynomial (SKTP). The SKTP

is considered an advanced OPs combination strategy. It is implemented by multiplying two OPs derived from each hybrid

OPs (TKP and KTP) [11].
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Sparse filtering (SF) is a powerful technique in signal processing and machine learning that aims to extract informative

features from high-dimensional data by encouraging sparsity in the representation [12]. Sparse filtering applies an unsu-

pervised learning algorithm to learn a set of filters or basis functions that capture the most salient features of the input

data. These filters are designed to be sparse, meaning only a few filters are activated for a given input. Sparse filtering has

been successfully applied in various domains, including computer vision, natural language processing, and bioinformatics.

It has shown promising results in tasks such as image denoising, feature extraction, and classification [13].

Support Vector Machines (SVM) are widely used machine learning algorithms that excel in classification and regression

tasks. SVM aims to find an optimal hyperplane that maximally separates different classes in the feature space. SVMs can

handle both linearly separable and nonlinearly separable data using kernel functions, enabling the input data to map into a

higher-dimensional feature space. SVM has demonstrated excellent performance in various applications, including image

recognition, text categorization, and bioinformatics [14].

In this paper, an EEG signal classifier is implemented. The classifier consists of converting EEG from a spatial domain

to moments by using OPs then those moments are reduced by using a sparse filter. Finally, the reduced moments are

fed to the SVM classifier to select the class to which this EEG signal belongs. The paper is organized as follows: The

methodology section consists of theoretical concepts of OPs, SFs, and SVM classifiers. The Proposed EEG signal classifier

section shows how the proposed method is implemented. The results and discussion section are shown next. Finally, a

conclusion section summarizes the work.

II. THEORETICAL BACKGROUND

A. Orthogonal Polynomials

The signal (frame) is taken from the time (spatial) domain and transformed into the transform domain with the help

of a transformation function, which is what a discrete transform is. Discrete transforms have many applications in signal

processing, representation, and communication [15]. The powerful ability to analyze the elements of various signals [16]

is greatly enhanced because it permits viewing signals in multiple domains. On top of that, orthogonal polynomials (OPs)

have been intensively investigated and used in a wide range of applications [10]. OP generates Orthogonal Moments (OMs;

see [11]). Because of their remarkable efficiency and effectiveness, QMs (scalar quantities) are used as a shape descriptor

[17].

OPs include several types, such as the Krawtchouk polynomial (KP) [18] and the Tchebichef polynomial (TP) [8]. The

OP kernels of the KP and TP are used to construct the discrete Krawtchouk transform (DKT) and the discrete Tchebichef

transform (DTT). Krawtchouk-Tchebichef polynomials (KTP) [10] and TchebichefKrawtchouk polynomials (TKP) [9]

are recently proposed hybrids of the original Krawtchouk and Tchebichef polynomials. Discrete Krawtchouk-Tchebichef

transform (DKTT) and Tchebichef-Krawtchouk transform (DTKT) refer to transformations implemented by the KTP and

TKP kernels, respectively. Signals are converted from the spatial to the moment domain using KTP and TKP kernels.

Comparative analyses of DTKT, DKTT, DKT, DTT, and DCT are presented in [9], and [10]. Compared to other real

transforms, the KTP and TKP sets performed exceptionally well in energy compaction (EC) and localization properties

[17]. This analysis demonstrated that DTKT and DKTT could use the localization property in the time and space domains
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to extract features from the desired signal region. In addition, since these OPs redistribute signal energy into a limited

number of polynomial coefficients, they exhibit substantial EC. Moments derived from an EEG signal using DTKT and

DKTT are depicted in Fig. 1. The moment distribution shows they are more evenly distributed in the middle at DKTT and

at the two ends at DTKT. Compared to the DTKT, the computational cost of extracting the test EEG signal’s dominant

moments (features) is drastically lower in the DKTT. Therefore, DKTT is employed here to extract features from the EEG

signal.

Figure 1: The representation of EEG signal (a) without transformation, (b) with DKTT transformation, and (c) with DTKT
transformation

Now the mathematical model of the KTP is represented as follows. The KTP’s nth order, Rn(x), is given by [10]:

Rn(x) =

N−1∑
i=0

ki(n; p,N − 1)ti(x)

n, x = 0, 1, . . . , N − 1

N > 0, p ∈ (0, 1)

(1)

where ti(x) is the i th order TP given by [8]:

ti(x) =
(1−N)i3F2(−i,−x, 1 + i; 1, 1, 1−N ; 1)√√√√√(2i)!

 N + i

2i+ 1


i, x = 0, 1, . . . , N − 1, N > 0

(2)
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where

 a

b

 and (a)k are the binomial coefficients and the ascending factorial, respectively. (a)k is defined as follows:

(a)k = a(a+ 1)(a+ 2) . . . (a+ k − 1) =
Γ(a+ k)

Γ(a)
(3)

ki(n; p,N − 1) is the KP’s ith order given as [15]:

ki(n; p,N − 1) =

√
A

B
2F1(−i,−n;−N + 1; 1/p)

A =

 N − 1

n

 pn(1− p)N−1−n

B = (−1)i
(
1− p

p

)i
i!

(−N + 1)i

i, x = 0, 1, . . . , N − 1,

N > 0, p ∈ (0, 1)

(4)

At last, 3F2 and 2F1 are the hypergeometric functions given by [10]:

3F2(−i,−x, 1 + i; 1, 1, 1−N ; 1) =

∞∑
j=0

(−i)j(−x)j(1 + i)j
(i)j(1−N)jj!

(5)

2F1

(
−i,−n;−N + 1;

1

p

)
=

∞∑
j=0

(−i)j(−n)j

(
1
p

)
j

(−N + 1)jj!
(6)

B. Sparse Filtering

Instead of focusing on learning the input data distribution, the sparse filtering (SF) algorithm, which is a two-layer

unsupervised feature learning algorithm, optimizes the sparsity of the learned representation. It can effectively scale with

the input data size [12] and is used in this way frequently. The number of features that ensures optimal solution convergence

is the only parameter that needs tuning, making it very easy to use. It has been successfully implemented in image and

phone classification [13] and is computationally efficient. The following characteristics of the feature distribution matrix

are exploited to optimize sparsity.

- Population sparsity occurs when a small set of activated features only represents each instance.

- Lifetime sparsity means that each feature is enabled for only a few instances.

- High dispersal: All the features must have a uniform contribution.

The SF uses a nonlinear transformation to map input features to as few output features as possible, allowing optimal

performance. By averaging the squared values in the feature matrix across all instances, we can achieve a high dispersal by

considering the mean squared activations of each feature (resulting in nearly equal values). The averaging ensures sparsity

over a lifetime and population sparsity [19].
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For an offered training set
{
Y i

}M

i=1
, where Y i ∈ RN×L is a sample value of the M th sample and N << L. For this

purpose, it is conventional to think of the features as rows in the matrix and the samples as columns; specifically, N is the

number of original features, while L is the number of samples. The sparse filtering model is trained with the training set to

obtain the weight matrix W ∈ RN×P . When using sparse filtering, samples are mapped onto their corresponding features

Zi ∈ RP×L using the weight matrix, W obtained from training. P is the number of learned features obtained from the

original features N where P << N. Linear features are calculated from each sample using Eq. (7).

Zi
l = WT

l Y i (7)

where Zi
l represents the lth feature of the ith sample.

When a function is optimized with sparse filtering, the ℓ2 norm of the function is used as a criterion. A feature matrix

can be constructed using the Zi
l . For features to be stable on the unit ℓ2, the feature distribution matrix must be normalized

row by row and column by column. The row and column matrix normalization are shown in Eq. (8) and (9), respectively.

Z̃l = Zl/ ∥Zl∥2 (8)

Ẑi = Z̃i/
∥∥∥Z̃i

∥∥∥
2

(9)

Lastly, the weight matrix solution W is calculated using cost function optimization, as shown in Eq. (10).

M∑
i=1

∥∥∥Ẑi
∥∥∥
1

(10)

The term
∥∥∥Ẑi

∥∥∥
1

measures the sparsity of the ith sample [13].

Since the feature space Ẑi is limited to a ℓ2-ball, the cost function decreases in sparse feature cases. Thus, population

sparsity is a target of the objective function. High dispersion is satisfied by normalized features because all features are kept

distinct across all samples according to their ℓ2-norm. Lifetime sparsity is accomplished by optimizing both population

sparsity and high dispersal. To put it another way, when a population is sparse, there are a lot of blank cells in the feature

distribution matrix, and when dispersion is high, those blank cells are spread out evenly. As a result, all characteristics are

sparse for a lifetime, as they all contain numerous zero values. Sparse filtering is further explained in [19].

C. Support Vector Machine

In machine learning, classification is a common task. This research employed an SVM classifier to classify the EEG

data. Several SVM techniques exist, such as linear, quadratic, and cubic SVM classifiers. SVM is a binary classifier to

classify numeric EEG data between two classes. Assume there are two data classes, and the purpose is to determine which

class a new data item belongs to. By giving a set of training samples, an SVM algorithm creates a model that assigns each

sample to one of two categories, ensuring that a wide gap separates samples from different categories. Then, new samples

are predicted based on which side they fall on [20].
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In support vector machines, a data point is represented as an n-dimensional vector. Linear SVM uses an (n-1)-dimensional

hyperplane to make the distinction. To maximize the difference between the two types of processed data, we can pick

two parallel hyperplanes that separate them as much as possible. We call the area bordered by these two hyperplanes the

margin. Different hyperplanes can be used to partition the data, but the best one is the one that creates the largest gap

between the two groups (see Fig. 2). In other words, the hyperplane is chosen to determine the greatest possible distance

between it and the nearest data point on either side. The samples on the border are called support vectors [14] once the

maximum-margin hyperplane has been identified.

Figure 2: The support vectors and the best separation hyperplane [14]

III. PROPOSED EEG SIGNAL CLASSIFIER

This paper proposes a new method to classify the EEG signal by converting the signal to moments using OP. Moments

are passed to a sparse filter to select the most appropriate moments. Finally, the SVM classifier selects the class this signal

belongs. Fig. 3 shows the block diagram of the proposed method, and each block is explained below.

1) Training Phase:

a) Signal preparation: in this block, an EEG signal with M samples sampled at 128 samples per second from one or

more channels is arranged in array X of size N ×M , where N is the number of training signals.

b) The classes for each EEG signal are arranged in class table Y of size N × 1.

c) OP named P of size M ×M is generated for one time using equations (1-6).

d) Each row of array X is multiplied by the OP P to generate moments with a size of 1 ×M , arranged in another

array Z of size N ×M .

e) The Z array is fed into a pre-trained sparse filter to select the most F -appropriate moments from each row of the

Z array and generate moments table D of size N × F .

f) The moments’ table D and the classes’ table Y are used to train the SVM classifier.

2) Testing Phase:
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a) Signal preparation: an EEG signal with M samples sampled at 128 (samples per second) is stored in table Xtest of

size 1×M .

b) Multiply the Xtest with the pre-prepared OP P to generate moments with a size of 1×M Ztest.

c) The Ztest table is fed into a pre-trained sparse filter to select the most F -appropriate moments from the Ztest table

and generate moments table Dtest of size 1× F .

d) The SVM classifier uses the moments’ table Dtest to select which class this signal belongs to.

Figure 3: Proposed EEG Signal Classifier Block Diagram

IV. RESULTS AND DISCUSSION

The proposed method’s performance is tested by calculating the accuracy of the EEG signal classification. Datasets in

[4] and [21] are used to test the proposed method’s performance. The first dataset from [4] consists of 20 trials of EEG

signal recordings chosen randomly between two classes (left- and right-hand movement). Each trial records 5 seconds of

EEG signal at a rate of 128 samples per second, meaning that each trial has 640 samples. In this paper [4], the author uses

Linear Discriminant Analysis (LDA) as a features extraction algorithm and hyperplane technique for classification. The

second dataset from the globally known dataset "BCI Competition II (dataset number III)" [21] consists of 280 trials of

EEG signal recordings chosen randomly between two classes (left- and right-hand movement). Each trial records 6 seconds

of EEG signal at a rate of 128 samples per second, meaning that each trial has 768 samples. In this paper [21], Continuous

Wavelet Transform (CWT) is applied to the input (EEG) signal to extract the features. After transformation, those features
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are classified by the Convolutional Neural Network (CNN), which has one convolution layer, one max-pooling layer, and

one fully connected layer. The EEG samples are divided into training samples (80%) and testing samples (20%). 5 -

fold cross-validation is used to evaluate the proposed system in classification accuracy. The classification accuracy of the

proposed method and the other two methods are shown in Table I.

TABLE I
COMPARISON OF PROPOSED EEG CLASSIFIER WITH CLASSIFIERS IN [4] AND [21].

Methods Accuracy (%)
Worst Best Average

Dataset in [4]
LDA [4] 60.0 90.0 75.0
Proposed EEG classifier 85.8 95.6 90.7

Dataset in [21]
Transform-Based CNN [21] 85.7 94.6 90.0
Proposed EEG classifier 82.4 99.5 91.0

The results in Table I show that the proposed method has the highest accuracy among other methods used in the

comparison. The conversion of the EEG signal to moments using OP and then reducing the number of those moments by

the sparse filter will increase the SVM classifier accuracy. The sparse filter used in the proposed method plays an important

role in the performance of this method. Table II will demonstrate this role by showing how the classification accuracy is

affected by the change in the number of moments selected.

TABLE II
EFFECT OF NUMBER OF MOMENTS SELECTED BY THE SPARSE FILTER IN THE CLASSIFIER ACCURACY

No. of moments (F) Accuracy (%)
100 74.5
150 85.2
200 90.5
250 93.8
300 94.3
350 99.5
400 97.1
450 96.5

Table II shows that the classification accuracy became over 90% when the number of moments selected is about 30%

of the original EEG signal samples.

V. CONCLUSION

The paper aimed to design an EEG signal classification method that used OP to transform the spatial EEG signal to

moments and then reduce the number of those moments using a sparse filter. The results of this method applied to available

EEG datasets of two classes show that the proposed method outperformed other methods by giving an accuracy of over

99% in its best case. The method shows that when the number of moments the sparse filter selects exceeds 30%, the
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accuracy will exceed 90%.
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