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Abstract:

Electromagnetic flowmeters measure flow rate of the electrically conducting liquids. Its
operation is based on Faraday's principle of induction. In many situations the pipe may be partially
filled where in this case thie analysis of the flowmeter equation is widely altered and the numerical
solution may diverge. »

In this paper we have established a new numerical formulation, based on finite difference
method, which adaptively refines the mesh until the desired solution converges to a certain accuracy.

The representation of the flowmeter equations in the polar axis of the solution domain
{cylindrical cut from it the empty portion) can result in the singularities in the solution. To avoid
these singularities, the grids are shifted one hatf mesh width from the polar axis.

The number of iterations that gives convergence is appreciably reduced via this numerical
technique. The build algorithm of the adaptive numerical solution led us to determine, for each
liquid level, the optimum angular position of the electrodes that gives maximum accuracy 1.e.
minimum sensitivity to the changes in the velocity profile of the liquid to be metered.
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List of Symboels
A4 Cross-sectional area of the flow
B Magnetic flux density vector
Donin Mesh ill-conditioning criterion
Corit Critical error criterion
Cinax Max. error
Comin, Min. error
F Magnetic scalar
G Virtual current scalar
Jy Virtual current density vector
ij,k Node notations of the initial coarse
mesh
n Nermal vector
.0,z Cylindrical coordinates
R, Inner radius of the flowmeter
v Liquid velocity vector
4 Weight vector
W, Axially integrated weight function
Wz Average of W,
AU Flowmeter signal
ArA46,4z  Intervals of the initial coarse finite
difference mesh
By Selectable factors
£ Weight function non-uniformity
measure
e Angular position of electrode
T Flowmeter measuring volume
Introduction

Electromagnetic Flowmeter (EMF)
measures flow rate of electrically
conducting liquids, its operation is based on
Faraday's principle of induction; a magnetic
field is applied across the pipe, the moving
liguid is considered as a homogenous

conductor and the induced voltage in the
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liquid is proportional to its velocity. This
induced voltage is picked up by two
electrodes positioned in the non magnetic
and non conducting pipe of the flowmeter

(liner), see figurel. The performance of the

Insulating finer
Applied Magnretic field /

Point electrode

Fig.1. Principle of the electromagnetic flowmeter

EMF is determined by the magnetic field,
which is determined by the magnetic coil
geometry, and the virtual current field,
which in turn is determined by the shape,
position and number of the electrodes.
More-high level mathematics has
probably been applied to the EMF than any
other flowmeters. Shercliff [1] discussed
the general theory of this device. Bevir in
1970 [2] has given an clegant analysis of
the device using the concept of the weight
function that connects the magnetic field
and the virtual current field. However, the
weight function concept is widely used in
studying the extending of compatibility
between the flowmeter design and the flow
patterns. However, most of the reported

studies and the available EMF are designed
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where the measuring section is fully-filled
with liquid. The literature survey has shown
that there is a very little published works
relating the measurement of a partially-
filled flow using the EMF, Knowing that the
partially- filled flow frequently occurs in the
waste water lines of large industrial plants,
or with rain retention reservoirs. Zhang in
1998 [3]
introduced the first theoretical analysis
regarding the distribution of the virtual
current field through the partially filled
flowmeter. He developed an alternating
analysis method but in two dimensions.

In the present study we intend to
analyze the partially-filled EMF in an
method.  Our

numerical method is based on finite

alternating ~ numerical
difference scheme which refines the mesh
automatically i.c. adaptive mesh refining.
This means that the computational efforts
are concentrated in the regions where the
error is higher than a predetermined limit.
This adaptive solution helps in earlier
convergence with less storage capacity also
it should provide greater flexibility when
applied to situations complicated by flow
profiles, pipe geometry and different
electrode positions. The numerical process
is achieved in three- dimensional,
cylindrical coordinatés to solve Laplace’s
equations for the magnetic and the virtual

current fields.
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Basic Theory of the Electromagnetic

Flowmeter
The basic equation of the EMF has
been derived by Shercliff [1];
V'U=V{(vxB) (D)
Where U is the electric potential in the
liquid, v is the liquid velocity vector and B
is the magnetic flux density. In the low
liquid conduetivity application, rather than
the liquid metal, the most general solution

of the equation above is given by [2];

AU = [Wvdr e

Where 1 is flowmeter volume occupied by
liquid and W is the weight vector, the
powerful concept that developed by Bevir.
Bevir introduced W as [2];

W=BxJ, - (3)
Where J, is the current density that would
exist in the flow tube in the absence of the
magnetic field and flow if unit current
enters by one electrode and extracted by
the other, He termed it as the virtual
current. J, describes completely the
boundary conditions of the flow channel
and electrode geometry. Generally the
distribution of W gives the response of the
EMF, for a given flow rate, to the
variations in the velocity distribution. The
most common used criterion measure of
the non-uniformity distribution of the

weight function is €, where;
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Where

W, = EW(r,H,z)dz

W, = fj [w, rdra6

A is the area of pipes that is wetted by
liquid.

The distribution of B and Jv result
from a scalar potential function F an G
respectively which are governed by Laplace

equation as shown below [4];

B=VF

VF=0 (5
And

J =VG

ViG=0 ... (6)

Where Laplace's operator in 3D cylindrical
coordinates is;

o 10 1 o’ o’
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Where 1,0,z are the cylindrical coordinates.

V=

Solving F and G with their own boundary
conditions, the distribution of B and J, and
hence W can be obtained.

What was introduced above is the
general theory of all types of EMF and what
follows here is the numerical treatment of
the partially-filled EMF.

Numerical Formulation of the Irregular
Difference Approximations

In a partially-filled flowmeter we
lose the symmetry over the horizontal axis

hence, we need to solve Jy for one-fourth of
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the flowmeter volume. We decided to use
the finite difference method but with
automatically increasing the resolution of
the mesh grids in the high error regions or
as is often said adaptive solution. The
reasons that led us to establish such
solutions are: firstly, the liquid level inside
the flowmeter is variable therefore the size
and shape of the virtual current domain is
variable also and secondly, the position of
the pick up electrodes is no longer
diametrically  opposite, as in the
conventional EMFs, their position may be
angularly shifted. Both the two reasons
above may lead to the absence of the
solution convergence.

Laplace's equation of the virtual current
scalar potential G in 3-D Cylindrical

coordinates is:

3 oG 180G 198G 0°G
\% G=—'—2‘+————+—;——-2'+——2-'
o' ror rog° oz
Fach term of the equation above was
approximated using Taylor's series basing

on irregular intervals as follows;

6G_G(i+],j,k)-—G(i-—],j,k)

or Ar, + 4r,

G 2
or’ A+ 4r,dr,

2 G(i-1jk)
Ar, + Ar,Ar, .

G(i+1,j.k)+
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= G(i,j+1Lk)+
357~ 46, +40.40, " /
2
L G(i,j-1lk
26+ 2028, " )
2
6(2?: 2 G(i,jk+1)+
oz Az, + Az,4z,
2 G(i, jk—1)
Az, + A2, Az,

Where ijk represent node points along

radial, azimuthal, and axial directions
respectively, Ar1 2 A8} and Az;; represent
the radial, azimuthal and axial intervals
respectively. From  the programming
simplicity point of view the ordering of the
potential G is transformed from G(,j.k) to
G() only ie. contracting the three
dimensional array of G to only one
dimensional array. This procedure was
developed by Emad [5].
ordering, (i+1,.k) becomes no(i) (where no-
north) and (i-1,j.k) becomes so(i) (so-south).

Also Ar; becomes S; and Ara becomes S

In this new

and so on for the other coordinates
(see fig. 2). Accordingly, we need additional
matrices, six of them for denoting the six
neighboring nodes and three for the node
localization definition due to r, 6 and z
coordinates. Here i does not mean radial
node point, its value is i=1,2,3,4....N where
N is the total number of the initial mesh.
nodes in the domain. This new ordering

helps in giving a clear imaging for the
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process  Referring  to

notations of figure 2, the virtual current

scalar G can be written as;

(EIS»«IT’S?)“L;,M)GMU)J
(Ss(SJ;’ +85) "5{—51;@;))000(:' )+
G, = Si+ ri’(mpwq““ A7)
_%[m};( es(i))+

Sf(Sf Sb)G(ﬁ“( iy+

b(Sf Sb)G(ba(!)) |

Where

Yom it T,
St~ Su{Sn+Ss) Ss(Sn+Ss)

st

r? | Se(Se+Sw)  Sw(Se+Sw)
I I

S/(5 +8b) " ShSf +5b)

The solution of the magnetic field,
B, is also subjected to the adaptive
procedure. The irregular differences
equation of the magnetic scalar F is as
same as that of equation (7) with
replacing each G by F. Note that the
magnetic permeability of the metered
liquid (say water) and the air existing in

the empty portion of the flowmeter are the
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same, hence, the magnetic field

distribution is not affected by the liquid

level inside the flowmeter.

Fig.2. 3-D, Cylindrical coordinates Notations
of the numerical solution

Adaptive Proceduré

Additional nodes are added in the
interest regions is the concept of the h-
adaptive method which is modified in this
study to be compatible with cylindrical
coordinates and liquid level variations. The
procedure of the adaptive method is as

follows:

1-An initial, uniform, coarse mesh is
generated. Then this initial mesh is stored as
one dimensional array 10 simplify the

refinement process. For each node in the

initial uniform mesh, we fix its local
coordinates 1.0, and Z and the six
neighboring nodes; North (No) and South
(So) in the r direction; East (Es) and West
(We) in 0 direction and Front (Fr) and
Back (Ba) in z direction as shown in figure
2.

2- The approximation error of each node is
calculated and among - all nodes we
determine the maximum and minimum
EITOrS.

3.After a specified iteration, if the

percentage approximation error of any

‘node exceeds the predetermincd (critical)

error, this node is marked to be source of
adding three new nodes, one in each
direction. The position of each new added
node is halfway the distance between the
marked node and its neighboring one.

4- After any adding or (refining) process,
the mesh must be updated due to change in

the neighboring nodes.

5- The obtained new mesh which is
cornposed of the initial and newly added
nodes is resolved and then repeating step 2.
6- The adding process is continued until
the error in each node becomes under or
equal the critical errot.

The critical error (or as is often said, the

error criterion) is given by 6}

eCl‘" = emax - ﬁ(emax _emm b (9)

ooy
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Where:

eqic: 15 the critical error or the minimum
node error required to be marked for
“refinement.

emax. 15 the maximum node error in the
mesh.

€min: 1S the minimum node error in the mesh
B: selectable factor, 0<B<l.

In order to avoid an ill-conditioned
mesh, the distance between the newly added
node and any other node in the domain is
limited to being greater than or equal to a
minimum predetermined distance {7]. This
minimum distance may be considered as
another criterion of the refining process as:
Ay =V * A

' Where dpax represents the interval of the
initial uniform mesh and as follows;

In radial direction dma= Ar, in azimuthal
direction dmex= A, and axially dpg= Az and
O<y<l

The boundary conditions of the
partially-filled EMF can be summarized as
follows (figure 3.):

1- F=constant on the pipe area occupying
the two magnetic pole pieces (+1 for upper
coil and -1 for the lower coil). This is due to
the high magnetid permeability of the
magnet yoke.

2-The optimum boundary condition of F
was developed by [4] which are:

F=f(6) and F=f(6), where fis a function

results from the numerical optimization of
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F. For further details, the interest can

refer to ref [4]
3- G=constant on the electrode

4- G=0 on the two ends of the flowmeter

5- Q_(_;_ = {} on the;
on :
(a) Liquid free surface

(b)Insulating flow tube excepting the
electrodes.

Where n is a normal vector.

What remains is that the refining or adding
algorithm must distinguish the nodes that
cause a divergent refinement series. In the
cylindrical geometry of our interest, these
nodes (geometric singularities) exist on the
polar axis (flowmeter centerline) and they
are excluded by shifting all the mesh grids
one-half grid in the radial direction [8],

hence;

»l

Liquid level

Fig. 3 partially-filled cross-sectional pipe
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Where 4, is the radial interval and ¥, is

the number of nodes in the r-direction. Both
A4, and N, refer to the initial coarse mesh

before adding.

Results and Discussions

the above
boundary conditions, in this study we fixed
the magnetic field boundary condition to be

Using mentioned

of an optimum type [4], while the pick up
electrodes was a single pair of point type. It
is quite clear from equ.(9) that for larger P
values the number of flagged nodes to be
adapted will increases and vice versa. For
different positions of point electrodes, the
number of iterations against different values
of P is shown in figure 4. The implication
that could be observed from this figure is
that increasing the added nodes (higher f
values) is no longer leads to faster
convergence (less iteration). The reason of
this may be attributed to the truncation,
residual  or
accompanying to the excessively increased

nodes. Another show could be extracted

approximation Eerrors

from the same figure, that is, for the same
liquid level, the number of total nodes
required for the best convergence is larger
when the electrode position tends to be
farther (larger 6e) from the liquid free
surface. The reason of this, we believe, may
be the following; the high error in the
solution is generated mainly due to the

existing of the liquid free surface where
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there is no virtual current flow across it
and due to the electrode itself, hence, when
the electrode position is narrow from the
free surface, the number of nodes required
will be limited meanwhile on the other
hand, the solution requires say individually
added nodes to the high error regions when
the electrodes move away from the liquid
free surface. Figure 5 indicates that the
solution of the magnetic scalar potential ¥
has no demand to the adapting the mesh,
this was expected for two reasons. Firstly,
the magnetic field B does not affected by
the partially filled flow case, and secondly,
the boundary conditions of F were already
determined by an optimization procedure.
Altogether, it is clear that the best value of
p that gives faster convergence is 0.2-0.3
for the virtual current solution and 0.0 for

the magnetic field solution.

The value of ¥, the constant of the
ill-conditioning mesh criterion, was fixed
at 0.25 in all numerical calculations; this

was obtained after many experiment runs.

180
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Fig. 5 Effect of B on the number of iterations
of solving magnetic scalar F.
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To ensure that the convergence is
going toward the correct solutions; the
distribution of nodes through the flowmeter
volume were examined using the scatter
graphs of Mat lab software; these graphs,
figure 6-9, which were presented for liquid
level of 1.6 R, imply that the nodes are
more dense near the electrode position and
this means that the refinement process is
concentrated, as expected, near the high
error regions. Figure 10 also shows the
distribution of the nodes of the magnetic

field scheme.
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puint ¢lectrode

point electrode

=0?

point electrode

Fig. 9 Nodes distribution of G mesh, 6,=22°,
p=0.5. Total number of nodes is 3859

Fig. 6 Nodes distribution of G mesh, 6.=0°,
p=0.2. Total number of nodes is 2640

point electrode

Fig. 7 Nodes distribution of G mesh, 6,22°,
p=0.2. Total number of nodes is 2793
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Fig.10 Nodes distribution of F mesh,
optimum magnetic field

2007/ dgmaxigh p slall 8 yraali Alas




42
Figure 11 shows the variations of

& versus both the liquid level and the
angular position of electrodes. From this
figure we can extract the suitable anguiar
position for each liquid level. Generally,
- when 6, > 0, increasing the liquid level lead
to an increase in the &, this relation is
completely inverted when 8,=0. Since the
value of & increases with electrode position,
the best position of the electrode pair is 11°

below the horizontal flowmeter axis.

stability. Mesh refining process was
excited in a region if that region obeys two
criteria, these are; the critical error which
depends on the geometry of both the
magnet and the electrodes together with a
selectable factor B. The other criterion,
dmin, serves in avoiding the mesh ill-
conditioning. The 3D visualizations of the
node clouds led us to confirm that the
regimes of maximum error lay close to the
liquid free surface and electrodes. Also

these visualizations have showed that the

The flexible and reliable adaptive
numetical method was established to treat
the partially-filled electromagnetic
flowmeter, where little literatures were
found about this subject, with low storage

capacity and appreciable convergence and
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120 polar-singularities—were-sefely-avoided-by
—A— Ge=0" g ge=34° @~ Ge=q5 . —— Be=56°
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80 -
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Liquid LevellR,
Fig. 11 Variation of ¢ with the electrode angular position and the liquid level
" Conclusions

mesh grids one-half radial grid
(0.54r). The weight function non-
uniformity measure ¢ and the electrode
positions together with the liquid level

were gathered in a revealing map. This
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map told us that the optimum position of the
single pair of commercially point electrodes
is 0,=11°-22°, knowing that the applied
magnetic field is of an optimum type.

The present adaptive algorithm has
proved that it not only stabilizes and
increases the accuracy of the finite
difference solution, but it also helpful to
overcome the poorness of the original mesh
grids especially when the liquid level
becomes much low. Henceforth, it is
possible, using this promising adaptive
technique, to deal with the application of the
electromagnetic flowmeters for plenty flow
patterns like two phase bubbly, slug, annular
flows where the solution domain of the
virtual current in these cases becomes more
complicated and irregular.

Keeping in mind that this numerical
technique could be used in fully-filled flow
applications where the Neumann boundary

condition on the free surface is removed in

this case.
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