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Abstract 
Global Positioning System (GPS) and Strap down Inertial Navigation System 

(SDINS) can be Integrated Together To Provide A Reliable Navigation System. In 
This Paper, A Technique For Error Estimation In A GPS/INS System Based On A 
Low-Cost Inertial Measurement Unit (IMU) Is Offered. This Technique Is Composed 
Of Wavelet Transform (WT) And Adaptive Fuzzy System (AFS). The Wavelet 
Decomposition Is Used To De-Noise The Position And Velocity Components Of The 
GPS And INS Outputs. An AFS Is Introduced In This Paper To Estimate The 
Position And Velocity Errors In The Integrated System In Order To Provide Accurate 
Navigation Information About The Moving Vehicle. 
Several Data Sets Are Processed In This Paper, Where The Simulation Results Are 
Based On Matlab7 Programming Language. Six AFS Networks Are Used To Process 
The Position And Velocity Components. The Average Error Value Per Sample Was 
0.0142, 0.0443, And 0.0108 M For Position In X, Y, And Z Axes Respectively And 
0.0077, 0.0223, And 0.0269 M/S For Velocity In North, East, And Down Directions 
Respectively 
 
Keyword: GPS, INS, Integrated System, Wavelet multi-resolution analysis, 
Adaptive Fuzzy System. 
 

  الخلاصة
) SDINS(ومنظومة الملاحة النطاقية من النـوع الثابـت  ) GPS(منظومة تحديد الموقع العالمي

قدمت تقنية لتخمين الخطأ في , في هذا البحث .يمكن ان تتكاملان معا لتوفير منظومة ملاحة موثوقة
مركبـة   هذه التقنية. قليلة الكلفة) IMU(مبنية على اساس منظومة ) INS(وال) GPS(منظومة ال

حيث ان تحويل المويجة يسـتخدم لتقليـل   . من تقنية تحويل المويجة وتقنيةالشبكة المكيفة المضببة
منظومة الشبكة ). INS(وال) GPS(الضوضاء في مركبات الموقع والسرعة لمخرجات كلأ من ال

ملـة  المضببة المقدمة في هذا البحث لأجل تخمين الخطأ بالموقع والسرعة فـي المنظومـات المتكا  
  .لغرض توفير معلومات ملاحية حول المركبة المتحركة

حيث ان نتائج المحاكاة بنيت بأسـتخدام  , عدة مجموعات من البيانات قد استخدمت في هذا البحث
. ستة شبكات مضببة هي ضرورية لمعالجة مركبات السرعة والموقـع ). Matlab7(لغة البرمجة 

متر للموقع بالنسـبة للمركبـات    0.0108و,  0.0443,  0.0142معدل قيمة الخطأ لكل وحدة هو 
x,y,z  ثانية للسرعة للمركبات الثلاثة /متر 0.026و,  0.0223, 0.0077على التوالي و)north, 

East, Down (على التوالي  .  
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1.Introduction 
Since the 1940s, navigation 

systems, in particular inertial 
navigation systems (INSs), have 
become important components in 
military and scientific applications. 
In fact, INSs are now standard 
equipment on most planes, ships, and 
submarines [1].  

SDINS technologies are based on 
the principle of integrating specific 
forces and rates measured by 
accelerometers and rate gyros of an 
Inertial Measurement Unit (IMU) 
fixed on the moving body [2]. On the 
other hand, the GPS relies on the 
technique of comparing signals from 
orbiting satellites to calculate 
position (and possibly attitude) at 
regular time intervals. But being 
dependent on the satellites signals 
makes GPS less reliable than self 
contained INS due to the possibility 
of drop-outs or jamming [3, and 4]. 

The combination of GPS and INS 
has become increasingly common in 
the past few years because the 
characteristics of GPS and INS are 
complementary. This paper looks for 
away in high quality integration 
where low cost inertial sensors are 
used to obtain improved 
performance. 

GPS and INS both can be used for 
wide range of navigation functions. 
Each has its strengths and 
weaknesses as illustrated in table (1). 

2. Problem Statement 
Many researches investigated and 

developed the INS/GPS integration 
systems using different approaches 
such as Kalman filtering, 
accelerometer and gyro calibration 
and compensation, also other 

methods are described in [5, and 6]. 
While this paper is different  

in handling the deficiency in 
navigation systems utilizing the 
adaptive fuzzy system. 

In general, GPS/INS integration 
employing AFS provides several 
advantages if compared to Kalman 
filtering. A comparison between both 
techniques is given in table (2). 

A new method will be introduced 
in this paper based on AFS to fuse 
the outputs of INS and GPS and 
provide accurate positioning 
information and velocity for the 
vehicle. In addition, this paper 
suggests a wavelet multiresolution 
analysis (WMRA) algorithm to 
analyze and compare the INS and 
GPS outputs at different resolution 
levels before processing them by the 
AFS module during either the 
training or testing phases. 

3. Adaptive Fuzzy System 
Structure [7, 8, 9] 
   

 Different interpretations for the 
fuzzy IF-THEN rules result in 
different mappings of the fuzzy 
inference engine, also there are 
different types of fuzzifier and 
defuzzifier. Several combinations of 
the fuzzy inference engine, fuzzifier, 
and defuzzifier may constitute useful 
fuzzy logic system. If the fuzzy logic 
system can be represented as a feed 
forward network, then the idea of 
back propagation training algorithm 
can be used to train it. 
     The most useful class of 
defuzzifier is the center average of 
the form: 



 IJCCCE, VOL.9, NO.1, 2009                                Error Estimation for an Integrated GPS/INS                  
                                                                                      System    using Adaptive Neuro-Fuzzy technique 

 
 

 3







 M

j
jF

M

j
jFj

y

yy
xf

j

j

1

1

))((

))((
)(




…(1) 

                Where M is the 
number of fuzzy IF-THEN rules, 

jy is the center of fuzzy set jf , that 
is, a point in the universe of 
discourse V at which 

)( y
jF achieves its maximum value, 

and )( y
jF is given by a product 

inference engine, since the product 
operator retains more information 
than MIN operator when 
implementing the fuzzy AND 
because the latter scheme only 
retains one piece of information 
whereas the product operator 
combines n-pieces. Also, using 
product operator generally gives a 
smoother output surface, a desirable 
attribute in modeling and control 
systems. 
Hence, equation (1) becomes: 
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                where n is the number of 
input linguistic variables. 
     In order to develop training 
algorithm for this fuzzy logic system, 
the functional form of )( iF x

i
 must 

be specified. The bell-shaped 
membership function, based on the 
normal distribution of the grades of 
the membership, would be used, 
since this function is differentiable 
and can be applied when using the 
back propagation learning algorithm, 
i.e. the membership function can be 
given by the following equation: 
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          where im and i are, 
respectively, the center and width of 
the bell-shaped function of the ith 
input variable. 
     Now from equation (2) and 
equation (3) the overall function of 
fuzzy logic system can be obtained: 
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   This equation represents a fuzzy 
logic system with center average 
defuzzifier, product inference rule, 
singleton fuzzifier, and bell-shaped 
membership function. Wang [7] 
shows that this fuzzy logic system is 
universal approximator (i.e. capable 
of uniformly approximating any 
nonlinear function to any degree of 
accuracy). 
     Equation (4) can be represented as 
a feed forward neural network as 
shown in figure (1). This 
connectionist model combines the 
approximate reasoning of fuzzy logic 
into a neural network structure. 
     With five-layered structure of the 
proposed connectionist model, the 
basic functions of the nodes in each 
layer would be defined as follows: 
       Associated with each node in a 
typical neural network is an 
integration function which serves to 
combine information or activation 
from the other nodes. 
      This function 1

iX provides the net 
input of the ith node in layer l. A 
second action taken by each node is 
to output an activation value as a 



 IJCCCE, VOL.9, NO.1, 2009                                Error Estimation for an Integrated GPS/INS                  
                                                                                      System    using Adaptive Neuro-Fuzzy technique 

 
 

 4

function of its net input: 
))(()( 11 kXgkO ii  …(5) 

                                  where g(.) 
denotes the activation function. 
      The functions of the nodes in 
each layer of the fuzzy-neural 
network can be summarized as 
follows: 
1) Input Layer 
       The nodes in this layer just 
transmit their input values directly to 
layer2: 

nn xXxXxX  1
2

1
21

1
1 .....,,,     

…(6) 
11

ii XO       …(7) 
                                 where i=1,2,...,n 
and n is the number of the input 
linguistic variables. 
2) Antecedent Layer 
       The output from this layer is 
described by: 

)( 22
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i
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…(8) 
where 2

iX is the input to node i in 
layer2 and iF is the linguistic label 
assigned to fuzzy set (small, large, 
etc.). 
       From equation (3), equation (8) 
becomes: 
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                 where ijm and ij are, 
respectively, the center and width of 
the bell-shape function of the ith input 
of the jth rule. 
3) Rule Layer 
     The magnitude of the output from 
each node in this layer is dictated by 
the firing strength of a rule. With the 
proposed scheme (i.e. equation (4)), 
the rule nodes perform the fuzzy 
product operation; Therefore: 
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where 3

ijX denotes the ith input to 
node j in layer 3. 
4) Consequent Layer 
      From this layer, the upper node 
sums all outputs from the rule layer 
with action strengths (yj) and the 
lower node sums those with unity 
strength, as shown: 
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                               where N and D 
represent, respectively, the numerator 
and denominator of equation (4). 
5) Action Layer 
      Only one node exits in this layer. 
Here the actual output would be 
pumped out the net, 

D
NOxf  5)(    …(13) 

                                   3.1 Adaptive 
Fuzzy System Training            
Algorithm [8, 10] 
     Based on the idea of the error 
back propagation algorithm, the goal 
is to determine a fuzzy logic 
system )(xf , in the form of equation 
(4), which minimizes the error 
function: 
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         where P is the number of 
outputs and )(kd j is the jth desired 
output at time k . Without loss of 
generality, Multi-Input Single-Output 
(MISO) fuzzy logic system was 
considered in this paper. A multi-
output system can be decomposed 
into a group of single-output 
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systems, therefore for P=1, equation 
(14) is reduced to: 
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          According to equation (4), if 
the number of rules is M, then the 
problem becomes training the 
parameters jy , ijm , and ij such that 

)(kE is minimized. 
       Based on the back propagation 
training algorithm, the iterative 
equations for training the 
parameters jy , ijm , and ij are: 
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where   is the learning rate. 
Equations (16), (17), and (18) 
perform an error back propagation 
procedure. 
 
4. Gps/Ins System Intgration Using 
Adaptive     Fuzzy-Wavelet 
Techniques 
     This system is able to incorporate 
qualitative and quantitative 
information. The system was 
represented as a feed forward neural 
network. Supervised linear back 
propagation learning algorithm was 
applied to adapt the fuzzy 
parameters. The fuzzy system with 
the training algorithm is called the 
adaptive fuzzy system (AFS).The 
proposed adaptive fuzzy-wavelet 

techniques to be applied here consists 
of three phases: 
 
 
4.1 Construct Ins/Gps Error Signal 
Phase  
     In this phase, an INS/GPS error 
signal is constructed where the 
WMRA algorithm is used to process 
the GPS and INS data of 15 
trajectories for each position and 
velocity component and to output a 
GPS/INS error signal associated with 
each trajectory, i.e. for each couple 
of GPS data and INS data, the 
WMRA algorithm constructs a 
GPS/INS error signal. These error 
signals will be compared with the 
output of the AFS networks, i.e. they 
are used as target outputs to the AFS 
networks. Where the WMRA will be 
discussed below. 
 
4.1.1 Multi-Resolution Analysis  
     Scaling a wavelet simply means 
stretching or compressing it. The 
smaller the scale the more 
compressed the wavelet is, while the 
larger the scale the more stretched 
the wavelet is. Therefore, lower 
scales allow for analysis rapidly 
changing details (high frequency 
components) [11]. Similary, higher 
scales allow for analysing slowly 
changing features (low frequency 
components). The low frequency 
contents of the signal are usually the 
most important part of the signal that 
identifies the signal itself and are 
capable of providing a very good 
approximation about the signal [11]. 
The approximations correspond to 
the high scale low frequency part. On 
the other hand, the high frequency 
contents carry few details about the 
signal [11]. The details correspond to 
the low scale high frequency part. 
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WMRA is therefore based on the 
approximation and details provided 
using WT. WMRA decomposes the 
signal into various resolution levels. 
The data with coarse resolution 
contain information about the low 
frequency components and retain the 
main features of the original signal. 
The data with fine resolution retain 
information about the high frequency 
components [12]. 
       In general, a space jV can be 
separated into two sub-spaces: a 
subspace 1jV (approximation) and a 
space 1jW (detail) which is just the 
difference of these two spaces [12]. 
If this process is iterated, successive 
approximations will be decomposed 
in turn, so that one signal is broken 
into many fine resolution 
components. The original signal can 
then be reconstructed from the sum 
of the final approximation 
component and the detail 
components of all levels. 
         Consider j and k to be the 
dilation (scaling) index and the 
translation (shifting) index, 
respectively. Each value of j means 
analyzing different resolution levels 
of the signal. The mathematical 
procedure of WMRA for either the 
INS or GPS output signals is as 
follows: 

(1) For an input signal x(n), 
calculate the approximation 
coefficient kja , at the jth 
resolution level as follows 
[11]: 

     

n

jj
kj knnxa )2()(2 )2/(
,   (19) 

    
     Where )(n is called the scaling 
function. Scaling functions are 
similar to wavelet functions except 

that they have only positive values. 
They are designed to smooth the 
input signal (i.e. seeking the signal 
approximation). They work in the 
signal in a way similar to averaging 
the input signal x(n). The scaling 
function is applied to the input signal 
to determine the approximation. This 
operation is equivalent to low pass 
filtering.  

(2) The approximation of x(n) at 
the jth resolution level is then 
computed as [11]: 

         





k

kjkjj tatx )()( ,,  …(20) 

      Calculate the detail 
coefficient kjd , at the jth 
resolution level [11]: 
          


n

kjkj nnxd )()( ,,  …(21) 

     
it can be noticed that the wavelet 
function is used in calculating the 
detail coefficient. Wavelet functions 

)(, nkj are designed to seek the 
details of the signals. They work in 
the signal in a way similar to 
differentiation (giving the difference 
between two consecutive samples of 
the input x (n)). This is why a 
wavelet function )(, nkj consists of 
positive and negative parts. The 
detail function will be applied to the 
input signal to determine the details. 
This operation is equivalent to high-
pass filtering.    

(3) The detail of x (n) at the jth 
resolution level is then 
computed as follows [11]:  

       







k

kjkjj ndng )()( ,,  …(22) 
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The above four steps are repeated for 
the j+1 resolution level but by using 
the approximation )(nx j obtained in 
step 2. 
The original signal x (n) can be 
reconstructed using all the details 
obtained during the decomposition 
process at all resolution levels [11]: 

    













j j k

kjkjj ndngnx )()()( ,,  (23) 

   The above equation implies that 
one has to process the original signal 
at an infinite number of resolutions, 
which is impractical. Alternatively, 
the analysis can stop at the jth 
resolution level and the signal can be 
reconstructed using the 
approximation at that level and all 
the details, starting from the first 
resolution level until the Jth level. 
The following equation presents this 
procedure [11]: 

 











J

j k
kjkj

k
kjkj ndnanx

1
,,,, )()()(   (24) 

   
The first term represents the 
approximation at level J and the 
second term represents the details at 
resolution level J and lower. In 
conclusion, WMRA builds a 
pyramidal structure that requires an 
iterative application of scaling and 
wavelet functions as low-pass (LP) 
and high-pass (HP) filters, 
respectively. These filters initially act 
on the entire signal band at the high 
frequency (lower scale values) first 
and gradually reduce the signal band 
at each stage. 
 The WMRA is applied to 
both the INS and GPS position and 
velocity output components (X, Y, 
and Z) with individual analysis 
provided for each component. The 
INS monitors the linear acceleration 
and angular velocities of the vehicle 

with minimum time delay. For short 
time intervals, the integration of 
acceleration and angular rate 
measurements results in an extremely 
accurate velocity, position and 
altitude with almost no noise or time 
lags. However, because the INS 
outputs are obtained by integration, 
and the fact that the measurements 
contain residual bias errors from both 
the gyroscopes and the 
accelerometers, they drift at low 
frequencies. To obtain very accurate 
outputs at all frequencies, the INS is 
updated periodically using GPS 
positions and/or velocities, which 
complement the INS output in an 
ideal way. Therefore, as shown in 
figure (2), the WMRA technique 
determines the differences between 
the INS and GPS position and 
velocity outputs after comparing the 
corresponding position or velocity 
components at several resolution 
levels. These differences represent, 
in general, the INS errors, which are 
used to correct for the INS outputs 
during GPS outages. This means that 
the proposed navigation system will 
rely on the GPS position or velocity 
components until the GPS signal is 
blocked. Whenever the GPS signal is 
available, the GPS position or 
velocity component is compared to 
the corresponding INS position or 
velocity component and the 
corresponding position or velocity 
error is compared. Optimal 
estimation and modeling of this error 
signal is performed by AFS, which is 
discussed previously. It should be 
highlighted that separate WMRA of 
the form shown in figure (2) is 
designed for each position and 
velocity component. 
In this paper, the comparison 
between the INS and GPS position 
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and velocity outputs at three 
resolution levels was adequate. In the 
wavelet domain, using the DWT, the 
wavelet coefficients that represent 
one of the INS position or velocity 
components in the three 
decomposition levels are: 

 332211 iiiiiiINS cDcAcDcAcDcAC   (25) 
       The corresponding wavelet 
coefficients of the GPS position or 
velocity component are represented 
as: 

 332211 ggggggGPS cDcAcDcAcDcAC   (26) 
     
In fact, cA and cD shown in the 
above two equations are the 
approximation and the detail 
coefficients determined in steps 1and 
3 of the WMRA procedure illustrated 
previously.  
By subtracting the wavelet 
coefficients of each of the GPS 
position and velocity from the 
corresponding wavelet coefficients of 
each of the INS position and velocity 
outputs, the wavelet coefficients of 
the error signals can be extracted as: 

 332211 eeeeee cDcAcDcAcDcAE   (27)  
     The error signal can then be 
reconstructed from the wavelet 
coefficients obtained in above 
equation. The error signal can be 
smoothed by neglecting the highest 
frequency band (the band 
reconstructed from the detail 
coefficients 1ecD ) from the 
reconstructed signal. This band 
contains the distortions in the 
position and velocity components. 
De-noising of the INS and/or GPS 
outputs can be performed within the 
WMRA process. This is 
implemented by thresolding the 
details of each position and velocity 
component, which contain the high 

frequency components. The 
thresolding procedure allows for 
cutting off some of the noise in the 
error signal and improving its signal-
to-noise ratio so that it can be 
efficiently modeled using AFS. In 
this paper, soft thresholding is 
applied only to the detail coefficient 
of the first decomposition level. The 
thesholding procedure is standard 
and can be reviewed in [11, 12].   
 
4.1.2 AFS Networks Training 
Phase 
     The next step is the training of the 
AFS networks (which is done while 
the satellite signal is available). Six 
networks are used to handle each one 
of the position and velocity 
components separately. The inputs to 
each network are the INS data 
(position or velocity component) and 
the instantaneous time (the time is 
counted once the system is turned 
on); the output of each network is the 
estimated INS error for the input 
component (as shown in figure (3.a)). 
      The error resulted from 
comparing the network output and 
the GPS/INS error signal is fed to the 
network which adjusts its parameters 
in a way to minimize the mean 
square value of the error. The 
parameters of the AFS network that 
are computed during the training 
phase are m, y and σ. These 
parameters are updated according to 
equations (16), (17), and (18). The 
computations of these parameters are 
repeated until the optimal values are 
achieved which correspond to the 
minimum mean square error. The 
optimal values of m, y, and σ reached 
at the end of the training phase are 
saved to be used later in the testing 
phase. 
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As mentioned, each component of 
position and velocity has its own 
network. To start the training, the 
networks need to be initialized with 
the number of epochs, the value of 
the learning rate, the number of fuzzy 
rules (M), and the parameters (m, y, 
and σ). These initial values which are 
shown in table (3) are selected by 
trial-and-error. Appropriate selection 
of the initial values ensures good 
performance of the networks and 
converging to a minimum error 
value. 
After the training process being 
completed for all components, the 
networks are now ready to work in 
the testing mode. 
 
4.1.3 Testing Phase 
     The final step in the AFS-wavelet 
method is the testing phase. After the 
training is completed, the network is 
ready to work in the testing mode. 
The parameters of the networks are 
modified during the availability of 
the satellite signal, i.e. in the training 
phase. In the case of satellite signal 
being blocked, the networks will use 
the latest modified parameters saved 
from the training phase to perform 
the prediction process. 
      Figure (3.b) shows the operation 
of the networks in the testing mode. 
It provides a prediction of the INS 
error based on the INS data and the 
particular time instant provided at the 
input. 
      In this paper, the training of the 
networks was started by an attempt 
to use 13 GPS/INS error signals, in 
each of the position and velocity 
networks, from the 15 trajectories 
mentioned previously (the other two 
were used in the testing phase).These 
13 trajectories were chosen randomly 
(they had different shapes) and were 

used together in the training process, 
i.e. one trajectory after the other. 
Each network was implemented 
many times and each time the initial 
values were changed, in an attempt to 
get better performance. This process 
was repeated for all position and 
velocity components and for all 
trajectories. 
      Figure (4) shows the MSE for all 
networks after 1000 epoch. The 
initial values used to obtain these 
results are listed in table (3). As 
stated early, these values are 
obtained by trial-and-error. 
      Figure (5) shows the error 
between the GPS/INS error (desired 
output) and the estimated INS error 
(actual output) for all networks.  
      Figure (6) shows the error 
between the true INS data obtained 
from AFS networks and from INS 
algorithm. 
 
5. Conclusions 
       The following points summarize 
the main conclusions of this paper: 
1. In this paper, a reliable 

navigation system is made by 
combining the qualities of GPS, 
INS, and adaptive hybrid fuzzy 
system. 

2. The wavelet analysis was 
beneficial in filtering out the 
noise and disturbances that may 
exist at the INS and GPS outputs. 
In addition, it provides the 
advantage of comparing the INS 
and GPS position and velocity 
components at different levels of 
resolution. 

3. The process of selecting the 
initial values of the parameters 
(m, y, and σ), number of rules, 
and value of the learning rate is 
done through a trial-and error 
procedure and determining the 
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appropriate setting for one 
trajectory may need several 
attempts; therefore, handling 
several trajectories separately can 
be a very long process whereas 
when these trajectories are 
handled together, one after the 
other the process of selecting the 
appropriate initial values is done 
only one time. 

4. The long procedure of trial-and-
error in finding the optimal 
number of layers in the network, 
the number of nodes in each 
layer, and the activation function 
in each node, which exists in 
ANN, has been avoided in this 
paper by using the AFS with its 
constant structure.  

5. The advantage of using a group 
of trajectories in the training 
process is that the AFS network 
can continue in giving estimation 
of the INS error if changes 
happen in the specified trajectory 
of a vehicle. 
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Figure (1): The Architecture of an Adaptive Fuzzy System network for each component of position (X, Y, and Z 
axis) and velocity (North, East, and Down). 
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Table (3): Initial values of the learning parameters for the six networks.  

Figure (3): Block diagrams of the AFS in (a) Training phase and (b) 
Testing phase. 
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Figure (4): Mean Square Error for position in (a) X-axis, (b) Y-axis, (c) Z-axis and velocity in (d) North, 
(e) East, (f) Down directions. 
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Figure (5): Error between desired and actual outputs of the AFS networks for position and velocity 

components. 
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Figure (6): Error between True (Real) INS data from INS algorithm and AFS networks for all 
components of position and velocity. 


