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Abstract 
Adaptive phased antennas, known as SMART ANTENNAS attract so much attention with the 

increase of wireless communications implementation. The smart antennas can change their shape of 

transmission placing nulls in the direction of interference, and steer their main lobe to the direction of 

interest. This process leads to maximizing Signal to Interference Ratio (SIR) maximizing the 

throughput of the network. They can mitigate channel fading by searching for the best alternative path. 

This paper investigates the principles and the algorithms used to steer the main lobe and shape the 

radiation pattern to optimize the performance. Only analogue techniques are considered. 
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 الخلاصة

. ثينام الباحاهتم (الهوائيات الذكيةبـ )الهوائيات المتكيفة والمعروفة أيضاً  تجتذبا ،ياد استخدام الشبكات اللاسلكيةمع ازد
ستلام ك كتلة الايوتحر بها استلام صفرية باتجاه الإشارات غير المرغوب  نقاطضع و الهوائيات الذكية قادرة على تغيير نمط بثها و 

 لشبكة.اة قدرة الإشارة إلى التداخل مما يؤدي إلى زيادة في خرج بجاه المصدر المرغوب به. هذا يؤدي إلى زيادة نسالأساسية بات
لبحث اهذا مسار آخر للإشارة. لخفف من تأثير التوهين في القناة عن طريق البحث الأوتوماتيكي ت أيضا أنهذه المنظومات تستطيع 

 ييف شكل الإرسال للهوائي.يتناول اللوغارتميات المستخدمة لتك
1. Introduction 

The exponential growth of wireless communications systems and the limited 

bandwidth available for those systems has created problems which all wireless 

providers are working to solve. One potential solution to the bandwidth limitation is 

the use of smart antenna systems [Okamoto, 2002]. The demand for increased 

capacity in wireless networks motivated recent research toward wireless systems that 

exploit space selectivity. As a result, there are many efforts devoted to the design of 

“smart antenna arrays”.[ Garg, and Huntington, 1997, Bellofiore et. al., 2002]. 

The term smart implies the use of signal processing in order to shape the beam pattern 

according to certain conditions. For an array to be smart implies sophistication beyond 

merely steering the beam to a direction of interest. Smart essentially means computer 

control of the antenna performance. Smart antennas hold the promise for improved 

radar systems, improved system capacities with mobile wireless, and improved 

wireless communications through the implementation of space division multiple 

access (SDMA) [Godara 2004, Gross 2005]. The adaptation algorithms can be, 

generally, categorized into three methods: 1. Estimating the Angle Of Arrival (AOA) 

then steering, 2. Non-blind adaptation, and 3. Blind adaptation. 

2. Beamsteered linear array 
For any phased array antenna, the radiation pattern is the multiplication of two 

main parts: the element radiation pattern and Array Factor (AF). For N elements array, 

AF is given by[Godara 2004, Gross 2005, and Mailloux 2005]: 

AF=     
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A beamsteered linear array is an array where the phase shift (δ) is variable thus 

allowing the main lobe to be directed toward any Direction Of Arrival (DOA) [Gross 

2005]. The phase shift can be written as δ = −kdsin θ0 (where θ0 is the DOA). The 
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array factor can be written in terms of beamsteering such that [Gross 2005, Visser 

2005, and Sun  et. al. 2009] 
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Figure (1) shows polar plots for the beamsteered 8-element array for the d/λ = 0.5 

(where d is the inter-elements spacing and λ is the wavelength), and θ0 = 20, 40, and 

60°. Major lobes exist above and below the horizontal because of array is symmetry. 

   
Figure (1) Beamsteered linear array 

3. Estimating the Angle Of Arrival (AOA) Then Steering (EAOATS) 
The smart antenna needs to estimate, at first, the angle of arrival so as to steer the 

main beam towards it.  Angle-of-arrival (AOA) estimation has also been known as 

spectral estimation, direction of arrival (DOA) estimation, or bearing estimation. 

3.1 Array Correlation Matrix 
Many of the AOA algorithms rely on the array correlation matrix. In order to 

understand the array correlation matrix, let us begin with a description of the array, 

the received signal, and the additive noise. Figure (2) depicts a receive array with 

incident plane waves from various directions. It also shows D signals arriving from D 

directions. They are received by an array of M elements with M potential weights wm. 

 

 

 

 

 

 

 

 

 

 

 

Figure (2) M-element array with arriving signals. 

Each received signal xM(k) includes additive white Gaussian zero with mean noise. 

Time is represented by the kth time sample. Thus, the array output y can be given in 

the following form: 

   kxwky T   (3) 

where 

   knksAx   (4) 
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and 

  
T

Mwwww 21 array weights 

  ks vector of incident complex monochromatic signals at time k 

  kn noise vector at each array element m, zero mean, variance 2

n  

  ia  M-element array steering vector for the θi direction of arrival 

      DaaaA  21  is an MD matrix of steering vectors. 

The D-complex signals arrive at angles θi and are intercepted by the M antenna 

elements. It is initially assumed that the arriving signals are monochromatic and the 

number of arriving signals D < M. It is understood that the arriving signals are time 

varying and thus our calculations are based upon time snapshots of the incoming 

signal. Obviously if the transmitters are moving, the matrix of steering vectors is 

changing with time and the corresponding arrival angles are changing, unless 

otherwise stated, the time dependence will be suppressed in Eqs. (3) and (4). In order 

to simplify the notation let us define the M× M array correlation matrix xxR as 

  nn

H

ss

H

xx RARAxxER   (5) 

where E[]: the expected value 

 DDRss  source correlation matrix 

 MMIR nnn  2 noise correlation matrix 

 NNI  identity matrix 

 H: superscript is the Hermitian operator (transpose complex conjugate) 

The exact statistics for the noise and signals are unknown, but we can assume that the 

process is ergodic. Hence, the correlation can be approximated by the use of a time-

averaged correlation. In that case the correlation matrices are defined by 
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where K is the number of snapshots. 

The goal of AOA estimation techniques is to define a function that gives an indication 

of the angles of arrival based upon maxima vs. angle. This function is traditionally 

called the pseudospectrum P(θ) and the units can be in energy or in watts (or at times 

energy or watts squared). 

3.2 AOA Estimation Methods 
The core operation of any smart antenna relies on the estimation of AOA, This 

principles lead to formulate many algorithms to find the AOA. The following are the 

most used for AOA estimation. All algorithms are simulated with MATLAB. The 

proposed scenario 1 is M=8, uncorrelated equal amplitude sources, (s1, s2), d = λ/2, 

and 2

n  = 0.1, and the two different pairs of arrival angles given by ± 10° and ±5°, 

assuming ergodicity. 

3.2.1 Bartlett AOA estimate 
If the array is uniformly weighted, we can define the Bartlett AOA estimate as [Gross 

2005, and El Zooghby 2005] 

      aRaP xx

H

B   (7) 

The Bartlett AOA estimate is the spatial version of an averaged periodogram and is a 

beamforming AOA estimate. Under the conditions where s  represents uncorrelated 

monochromatic signals and there is no system noise, Eq. (7) is equivalent to the 

following long-hand expression [Blaunstein and Christodoulou 2007, Gross 2005]: 
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The periodogram is thus equivalent to the spatial finite Fourier transform of all 

arriving signals. This is also equivalent to adding all beamsteered array factors for 

each angle of arrival and finding the absolute value squared. 

Figure (3) shows the simulation results for Bartlett AOA estimate for the proposed 

scenario. 

  
 

Figure (3) a. ± 10° spacing angle, b. ±5° spacing angle 

From Figure (3) it can be seen that the Bartlett algorithm fails to resolve the ±5° 

spacing angle. Thus despite its simplicity it requires more array elements to achieve 

the required as its resolution is approximately 1/M. This is the resolution limit of 

Bartlett method. 

3.2.2 Capon AOA estimate 
The Capon AOA estimate [Gross 2005, El Zooghby 2005] is known as a minimum 

variance distortionless response (MVDR). Its goal is to maximize the signal-to-

interference ratio (SIR) while passing the signal of interest undistorted in phase and 

amplitude. The source correlation matrix ssR  is assumed to be diagonal. Maximized 

SIR is accomplished with a set of array weights  Mwwww 21  as shown in 

Figure (2), where the array weights are given by 
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The periodogram is thus  
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Apply the scenario with angle spacing ±5°, the result is shown in Figure (4). 

Capon AOA estimate has better resolution than the Bartlett AOA estimate. When 

sources are highly correlated, the Capon resolution worsens. The derivation of the 

Capon weights was conditioned upon considering that all other sources are interferers. 

a b 



Journal of Babylon University/Pure and Applied Sciences/ No.(1)/ Vol.(19): 2011 

 310 

 
Figure (4) Capon pseudospectrum for θ1 = −5°, θ2 = 5°. 

3.2.3 Linear Prediction AOA Estimate 
The goal of the linear prediction method is to minimize the prediction error between 

the output of the mth sensor and the actual output. In a similar vein as Eq. (9), the 

solution for the array weights is given as [Blaunstein and Christodoulou 2007, and 

Gross 2005] 
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mu is the Cartesian basis vector which for the mth column of the M×M identity matrix. 

The pseudo-spectrum  can be shown that 
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The choice for which mth element output for prediction is random. The choice made 

can dramatically affect the final resolution. If the array center element is chosen, the 

linear combination of the remaining sensor elements might provide a better estimate 

because the other array elements are spaced about the phase center of the array. This 

would suggest that odd array lengths might provide better results than even arrays 

because the center element is precisely at the array phase center [Kaiser et. al. 2005, 

Gross 2005, El Zooghby 2005]. The AOA estimation for the proposed scenario is 

shown in Figure (5). 

 
Figure (5) Linear predictive pseudospectrum for θ1 = −5°, θ2 = 5°. 

3.2.4 Pisarenko Harmonic Decomposition AOA Estimate 
The goal of this algorithm is to minimize the mean-squared error of the array output 

under the constraint that the norm of the weight vector be equal to unity. The 
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eigenvector that minimizes the mean-squared error corresponds to the smallest 

eigenvalue. For an M = 6 element array, with two arriving signals, there will be two 

eigenvectors associated with the signal and four eigenvectors associated with the 

noise. The corresponding PHD pseudospectrum is given by [Kaiser et. al. 2005, Gross 

2005, El Zooghby 2005] 

 
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2

1

1

ea
P

T
PHD


   (13) 

where 1e is the eigenvector associated with the smallest eigenvalue λ1.  

The performance of PHD algorithm is shown in Figure (6). The Pisarenko peaks are 

not an indication of the signal amplitudes. These peaks are the roots of the polynomial 

in the denominator of Eq. (13). It is clear that for this example, the Pisarenko solution 

has the best resolution. 

 
Figure (6) PHD pseudospectrum for θ1 = −5°, θ2 = 5°. 

3.2.5 MUSIC AOA Estimate 
MUSIC is an acronym which stands for the term which is (MUltiple SIgnal 

Classification) [ Shahbazpanahi et. al. 2001, Gross 2005, and Dandekar, et. al. 2002]. 

MUSIC promises to provide unbiased estimates of the number of signals, the angles 

of arrival, and the strengths of the waveforms. MUSIC makes the assumption that the 

noise in each channel is uncorrelated making the noise correlation matrix diagonal. 

The incident signals may be somewhat correlated creating a nondiagonal signal 

correlation matrix. However, under high signal correlation the traditional MUSIC 

algorithm breaks down and other methods must be implemented to correct this 

weakness. If the number of signals is D, the number of signal eigenvalues and 

eigenvectors is D too, and the number of noise eigenvalues and eigenvectors is M–D 

(M is the number of array elements). The array correlation matrix assuming 

uncorrelated noise with equal variances is. 

IARAR n

H

ssxx

2  (14) 

We next find the eigenvalues and eigenvectors for xxR . We then produce D 

eigenvectors associated with the signals and M–D eigenvectors associated with the 

noise. We choose the eigenvectors associated with the smallest eigenvalues. For 

uncorrelated signals, the smallest eigenvalues are equal to the variance of the noise. 

We can then construct the M×(M–D) dimensional subspace spanned by the noise 

eigenvectors such that 

 DMN eeeE  21  (15) 

The noise subspace eigenvectors are orthogonal to the array steering vectors at the 

angles of arrival θ1, θ2, … , θD. Because of this orthogonality condition, the Euclidean 
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distance     02   aEEad H

NN

H
 for each and every arrival angle θ1, θ2, … , θD. 

Placing this distance expression in the denominator creates sharp peaks at the angles 

of arrival. The MUSIC pseudospectrum is now given as: 

 
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The performance of MUSIC for the proposed scenario is given in Figure (7) 

 

 
Figure (7) MUSIC pseudospectrum for θ1 = −5°, θ2 = 5°. 

3.2.6 ESPRIT AOA Estimate 
ESPRIT stands for Estimation of Signal Parameters via Rotational Invariance 

Techniques [Jeon, et. al. 2005, Gross 2005, Dandekar, et. al. 2002]. The goal of the 

ESPRIT technique is to exploit the rotational invariance in the signal subspace which 

is created by two arrays with a translational invariance structure. ESPRIT inherently 

assumes narrowband. As with MUSIC, ESPRIT assumes that there are D < M narrow-

band sources centered at the center frequency f0. These signal sources are assumed to 

be of a sufficient range so that the incident propagating field is approximately planar. 

The sources can be either random or deterministic and the noise is assumed to be 

random with zero-mean. ESPRIT assumes multiple identical arrays called doublets. 

These can be separated arrays or can be composed of subarrays of one larger array. It 

is important that these arrays are displaced translationally but not rotationally. An 

example is shown in Figure (8) where a four element linear array is composed of two 

identical three-element subarrays or two doublets. These two subarrays are 

translationally displaced by the distance d. Let us label these arrays as array 1 and 

array 2. 

 

 

 

 

Figure (8) Doublet composed of two identical displaced arrays. 

The signals induced on each of the arrays are given by 

   knksAx 11   (17) 

and 

     knAknksAx 222   (18) 

where  diag Djkdjkdjkd
eee

 sinsinsin 21  =DD diagonal unitary matrix with 

phase shifts between the doublets for each AOA. 

Array 1 

Array 2 d 
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 iA Vandermonde matrix of steering vectors for subarrays i = 1, 2 

The total received signal considering the contributions of both subarrays is given as 
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The correlation matrix for the complete array is given by 

  IARAxxER n

H

ss

H

xx

2  (20) 

where the correlation matrices for the two subarrays are given by 

  IARAxxER n

H

ss

H 2

1111   (21) 

and 

  IARAxxER n

HH

ss

H 2

2222   (22) 

Each of the full rank correlation matrices given in Eq. (21) and (22) has a set of 

eigenvectors corresponding to the D signals present. Creating the signal subspace for 

the two subarrays results in the two matrices 1E and 2E . Creating the signal subspace 

for the entire array results in one signal subspace given by xE . Both 1E  and 2E are 

M×D matrices whose columns are composed of the D eigenvectors corresponding to 

the largest eigenvalues of 11R and 22R . Since the arrays are translationally related, the 

subspaces of eigenvectors are related by a unique non-singular transformation matrix 

 such that 

12 EE   (23) 

There must also exist a unique non-singular transformation matrix T such that 

TAE 1  (24) 

and 

TAE 2  (25) 

By substituting Eqs. (23) and (24) into Eq. (25) and assuming that A is of full-rank, 

we can derive the relationship 

 1TT  (26) 

Thus, the eigenvalues of  must be equal to the diagonal elements of  such that 

,1sin
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 jkd
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 jkd
e …, ,

sin Djkd

D e
  and the columns of T must be the 

eigenvectors of .   is a rotation operator that maps the signal subspace 1E into the 

signal subspace 2E . If we are restricted to a finite number of measurements and we 

also assume that the subspaces 1E and 2E are equally noisy, we can estimate the 

rotation operator  using the total least-squares (TLS) criterion. This procedure is 

outlined as follows. 

 Estimate the array correlation matrices 11R , 22R from the data samples. 

 Knowing the array correlation matrices for both subarrays, the total number of 

sources equals to the number of large eigenvalues in either 11R  or 22R . 

 Calculate the signal subspaces 1E and 2E based upon the signal eigenvectors of 

11R and 22R . 1E can be constructed by selecting the first M/2 + 1 rows ((M + 

1)/2 + 1 for odd arrays) of xE . 2E can be constructed by selecting the last 

M/2+1 rows ((M+ 1)/2 + 1 for odd arrays) of xE . 

 Next form a 2D × 2D matrix using the signal subspaces such that 
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where the matrix CE  is from the eigenvalue decomposition (EVD) of C such 

that λ1 ≥ λ2 ≥ … ≥ λ2D and   = diag {λ1, λ2, . . . , λ2D} 

 Partition CE into four D × D submatrices such that 
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 Estimate the rotation operator  by 
1

2212

 EE  (29) 

 Calculate the eigenvalues of , λ1, λ2, … , λD 

 Now estimate the angles of arrival, given that 
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If so desired, one can estimate the matrix of steering vectors from the signal subspace 

sE and the eigenvectors of  given by E such that  EEA s
ˆ . 

4. Non-Blind Adaptive Beamforming Algorithms 
These algorithms depend on a stores reference signal at the receiver. This signal is 

predefined before the transmission. The task of the algorithm is to minimize the error 

between the received signal and the reference signal. The proposed scenario for 

tracking algorithms. Scenario 2 is M= 8, d= 0.5 λ, AOA θ0=0˚, interference θ0=-60˚, 

the traced function    








T

ktks 2cos , T=1 msec,   100/1001 Tt   

4.1 Least Mean Squares 
The least mean squares algorithm is a gradient based approach [Gross 2005]. It is 

established quadratic performance surface. When the performance surface is a 

quadratic function of the array weights, the performance surface  wJ is in the shape 

of an elliptic paraboloid having one minimum. We can establish the performance 

surface (cost function) by again finding the Mean Square Error (MSE). The error, as 

shown in Figure (9), is 

       kxkwkdk H  (31) 

 
Figure (9) Quadratic surface for MSE. 

The squared error is given as 
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       
22

kxkwkdk H  (32) 

Momentarily, we will suppress the time dependence. The cost function is given as 

  wRwrwDwJ xx

HH  2  (33) 

Where: D= E[|d|2] 

To find the optimum weight vector w  we can differentiate Eqn. (33) with respect to w 

and equating it to zero. This yields: 

 rRw xxopt

1  (34) 

Because we don’t know signal statistics we must resort to estimating the array 

correlation matrix ( xxR ) and the signal correlation vector ( r ) over a range of 

snapshots or for each instant in time. The instantaneous estimates are given as 

     kxkxkR H

xx ˆ  (35) 

and 

     kxkdkr *ˆ   (36) 

We can employ an iterative technique called the method of steepest descent to 

approximate the gradient of the cost function. The method of steepest descent can be 

approximated in terms of the weights using the LMS method advocated by Widrow 

[Gross 2005]. The steepest descent iterative approximation is given as 

      wJkwkw w 
2

1
1  (37) 

where, μ is the step-size parameter and w is the gradient of the performance surface. 

Substituting the instantaneous correlation approximations, we have the Least Mean 

Square (LMS) solution. 

       kxkekwkw *1   (38) 

where        kxkwkdke H = error signal 

The convergence of the LMS algorithm is directly related to the step-size parameter 

μ. If the step-size is too small, the convergence is slow and we will have the 

overdamped case. If the convergence is slower than the changing angles of arrival, it 

is possible that the adaptive array cannot acquire the signal of interest fast enough to 

track the changing signal. If the step-size is too large, the LMS algorithm will 

overshoot the optimum weights of interest. This is called the underdamped case. If 

attempted convergence is too fast, the weights will oscillate about the optimum 

weights but will not accurately track the solution desired. It is therefore imperative to 

choose a step-size in a range that insures convergence. It can be shown that stability is 

insured provided that the following condition is met 

max

1
0


   (39) 

where λmax is the largest eigenvalue of xxR̂ . 

Since the correlation matrix is positive definite, all eigenvalues are positive. If all the 

interfering signals are noise and there is only one signal of interest, we can 

approximate the condition in Eqn. (39) as 

 xxRtrace2

1
0    (40) 

For scenario 2, the performance of LMS is given in Figures 10 (a, b, c, and d). It can 

be seen from Figure (b) that the algorithm tracks the variation function around the 70th 

iteration. Figure (c) shows that the error degrades to zero at the 70th iteration. 
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Figure (10) Performance of LMS, a. Radiation pattern, b. Acquisition and tracking of 

desired signal, c. Magnitude of array weights, d. Mean square error. 

4.2 Sample Matrix Inversion (SMI) 
One of the drawbacks of the LMS adaptive scheme is that the algorithm must go 

through many iterations before satisfactory convergence is achieved. If the signal 

characteristics are rapidly changing, the LMS adaptive algorithm may not be able to 

track of the desired signal. One possible approach to circumventing the relatively slow 

convergence of the LMS scheme is by use of SMI method [Jeon, et. al. 2005, Gross 

2005, Dandekar, et. al. 2002]. This method is also alternatively known as Direct 

Matrix Inversion (DMI). The sample matrix is a time average estimate of the array 

correlation matrix using K-time samples. If the random process is ergodic in the 

correlation, the time average estimate will equal the actual correlation matrix. The 

optimum array weights are given by the optimum Wiener solution as [Gross 2005] 

rRw xx

1

opt

  (41) 

where  xdEr  *
 

For K snapshots, we have 

     kXkX
K

kR H

KKxx

1ˆ    (42) 

and 

     KXkd
K

kr K

*1
ˆ   (43) 

The SMI weights can then be calculated for the kth block of length K as 

          kXkdkXkXkw K

H

KKSMI

*1
  (44) 

a b 

d c 
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The radiation pattern of the algorithm regarding scenario 2 is shown in Figure (11) 

          
 

Figure (11) Weighted SMI array pattern, a. radiation pattern, b. Polar plot 

4.3 Recursive Least Squares 
The SMI technique has several drawbacks. Even though the SMI method is faster than 

the LMS algorithm, the computational burden and potential singularities can cause 

problems [Jeon, et. al. 2005, Gross 2005, Dandekar, et. al. 2002]. The correlation 

matrix and the correlation vector omitting K (in SMI) as 

     



k

i

H

Kxx ixixkR
1

ˆ  (45) 

     



k

i

ixidkr
1

*ˆ  (46) 

where k is the block length and last time sample k and  kRxx
ˆ ,  kr̂ is the correlation  

Both summations (Eqns. (45) and (46)) use rectangular windows, thus they equally 

consider all previous time samples. Since the signal sources can change or slowly 

move with time, we might want to deemphasize the earliest data samples and 

emphasize the most recent ones. This can be accomplished by modifying Eqns. (45) 

and (46) such that we forget the earliest time samples. This is called a weighted 

estimate. Thus 

     



k

i

H

KK

k

xx ixixkR
1

1ˆ   (47) 

     



K

i

K

k ixidkr
1

*1ˆ   (48) 

where α is the forgetting factor. 

The forgetting factor is also sometimes referred to as the exponential weighting factor 

[Gross 2005]. α is a positive constant such that 0 ≤ α ≤ 1. When α = 1, we restore the 

ordinary least squares algorithm. α = 1 also indicates infinite memory. Decomposing 

the summation in Eqs. (47) and (48) into two terms: the summation for values up to i 

= k−1 and last term for i = k. 

       kxkxkRkR H

xxxx  1ˆˆ   (49) 

       kxkdkrkr *1ˆˆ    (50) 

Thus, future values for the array correlation estimate and the vector correlation 

estimate can be found using previous values. The behavior of the algorithm is show in 

Figure (12). 

a b 
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Figure (12) Trace of correlation matrix using SMI and RLS. 

It can be seen that the recursion formula oscillates for different block lengths and that 

it matches the SMI solution when k = K. The recursion formula always gives a 

correlation matrix estimate for any block length k but only matches SMI when the 

forgetting factor is 1. The advantage of the recursion approach is that one need not 

calculate the correlation for an entire block of length K. Rather, update only requires 

one a block of length 1 and the previous correlation matrix. The performance of the 

algorithm is shown in Figure 13 (a, b, and c) 

 
 

         
 

Figure (13) a. the weight vector values, b. the absolute weight vector, c. Radiation 

pattern, d. polar plot. 

The advantage of the RLS algorithm over SMI is that it is no longer necessary to 

invert a large correlation matrix. The recursive equations allow for easy updates of the 

inverse of the correlation matrix. The RLS algorithm also converges much more 

quickly than the LMS algorithm. 

 

a b 

c d 
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5. Blind Algorithms 
Blind algorithms do not require a reference signal to track the moving source. It 

depends on the signal properties (such as modulus or phase) to steer the main lob. 

They are suitable for mobile communications that produces low preambles. 

4.4 Conjugate Gradient Method 
The problem with the steepest descent method is its sensitivity of convergence rates to 

the eigenvalue spread of the correlation matrix. Greater spreads result in slower 

convergences. The convergence rate can be accelerated by use of the conjugate 

gradient method (CGM). The goal of CGM is to iteratively search for the optimum 

solution by choosing conjugate (perpendicular) paths for each new iteration [Godara 

2004, Gross 2005]. The method of CGM produces orthogonal search directions 

resulting in the fastest convergence. Figure (14) depicts a top view of a two-

dimensional performance surface where the conjugate steps show convergence toward 

the optimum solution. Note that the path taken at iteration n + 1 is perpendicular to 

the path taken at the previous iteration n. 

 
Figure (14) Contours of convergence using conjugate directions. 

CGM is an iterative method whose goal is to minimize the quadratic cost function 

  wdwAwwJ HH 
2

1
 (51) 

where 

     

     

     



















KxKxKx

xxx

xxx

A

M

M

M









21

21

21

222

111

    K×M matrix of array snapshots 

K = number of snapshots 

M = number of array elements 

w = unknown weight vector 

      TKdddd 21 = desired signal vector of K snapshots 

We may take the gradient of the cost function and set it to zero in order to find the 

minimum. It can be shown that 

  dwAwJw   (52) 

Using the method of steepest descent in order to iterate to minimize Eq. (52). We wish 

to slide to the bottom of the quadratic cost function choosing the least number of 

iterations. The general weight update equation is given by 

       nDnnwnw 1  (53) 
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Where the step size is determined by 

 
   
   nDAAnD

nrAAnr
n

HH

HH

  (54) 

We may now update the residual and the direction vector. We can premultiply Eq. 

(53) by A and add d to derive the updates for the residuals. 

       nDAnnrnr 1  (55) 

The direction vector update is given by 

       nDnnrAnD H  11  (56) 

We can use a linear search to determine α(n) which minimizes   nwJ . Thus 

 
   

   nrAAnr

nrAAnr
n

HH

HH 11 
  (57) 

Assuming the AOA is 45˚, interference signal at -30˚, 0˚, 2 =0.001, K=20; the 

performance of the algorithm is shown in Figure 15 (a, b). 

 
 

Figure (15) CGM Algorithm, a. Norm of the residuals for each iteration, b. Array 

pattern using CGM. 

It can be seen that the residual drops to very small levels after 14 iterations in Figure 

15. (a). The plot of the resulting pattern is shown in Figure 15.(b). It can be seen that 

two nulls are placed at the two angles of arrival of the interference. 

6. Conclusions 
Smart antennas have the ability to change its pattern electronically to track the 

SOI. Hence there is no need for mechanical steering system. The rotation is achieved 

through the alteration of Array Factor (AF). These algorithms rely heavily on the 

correlation matrix R because of the random nature of the arriving signal. The 
EAOATS provide very accurate steering algorithms but fails in the environment that 

constantly changing its behavior.   The MUSIC algorithm shows the best accuracy but 

it fails under highly correlated signals. The ESPRIT shows lesser accuracy but due to 

its construction it assumes no prior correlation between signals. The non-blind 

algorithms resolve the weaknesses of EAOATS but need reference signal which might 

not be available like in mobile stations. The LMS adaptation algorithm is slow, so 

can’t track fast changing emitter. The SMI is faster but exerts heavy calculation on the 

processor and suffers from singularities. The RLS proposes a forgetting factor to 

remove the matrix inversion calculation in every iteration. But its performance is 

governed by the forgetting factor. For high forgetting factor the algorithm goes 

unstable, for low forgetting factor its performance reaches the LMS. The blind 

algorithms such as CGM is a very fast algorithm suitable to track fast changing 

signals without the need for reference signal but shows higher sidelobes. 

a b 
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