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1. INTRODUCTION 

Zadeh in [15] presented important fuzzy set operations and established the concept of fuzzy sets in mathematics. 

Molodtsov in [13] distinguished a different kind of set called soft sets. and gave important characteristics for this concept 

in [4]. He further explained that as soft sets relate a collection to a set of parameters, they are mathematical in nature. To 

attempt to offer a more thorough elucidation of the fuzzy set theory idea Maji [11] introduced a fuzzy soft set (FS) defined 

as a soft set over the universal set XIs referred to as an FS-set (Fuzzy Soft Set) on X. And various related notions, as a 

part of a soft set theory [3],[10],. The definition of the FS-Hilbert space was presented by Faried, Ali, and Sakr [5] along 

with a number of new features and details. Furthermore, among other important ideas, Faried and Ali defined the FS-

linear operator and FS-bounded operator within the fuzzy soft Hilbert space [6],[7], and [1],[2] 

In recent years, considerable clarity and expansion have been devoted to the class of operators (Q)[9]. This has been 

achieved by easing certain normality constraints and including new classes, such as (α, β), into the existing class of (Q) 

operators. 

The FS-bounded linear operator I  ̃ is called a FS-class(Q) operator if 𝔍̃∗2
𝔍̃2 =̃ (𝔍̃∗𝔍̃)2 , FS- Normal operator if 

𝔍̃∗𝔍̃ =̃ 𝔍̃𝔍̃∗, and FS(𝛼, 𝛽)-normal operator if  𝛽2𝔍̃∗𝔍̃ ≥̃ 𝔍̃𝔍̃∗ ≥̃ 𝛼2𝔍̃∗𝔍̃ .This work introduces the concept of fuzzy soft 

(α,β)-class(Q) operators on fuzzy soft Hilbert space H ̃, as well as B( H ̃) denotes the fuzzy soft Banach algebra of all FS- 

bounded linear operators. which is composed over separable fuzzy soft Hilbert spaces. The paper also presents several 

theorems that discuss the features of these operators. 

 

 

2. fuzzy soft (α,β)-class(Q) operator 

A new class of fuzzy soft operators on the fuzzy soft operator Hilbert space, called fuzzy soft(α,β)-class(Q) operator, 

is introduced in this section. We also address several important theorems related to this operator. Initially, the FS class(Q) 

operators notation was develop. 

 

 

Definition 2.1 Consider ℋ̃ to be an FS-Hilbert space , then afuzzy soft bounded linear operator ℑ̃ ∈ ̃ℬ( ℋ̃)is a FS-

𝑐𝑙𝑎𝑠𝑠(𝑄) operator if ℑ̃∗2
ℑ̃2 =̃ (ℑ̃∗ℑ̃)2 , 
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1. 𝑒̃ℑ̃ for any FS-real number ℯ̃. 

2. For any 𝒬̃ ∈ ̃ℬ( ℋ̃) which is FS- Unitarily Equivalent to ℑ̃.  

 

Proof. 

1.  Suppose ℑ̃ ∈ ̃𝐹𝑆 − 𝑐𝑙𝑎𝑠𝑠(𝑄), then 

ℑ̃∗2
ℑ̃2 =̃ (ℑ̃∗ℑ̃)2 

(𝑒̃ℑ)̃∗2
(𝑒̃ℑ̃)2 =̃ ((𝑒̃ℑ̃)∗𝑒̃ℑ̃)2 

 After that, we have,  (𝑒̃∗2
𝑒̃2)ℑ̃∗2

ℑ̃2 =̃ (𝑒̃∗2
𝑒̃2)(ℑ̃∗ℑ̃)2 

Then  ℑ̃∗2
ℑ̃2 =̃ (ℑ̃∗ℑ̃)2 

Therefore,  𝑒̃ℑ̃ ∈ ̃𝐹𝑆 − 𝑐𝑙𝑎𝑠𝑠(𝑄) operator. 

2. Assume that 𝒬̃ ∈ ̃ℬ( ℋ̃). Then there exists an afuzzy soft Unitary operator ℰ̃ that is if 𝒬̃ = ℰ̃∗ℑ̃ℰ̃ as well 𝒬̃∗ =

ℰ̃∗ℑ̃∗ℰ̃ ,then: 

𝒬̃∗2
𝒬̃2 =̃ (𝒬̃∗𝒬̃)2 

ℰ̃∗ℑ̃∗ℰ̃ ℰ̃∗ℑ̃∗ℰ̃ 𝒬̃2 =̃ (ℰ̃∗ℑ̃∗ℰ̃ ℰ̃∗ℑ̃ℰ̃ )2 

  ℰ̃∗ℑ̃∗2
ℰ̃ 𝒬̃2 =̃ (ℰ̃∗ℑ̃∗ℑ̃ℰ̃ )2 

ℰ̃∗ℑ̃∗2
ℰ̃ℰ̃∗ℑ̃ℰ̃ℰ̃∗ℑ̃ℰ̃ =̃ (ℰ̃∗ℑ̃∗ℑ̃ℰ̃ )2 , this implies that  

ℰ̃∗ℑ̃∗2
ℑ̃2ℰ̃  =̃ (ℰ̃∗ℑ̃∗ℑ̃ℰ̃ )2 

 ℰ̃∗ℑ̃∗2
ℑ̃2ℰ̃  =̃ ℰ̃∗(ℑ̃∗ℑ̃)2ℰ̃ 

Hence 𝒬̃ is FS-Unitarily Equivalent to ℑ̃. 

 

Proposition 2.3 If   ℑ̃ ∈ ̃𝐹𝑆 − 𝑐𝑙𝑎𝑠𝑠(𝑄) operator ,then (ℑ̃ℑ̃∗)2 =̃  ℑ̃2ℑ̃∗2
    

 

Proof:    since ℑ̃ ∈ ̃𝐹𝑆 − 𝑐𝑙𝑎𝑠𝑠(𝑄), and ℑ̃∗ ∈ ̃𝐹𝑆 − 𝑐𝑙𝑎𝑠𝑠(𝑄), then  

(ℑ̃∗∗
ℑ̃∗)2 =̃ (ℑ̃∗∗

)2(ℑ̃∗)2 this implies that (ℑ̃ℑ̃∗)2 =̃  ℑ̃2ℑ̃∗2
. 

 

        Now, we will introduce the notation of 𝐹𝑆(𝛼, 𝛽) − 𝑐𝑙𝑎𝑠𝑠(𝑄) 

 

Definition 2.4  Let ℋ̃ represent a FS−Hilbert space  , then a FS-bounded linear operator ℑ̃ ∈ ̃ℬ( ℋ̃)is namely 

fuzzy soft (𝛼, 𝛽) − 𝑐𝑙𝑎𝑠𝑠(𝑄) operator if 𝛼2ℑ̃∗2
ℑ̃2 ≤̃ (ℑ̃∗ℑ̃)2 ≤̃ 𝛽2ℑ̃∗2

ℑ̃2 . 

 

Theorem 2.5  If   ℑ̃ ∈ ̃𝐹𝑆 − (𝛼, 𝛽) − 𝑐𝑙𝑎𝑠𝑠(𝑄) operator, then so is; 

1. 𝑒̃ℑ̃ for any FS-real number ℯ̃. 

2. For any 𝒬̃ ∈ ̃ℬ( ℋ̃) which is fuzzy soft Unitarily Equivalent to ℑ̃.  

 

Proof. 

1.  Suppose ℑ̃ ∈ ̃𝐹𝑆(𝛼, 𝛽) − 𝑐𝑙𝑎𝑠𝑠(𝑄), then 

 𝛼2ℑ̃∗2
ℑ̃2 ≤̃ (ℑ̃∗ℑ̃)2 ≤̃ 𝛽2ℑ̃∗2

ℑ̃2 

 𝛼2(𝑒̃ℑ)̃∗2
(𝑒̃ℑ̃)2 ≤̃ ((𝑒̃ℑ̃)∗𝑒̃ℑ̃)2 ≤̃ 𝛽2(𝑒̃ℑ̃)∗2

(𝑒̃ℑ̃)2 

𝛼2(𝑒̃∗2
𝑒̃2)ℑ̃∗2

ℑ̃2 ≤̃ (𝑒̃∗2
𝑒̃2)(ℑ̃∗ℑ̃)2 ≤̃ 𝛽2(𝑒̃∗2

𝑒̃2)ℑ̃∗2
ℑ̃2,  

therefore we have  

 𝛼2ℑ̃∗2
ℑ̃2 ≤̃ (ℑ̃∗ℑ̃)2 ≤̃ 𝛽2ℑ̃∗2

ℑ̃2 

Hence 𝑒̃ℑ̃ ∈ ̃𝐹𝑆(𝛼, 𝛽) − 𝑐𝑙𝑎𝑠𝑠(𝑄). 
 

2. Assume that  𝒬̃ ∈ ̃ℬ( ℋ̃). Then there exists an afuzzy soft Unitarily operator ℰ̃ , that is if 𝒬̃ = ℰ̃∗ℑ̃ℰ̃ as well 

𝒬̃∗ = ℰ̃∗ℑ̃∗ℰ̃,  Then: 

 𝛼2𝒬̃∗2
𝒬̃2 ≤̃ (𝒬̃∗𝒬̃)2 ≤̃ 𝛽2𝒬̃∗2

𝒬̃2 

 𝛼2ℰ̃∗ℑ̃∗ℰ̃ ℰ̃∗ℑ̃∗ℰ̃ 𝒬̃2 ≤̃ (ℰ̃∗ℑ̃∗ℰ̃ ℰ̃∗ℑ̃ℰ̃ )2 ≤̃ 𝛽2ℰ̃∗ℑ̃∗ℰ̃ ℰ̃∗ℑ̃∗ℰ̃ 𝒬̃2 

 𝛼2ℰ̃∗ℑ̃∗2
ℰ̃ 𝒬̃2 ≤̃ (ℰ̃∗ℑ̃∗ℑ̃ℰ̃ )2 ≤̃ 𝛽2ℰ̃∗ℑ̃∗2

ℰ̃ 𝒬̃2 

 𝛼2ℰ̃∗ℑ̃∗2
ℰ̃ℰ̃∗ℑ̃ℰ̃ℰ̃∗ℑ̃ℰ̃ ≤̃ (ℰ̃∗ℑ̃∗ℑ̃ℰ̃ )2 ≤̃ 𝛽2ℰ̃∗ℑ̃∗2

ℰ̃ ℰ̃∗ℑ̃ℰ̃ℰ̃∗ℑ̃ℰ̃  

 𝛼2ℰ̃∗ℑ̃∗2
ℑ̃2ℰ̃  ≤̃ (ℰ̃∗ℑ̃∗ℑ̃ℰ̃ )2 ≤̃ 𝛽2ℰ̃∗ℑ̃∗2

ℑ̃2ℰ̃ 

Hence, we have  𝒬̃ is fuzzy soft Unitarily Equivalent to ℑ̃. 

 

We now show that fuzzy soft (α,β)-class(Q)operator's inverse is as well fuzzy soft (α,β)-class(Q). 
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Theorem 2.6  If ℑ̃ ∈ ̃𝐹𝑆(𝛼, 𝛽) − 𝑐𝑙𝑎𝑠𝑠(𝑄) operator, and ℑ̃−1exist, then ℑ̃−1 ∈ ̃𝐹𝑆(𝛼, 𝛽) − 𝑐𝑙𝑎𝑠𝑠(𝑄). 

 

Proof:   

𝛼2ℑ̃−1∗2

ℑ̃−12
=̃ 𝛼2 ℑ̃∗−12

ℑ̃−12
=̃ 𝛼2ℑ̃∗2−1

ℑ̃2−1
then we have 

=̃ 𝛼2(ℑ̃2ℑ̃∗2
)−1, it implies that 𝛼2(ℑ̃ℑ̃∗)2−1

=̃ 𝛼2(ℑ̃ℑ̃∗)−12
is less than 

≤̃ (ℑ̃−1∗
ℑ̃−1)2, also 

(ℑ̃−1∗
ℑ̃−1)2 =̃  (ℑ̃∗−1

ℑ̃−1)2 =̃ (ℑ̃ℑ̃∗)−12
, which implise 

=̃ ((ℑ̃ℑ̃∗)2−1
=̃ (ℑ̃2ℑ̃∗2

)−1 , that is  

≤̃ 𝛽2 ℑ̃∗2−1

ℑ̃2−1
≤̃ 𝛽2 ℑ̃−1∗2

ℑ̃−12
      

Therefore, we obtain that 𝛼2 ℑ̃−1∗2

ℑ̃−12
≤̃ (ℑ̃−1∗

ℑ̃−1)2 ≤̃ 𝛽2 ℑ̃−1∗2

ℑ̃−12
. 

 

Proposition 2.7 If ℑ̃ ∈ ̃𝐹𝑆(𝛼, 𝛽) − 𝑐𝑙𝑎𝑠𝑠(𝑄) operator, such that 𝛼𝛽 = 1, then ℑ̃∗ ∈ ̃𝐹𝑆(𝛼, 𝛽) − 𝑐𝑙𝑎𝑠𝑠(𝑄). 

 

Proof:  

 𝛼2ℑ̃∗2
ℑ̃2 ≤̃ (ℑ̃∗ℑ̃)2 ≤̃ 𝛽2ℑ̃∗2

ℑ̃2 

𝛼4ℑ̃∗2
ℑ̃2 ≤̃ 𝛼2(ℑ̃∗ℑ̃)2 ≤̃ 𝛼2𝛽2ℑ̃∗2

ℑ̃2          (1) 

𝛼2𝛽2ℑ̃∗2
ℑ̃2 ≤̃ 𝛽2(ℑ̃∗ℑ̃)2 ≤̃ 𝛽4ℑ̃∗2

ℑ̃2          (2) 

Then from (1) and (2) we have that, 

𝛼2ℑ̃∗2
ℑ̃2 ≤̃ 𝛼2𝛽2(ℑ̃∗ℑ̃)2 ≤̃ 𝛽2ℑ̃∗2

ℑ̃2  

since 𝛼𝛽 = 1, then we have 

 𝛼2ℑ̃∗2
ℑ̃2 ≤̃ (ℑ̃∗ℑ̃)2 ≤̃ 𝛽2ℑ̃∗2

ℑ̃2 

 

Theorem 2.8 If ℑ̃ ∈ ̃𝐹𝑆(𝛼, 𝛽) − 𝑐𝑙𝑎𝑠𝑠(𝑄) , and 𝐹̃ is FS-self adjoint operator, if 𝐹̃ℑ̃ is commuting isometry, 

then 𝛼||h̃||2 ≤̃||𝐹̃ℑ̃||2 ≤̃ 𝛽 ||h̃||2 , for all h̃ ∈̃ ℋ̃ 

 

Proof:  

By definition of  FS(α, β) − class(Q) operator , we have that 

 α||F̃ℑ̃h||2 ≤̃||F̃∗ ℑ̃h̃
∗ ||2 ≤̃ β ||F̃ℑ̃h̃||2 

α||h̃||2 ≤̃||(ℑ̃F̃)h̃
∗ ||2 ≤̃ β ||h̃||2  

 α||h̃||2 ≤̃||ℑ̃F̃||2 ≤̃ β ||h̃||2 

 α||h̃||2 ≤̃||F̃ℑ̃||2 ≤̃ β ||h̃||2 

 

Theorem 2.9  let  ℑ̃ ∈ ̃FS(α, β) − class(Q) operator, and 𝒬̃ is FS- Unitarily operator, such that ℑ̃𝒬̃ =̃  𝒬̃ℑ̃ ,  

then ℑ̃𝒬̃ is also FS(α, β) − class(Q) 

 

Proof:   

α2(ℑ̃𝒬̃)∗2
(ℑ̃𝒬̃)2 ≤̃ (ℑ̃∗𝒬̃∗ℑ̃𝒬̃)2 ≤̃ β2(ℑ̃𝒬̃)∗2

(ℑ̃𝒬̃)2  

α2ℑ̃∗2
𝒬̃∗2

ℑ̃2𝒬̃2 ≤̃ ℑ̃∗𝒬̃∗ℑ̃∗𝒬̃∗ℑ̃𝒬̃ℑ̃𝒬̃ ≤̃ β2ℑ̃∗2
𝒬̃∗2

ℑ̃2𝒬̃2 ,this implies that 

 α2ℑ̃∗2
𝒬̃∗2

𝒬̃2ℑ̃2 ≤̃ ℑ̃∗ℑ̃𝒬̃∗𝒬̃ℑ̃∗ℑ̃𝒬̃∗𝒬̃ ≤̃ β2ℑ̃∗2
𝒬̃∗2

𝒬̃2ℑ̃2 

α2ℑ̃∗2
ℑ̃2 ≤̃ ℑ̃∗ℑ̃ℑ̃∗ℑ̃ ≤̃ β2ℑ̃∗2

ℑ̃2, also we obtain  

 α2ℑ̃∗2
ℑ̃2 ≤̃ (ℑ̃∗ℑ̃)2 ≤̃ β2ℑ̃∗2

ℑ̃2 

Hence,  ℑ̃𝒬̃ is   𝐹𝑆(𝛼, 𝛽) − 𝑐𝑙𝑎𝑠𝑠(𝑄). 

 

       Now, we'll discuss the relationship between FS(𝛼, 𝛽)-normal operator and 𝐹𝑆(𝛼, 𝛽) − 𝑐𝑙𝑎𝑠𝑠(𝑄). 

 

Theorem 2.10 For  ℑ̃ ∈ ̃ℬ( ℋ̃) then every 𝐹𝑆(𝛼, 𝛽)-normal operator is 𝐹𝑆(𝛼, 𝛽) − 𝑐𝑙𝑎𝑠𝑠(𝑄). 

 

Proof. 

 Let ℑ̃ 𝑏𝑒 𝑎 𝐹𝑆(𝛼, 𝛽)-normal, then 

𝛽2ℑ̃∗ℑ̃ ≥̃ ℑ̃ℑ̃∗ ≥̃ 𝛼2ℑ̃∗ℑ̃   …(1)        

The two sides of inequality (1 ) before and after multiplication 

𝛽2ℑ̃∗ℑ̃∗ℑ̃ℑ̃ ≥̃ ℑ̃∗ℑ̃ℑ̃∗ℑ̃ ≥̃ 𝛼2ℑ̃∗ℑ̃∗ℑ̃ℑ̃, and thus  

𝛽2ℑ̃∗2
ℑ̃2 ≥̃ (ℑ̃∗ℑ̃)2 ≥̃ 𝛼2ℑ̃∗2

ℑ̃2. 
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Proposition 2.11 If ℑ̃ is 𝐹𝑆(𝛼, 𝛽) − 𝑐𝑙𝑎𝑠𝑠(𝑄) operator, then ℑ̃ is Class (Q), if 𝛼, 𝛽 = 1. 

 

The next two theorems explain more characteristics of the FS(𝛼, 𝛽) − 𝑐𝑙𝑎𝑠𝑠(𝑄) operator. 

 

Theorem 2.12 If  ℑ̃ and 𝐹̃ are commuting two FS(𝛼, 𝛽) − 𝑐𝑙𝑎𝑠𝑠(𝑄) operators, with ℑ̃∗𝐹̃ = 𝐹̃∗ℑ̃ , 

 then ℑ̃𝐹̃ is FS(𝛼, 𝛽) − 𝑐𝑙𝑎𝑠𝑠(𝑄) operator 

 

Proof : 

𝛼2(ℑ̃𝐹̃)
∗2

(ℑ̃𝐹̃ )
2

=̃ 𝛼2(𝐹̃∗2
ℑ̃∗2

ℑ̃2𝐹̃2) ≤̃ 𝐹̃∗2
ℑ̃∗2

ℑ̃2𝐹2 

≤̃  (ℑ̃𝐹̃ )
∗2

(ℑ̃𝐹̃ )
2

≤̃ ((ℑ̃𝐹̃ )
∗
(ℑ̃𝐹̃))2  

and , ((ℑ̃𝐹̃ )
∗
(ℑ̃𝐹̃))2 =  𝐹̃∗2

ℑ̃∗2
ℑ̃2𝐹̃2 ≤̃  𝛽2(𝐹̃∗2

ℑ̃∗2
ℑ̃2𝐹̃2)  ≤̃  𝛽2(ℑ̃𝐹̃  )

∗2

(ℑ̃𝐹̃  )
2

  

Then we have,  𝛼2(ℑ̃𝐹̃ )
∗2

(ℑ̃𝐹̃ )
2

≤̃ ((ℑ̃𝐹̃ )
∗
(ℑ̃𝐹̃))2 ≤̃  𝛽2(ℑ̃𝐹̃  )

∗2

(ℑ̃𝐹̃  )
2
 

Hence, ℑ̃𝐹̃ is FS(𝛼, 𝛽) − 𝑐𝑙𝑎𝑠𝑠(𝑄) operator. 

 

Theorem 2.13 If ℑ̃ and Α̃   are commuting two FS(𝛼, 𝛽) − 𝑐𝑙𝑎𝑠𝑠(𝑄) operators, if ℑ̃Τ̃ =̃ Τ̃ℑ̃ =̃  ℑ̃∗ Τ̃∗ =̃  Τ̃∗ ℑ̃∗ =̃ 0,  

then ℑ̃ + Τ̃  is  also FS(𝛼, 𝛽) − 𝑐𝑙𝑎𝑠𝑠(𝑄) operator.  

 

Proof : 

𝛼2(ℑ̃ + Τ̃ )
∗2

 (ℑ̃ + Τ̃ )
2

=̃ 𝛼2 (ℑ̃ + Τ̃)
∗
(ℑ̃ + Τ̃)

∗
(ℑ̃ + Τ̃)(ℑ̃ + Τ̃)is equal to 

=̃ 𝛼2( ℑ̃∗ + Τ̃∗)(ℑ̃∗ + Τ̃∗)(ℑ̃ + Τ̃)(ℑ̃ + Τ̃),through multiplication, we obtain at 

=̃ 𝛼2[( ℑ̃∗ ℑ̃∗ +  ℑ̃∗ Τ̃∗ +  Τ̃∗ ℑ̃∗ + Τ̃∗ Τ̃∗)(ℑ̃ℑ̃ + ℑ̃Τ̃ + Τ̃ℑ̃ + Τ̃Τ̃)]  

=̃ 𝛼2(ℑ̃∗2
(ℑ̃2 + Τ̃2) + Τ̃∗2

(ℑ̃2 + Τ̃2), which implies that  

 =̃ 𝛼2(ℑ̃∗2
+ Τ̃∗2

)(ℑ̃2 + Τ̃2) 

 ≤̃  (ℑ̃∗2
+ Τ̃∗2

)(ℑ̃2 + Τ̃2)   

≤̃ ((ℑ̃ + Τ̃ )
∗
(ℑ̃ + Τ̃ ))2               … (1) 

And thus  ((ℑ̃ + Τ̃ )
∗
(ℑ̃ + Τ̃ ))2 =̃  (ℑ̃ + Τ̃ )

∗2

 (ℑ̃ + Τ̃ )
2
 

≤̃  𝛽2(ℑ̃ + Τ̃ )
∗2

 (ℑ̃ + Τ̃ )
2

           … (2)  

And thus  

 𝛼2(ℑ̃ + Τ̃ )
∗2

 (ℑ̃ + Τ̃)
2

≤̃ ((ℑ̃ + Τ̃ )
∗
(ℑ̃ + Τ̃ ))2 ≤̃  𝛽2(ℑ̃ + Τ̃ )

∗2

(ℑ̃ + Τ̃ )
2

  

Hence, ℑ̃ + Τ̃   is FS(𝛼, 𝛽) − 𝑐𝑙𝑎𝑠𝑠(𝑄) operator. 

 

 

CONCLUSIONS 

The most important results of this study include the following: adding fuzzy soft FS(α,β)-class(Q)operators does not 

automatically make them FS(α,β)-class(Q) operators on the other hand, adding certain grantee conditions may make them 

so. Another result is the emergence of several kinds of fuzzy soft operators 
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