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Abstract-The algebraic curve that attracted considerable interest in recent years is 
called Elliptic Curve (EC). This is due to the computational complexity of its 
arithmetic over a finite field. The complexity of its arithmetic operations granted 
EC highly interest for many applications, especially in Cryptography. The scalar 
multiplication plays an important role in the performance of the elliptic curve 
cryptosystem (ECC). This paper focused on optimizing the performance of this 
important operation, which is called elliptic curve scalar multiplication (ECSM). As 
known from previous works, this operation can be sped up using one of the most 
important representations called Mutual Opposite Form (MOF). Based on this 
representation, we proposed an algorithm to improve the performance of ECSM. 
The efficiency of the proposed algorithm is enhanced in terms of computation time 
compared to the existing standard ECSM methods. 
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1. Introduction 
The concept of the elliptic curve cryptography 
ECC was introduced by Victor Millar [1] and Neal 
Koblitz [2] in 1986 and 1987 independently. ECC 
appears strongly compared with other existing 
public key cryptosystems like RSA [3], DSA [4] 
and DH [5], due to its shorter key size and high 
performance. the security level for key of length 
160 bits in ECC is equivalent to RSA security with 
key of length 1024 bits, DSA and DH [6]. These 
advantages make ECC more important to be 
utilized in the limited environments such as; smart 
carts, wireless sensor network, and PDA [7-9]. 
Since introducing ECC by Miller and Koblitz, 
many researchers have devoted their efforts to 
improve its efficiency [10-12]. 
The responsible of the security in ECC is the 
discrete logarithms problem (DLP) which is 
concerned on how to find the integer k for two 
given points 𝑃2 and 𝑃1 on EC, such that 𝑃2 = k𝑃1, 
k is known as a scalar in elliptic curve 
cryptography and represents the secret key. Elliptic 
curve scalar multiplication can be expressed as, 
 
k𝑃1 = (𝑃1 + 𝑃1 + ⋯+ 𝑃1)�������������

𝑘−𝑡𝑖𝑚𝑒𝑠
 

 
which is the dominant operation in EC. It is 
controlled the cost and the time, which motivated 
many researchers to study this problem and 
proposed their methods to speed-up its 
computation. Some known and mostly used 

methods are the binary and the signed binary 
representation as complementary recoding  
 [13-15], NAF [16-19], MOF [20], and DRM [21]. 
Two operations determine the speed of ECSM;  
they are the elliptic curve adding (ECADD) and 
doubling (ECDBL) operations. The number of bits 
and the number of hamming weight for the scalar k 
in the signed binary representation determines the 
number of (ECADD), and (ECDBL). The ECC 
defined over two fields. The first is a prime field 
and the other is a finite field. In this work, the 
proposed method is defined over the prime field. 
The main contribution in this paper focused on 
optimizing the computation time for ECSM based 
on the most using signed binary representation, the 
mutual opposite form (MOF) [20].   
This paper is organized in five more Sections: 
Elementary properties of the elliptic curve with its 
basic operations are discussed in Section 2. Section 
3 presents some well-known proposed methods for 
improving of ECSM algorithm. Section 4 
introduced the proposed algorithm with 
implementation. Some results and complexity 
analysis are explained in section 5, and finally, the 
paper is concluded in section 6. 
 
2. Literature Review 
In 2015, H. Almimi et al. [22] proposed ZOTEC 
method by a method known as ZOTEC based on 
ZOT recording method for speeding of the EC 
process. This method can be applied left to right or 
right to left. They proved that their method is  
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more efficient that NAF, MOF and CR when the 
binary operation is included or excluded .They also 
proved that ,the ZOTEC method is efficient than a 
for mentioned method sin terms of time and space. 
In 2015, N. AL-SAFFAR  [23] accelerated The 
ECSM based on w-nonadjacent form method. She 
reduced the number of operation in ECSM. The 
improvement percentage is about 20% over the 
binary method and 14% over NAF and 7.6% over 
w-NAF.In 2014, A Mohammad et al. [6] optimized 
the ECSM based on MOF method. Their method 
combines the add-subtract al algorithm of the 
scalar multiplication with the MOF method. They 
achieve a 90%speed up in comparing to the 
existing methods. They proved by implementation 
that their method is efficient and produced good 
reduction in the computational time.In 2012, A, 
Rezai and P. Keshavarzi [24] proposed an 
algorithm to convert the integer from the binary 
representation to the complementary canonical 
sliding window (CCS) representation by using the 
complementary method. The canonical recoding 
method and the sliding window method 
consecutively. He was proved that the average 
Hamming weight of the CCS representation by 
using Markov chain is  39𝑛

39𝑤+80
 for n-bit integer 

with window width w. His analysis explained that 
the average Hamming weight of the CCS 
representation is reduced compared to other 
representations. Thus, utilizing the CCS 
representation in the scalar multiplication, the 
average number of the point addition/subtraction 
operation is reduced compared to other scalar 
multiplication algorithms considerably.In 2012, S. 
Vorapong and H. Imai [25] proposed an algorithm 
for producing the double-base chain to improve the 
time used for evaluating an elliptic curve scalar 
multiplication. His algorithm is the first to achieve 
the minimum time by using dynamic 
programming. Compared with greedy-type 
algorithm, the experiments show that his algorithm 
reduced the time for evaluation the scalar 
multiplication by 3.88-3.95% with almost the same 
average running time for the method itself. Also, 
they extend their idea, and proposed an algorithm 
to optimize multi-scalar multiplication. By that 
extension, they achieved an improvement for 
computation time of the operation by 3.2-11.3%.In 
2012, N Shylashree and V. Sridhar [26] introduced 
a new method by using Ancient Indian Vedic for 
hastening scalar multiplication in elliptic curve 
cryptography. Their proposed work is six times 
faster than the previous work when applied in point 
doubling using Spartan3 as target device.  
 
3. Preliminaries 

This section presents an overview of the material 
used in this work, for more details and some 
background in cryptography; we refer the reader to 
see [27-29]. 
Definition 3.1: Let F be any field.  Based on 
Weierstras’s equation, the elliptic curve E over  F 
is defined by:  
 
𝑦2+𝑎1xy+𝑎3 y =𝑥3+𝑎2𝑥2 +𝑎4x+𝑎6           (1) 
where, the coefficients 𝑎𝑖 ∈ F and the discriminant 
of E is ∆ ≠0. 
The discriminant ∆ of E given in (1) is defined by; 
∆=- 𝑑2

2 𝑑8  - 8𝑑2
3 - 27 𝑑2

2+9𝑑2𝑑4𝑑6        (2) 
where 
𝑑2 = 𝑎12 + 4 𝑎2 
𝑑4 = 2𝑎4 +  𝑎1 𝑎3 
𝑑6 = 𝑎32 + 4 𝑎6 
𝑑8 = 𝑎12 𝑎8 +4 𝑎2 𝑎6 -  𝑎1𝑎3𝑎4 +𝑎2 𝑎32 - 𝑎42 
Let L be an arbitrary extension of F, the set of all 
points on E is given by: 
E (L) = {(x, y) ∈ L× L: 𝑦2+𝑎1 xy+𝑎3 y - 𝑥3-𝑎2𝑥2 
-𝑎4 x-𝑎6=0} ∪{0∞}. 
where 0∞ is called the point at infinity. 
The expression of the Weierstrass equation given 
in (1) for elliptic curve over the prime field 𝐹𝑝 can 
be simplified as follows: 
𝑑8 = 𝑎12 𝑎8 +4 𝑎2 𝑎6 -  𝑎1𝑎3𝑎4 +𝑎2 𝑎32 - 𝑎42 
Let L be an arbitrary extension of F, the set of all 
points on E is given by: 
E (L) = {(x, y) ∈ L× L: 𝑦2+𝑎1 xy+𝑎3 y - 𝑥3-𝑎2𝑥2 
-𝑎4 x-𝑎6=0} ∪{0∞}. 
where 0∞ is called the point at infinity. The 
expression of the Weierstrass equation given in (1) 
for elliptic curve over the prime field 𝐹𝑝 can be 
simplified as follows: 
 
𝑦2𝑚𝑜𝑑 𝑝 = (𝑥3 + 𝑎𝑥 + 𝑏) 𝑚𝑜𝑑 𝑝                 (3) 
where 𝑎,  𝑏 ∈ R and ∆ = 4𝑎3 + 27𝑏2 ≠ 0 [19]. 

I. Addition of two points over EC algebraically 
If we have two different points 
𝑃1 = �𝑥1,  𝑦1�, and 𝑃2 = (𝑥2,𝑦2) ∈ E(𝐹𝑝), then its 
addition operation defined as 𝑃1 +  𝑃2 =
�𝑥1,  𝑦1�  + (𝑥2,𝑦2) = (𝑥3 ,𝑦3) = 𝑃3 ∈ E(𝐹𝑝) is 
computed as follows: 
 

𝑃1 + 𝑃2 = �𝑂∞  𝑖𝑓 𝑥1 =  𝑥2 𝑦1 =  −𝑦2
(𝑥3,𝑦3)    𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

           (4) 

where   
𝑥3= 𝜆2− 𝑥1− 𝑥2                                               (5) 
𝑦3= λ (𝑥1−𝑥3)−𝑦1                                            (6) 
and λ is the slope of the line L that connecting the 
points  𝑃1 =  �𝑥1,  𝑦1� and 𝑃2 = (𝑥2,𝑦2)  such 
that:            
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λ = [(𝑦2  − 𝑦1) (𝑥2⁄ − 𝑥1)] mod 𝑝                  (7) 
If we have two similar points 𝑃1 = �𝑥1,  𝑦1� ∈
𝐸�𝐹𝑝� and itself, then its addition operation with 
itself is defined as 𝑃1 +  𝑃1 = �𝑥1,  𝑦1�  +
�𝑥1,  𝑦1� = (𝑥3 , 𝑦3) = 2𝑃1 ∈ E(𝐹𝑝). It is computed 
as follows: 
𝑥3 = 𝜆2  -  𝑥1 − 𝑥1                                             (8) 
𝑦3= λ (𝑥1 -𝑥3 ) - 𝑦1                                            (9) 
where       
     𝜆 =  3𝑥1

2+𝑎
2𝑦1 

                                                   (10) 

The inverse of the point 𝑃1 = �𝑥1,  𝑦1� ∈ 𝐸(𝐹𝑝) is 
defined as −𝑃1 = �𝑥1,  −𝑦1� ∈ 𝐸(𝐹𝑝). 
Definition 3.3: The number of non-zero bits in the 
signed binary representation is known as the 
hamming weight of the scalar k denoted by h (k).  
Definition 3.2: A signed binary representation of a 
scalar k with the base b is (𝑘)𝑏 such that 
k=𝑘𝑙−1𝑘𝑙−2 …  𝑘0 with |𝑘𝑖| < b for  𝑖 =0, 1, 2, 
…, 𝑙 − 1 and k=  ∑ 𝑘𝑖𝑙−1

0  𝑏𝑖. 
Definition 3.3: the length of a singed binary 
representation denoted by 𝑙(𝑘)  is the number of 
bits in a signed binary representation. 
 
4. Previous work 
The binary representation length of the scalar k and 
its number of 1’s are controlling the efficiency and 
the cost of the ECSM. There has been extensive 
research toward achieving of an efficient 
representation for k. From literature, some of the 
existing well-known methods are presenting in this 
section.  
 
I.Binary Method:  
The simplest method to represent an integer in (0, 
1) bits is called the binary representation. It is 
defined as (𝑘𝑙−1  𝑘𝑙−2 …  𝑘0 )2 where 𝑘𝑖 ∈ (0, 1), 𝑖 
=0, 1, 2 …, 𝑙 − 1.  Thus any integer can be 
expressed as k = ∑ 𝑘𝑖𝑙−1

0  2𝑖 . Let 𝑃1 be a point on 
an elliptic curve E, then the scalar multiplication 
defined as k𝑃1 = ∑ 𝑘𝑖𝑙−1

0  2𝑖  𝑃1 = 𝑃2, where 𝑃2 is 

another point on EC. The computation of the scalar 
multiplication for binary method is showing in 
Algorithm 1: 
Algorithm 1: ECSM based on Binary Method  
Input: k =(𝑘0,    𝑘1 , … ,  𝑘𝑙−1 )2, 𝑃1 ∈ 𝐸(𝐹𝑝)  
𝑂𝑢𝑡𝑝𝑢𝑡:𝑃2 = 𝑘𝑃1  
1.𝑃2 = 𝑃1 
2. for 𝑖 = 𝑙 −  1 down to 0 do 
         2.1. 𝑃2 = 2𝑃1  
         2.2. 𝐼𝑓 𝑘𝑖 = 1 𝑡ℎ𝑒𝑛 𝑃2 =  𝑃2 + 𝑃1 
 3. Return 𝑃2.  
The bits of k can be scans either from left to right 
or right to left in this method. The number of 
operations for execution this Algorithm is 
determined the running time. The elliptic curve 
adding (ECADD) and doubling (ECDBL) 
operations are performed if 𝑘𝑖 = 1, otherwise, only 
elliptic curve doubling (ECDBL) operation is 
performed. The average of getting the number of 
ones in the binary expansion of the scalar k is 
𝑙 −  1.    
 

I. II.Mutual Opposite Form (MOF)  
In 2004, Mutual opposite form (MOF) proposed by 
Okeya et al. [20], is introduced to reduce the 
hamming weight by converting the scalar to signed 
binary representation. The integer with length 𝑙 of 
the binary representation by MOF is at most of the 
length (𝑙 + 1) and has a unique representation. 
MOF satisfies the following properties: 

a- 1.The signs are different for every two adjacent 
non zero bits  

b- 2.The values 1and -1 are the first and the last non-
zero bit in MOF representation, respectively. 

c- 3.Every positive integer can be expressed by a 
unique MOF.  

d- 4.Sliding window method with width w can be 
executed in MOF, but in other methods such as 
binary complementary, it cannot be executed with 
the sliding. 

 
To represent the integer k in MOF we follow

2k = 𝑘𝑙−1 𝑘𝑙−2 … 𝑘𝑟−1 … 𝑘1 𝑘0  
ϴk =  𝑘𝑙−1 … 𝑘𝑟 … 𝑘2 𝑘1 𝑘0 
MOF(k) 𝑘𝑙−1 𝑘𝑙−2 -𝑘𝑙−1 … 𝑘𝑟−1 - 𝑘𝑟 … 𝑘1 -𝑘2 𝑘0 -𝑘1 -𝑘0 

 
where ϴ refers to bitwise subtraction.This 
calculation can be computed in two directions; left  
 
 

 
to right (L2R) or right to left (R2L), as presented in 
Algorithm 2 and 3 respectively.  
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The L2R MOF representation is presented in 
Algorithm 2: 
Algorithm2: (L2R)  MOF representation of a scalar k 
Input: 𝑘 = (𝑘𝑙−1 …𝑘1𝑘0)2 
Output: k = �𝑑𝑙 𝑑𝑙−1 …𝑑1𝑑0�𝑀𝑂𝐹(𝑘)

 
              Set 𝑑𝑙=𝑘𝑙−1 
            For 𝑖 =  𝑙 − 1 down to 1 do 
              𝑑𝑖=𝑘𝑖−1 - 𝑘𝑖  
              𝑑0= -𝑘0 
              Return�𝑑𝑙 𝑑𝑙−1 …𝑑1𝑑0�𝑀𝑂𝐹(𝑘)

 

Example1: Let k=7, Table 1, present the steps for 
converting the scalar k into L2R MOF 
representation. 

 
Table 1: Binary Representation for k=7 

The second MOF representation (R2L) is presented 
in Algorithm 3.   
 

Algorithm3: (R2L)  MOF representation of k 
Input: 𝑘 = (𝑘𝑙−1 …𝑘1𝑘0)2 
Output: k = �𝑑𝑙 𝑑𝑙−1 …𝑑1𝑑0�𝑀𝑂𝐹(𝑘)

 
              Set 𝑑0= -𝑘0 
            For 𝑖 =  1 down to 𝑙 − 1   do 
              𝑑𝑖=𝑘𝑖−1 - 𝑘𝑖  
              𝑑𝑙=𝑘𝑙−1 
              Return�𝑑𝑙 𝑑𝑙−1 …𝑑1𝑑0�𝑀𝑂𝐹(𝑘)

. 

 
III.Elliptic Curve Scalar Multiplication (ECSM)  
Let P be a point on the elliptic curve E, the number 
of adding of a point P with itself k time is known 
as elliptic curve scalar multiplication. If we have 
MOF representation, then ECSM based on MOF 
can be calculated in Algorithm 4. 
 

Algorithm 4: L2R MOF to find ECSM  
Input: k = �𝑑𝑙 𝑑𝑙−1 …𝑑1𝑑0�𝑀𝑂𝐹(𝑘)

,𝑃1 ∈ 𝐸(𝐹𝑝)  

𝑂𝑢𝑡𝑝𝑢𝑡:𝑃2 = 𝑘𝑃1  
𝑃2=0 
for 𝑖 = 𝑙 −  1 down to 0 do 
𝑃2 = 2𝑃1 
if 𝑑𝑖 = 1 then 𝑃2 =  𝑃2 + 𝑃1  
   if  𝑑𝑖 = −1 then 𝑃2 =  𝑃2 − 𝑃1 
 Return 𝑃2.  

 
 
 
 

 
 

Table 2: ECSM by Aalgorithm 4 
i MOF(7) ECSM Operations 
3 1 2P Initialization 
2 0 2(2P) ECADD 
1 0 2(2(2P)) ECADD 
0 -1 2(2(2P))-P ECSUB 

5.  
6. 5.The Proposed Algorithm 

The proposed method combines Algorithm 2 or 3, 
and elliptic curve scalar multiplication, Algorithm 
4 to produce a new elliptic curve scalar 
multiplication faster than those produced by some 
existing algorithms. The proposed algorithm and 
some of the well-known algorithms are carried out 
using MATLAB Ver. 7. The results are obtained 
using hardware with the specifications, CPU Intel 
2.2GHz, Cor. i3 and 2 GB RAM. 
 

I I.Hybridization MOF with ECSM 
First, we propose a new serial multiplication 
algorithm. It used for calculating the elliptic curve 
scalar multiplication based on the binary 
representation. To generate a signed binary 
representation MOF, we use Algorithm 2 or 3, then 
Algorithm 4 is applied to generate the elliptic 
curve scalar multiplication kP, where P is a point 
on EC and k is represented in mutual opposite 
form. To perform this task by the proposed 
algorithm, mutual opposite form is embedded 
implicitly in the elliptic curve scalar multiplication 
algorithm to produce new representation by single 
loop. We calculate the elliptic curve scalar 
multiplication directly when the scalar k is 
converted to the binary representation. Two 
possibilities for the binary scalar, that is either bit 
`0' or bit `1'. Already, we defined that ϴ is a 
bitwise subtraction. Now, the input for this 
algorithm is 𝑙 the bit integer k =(𝑘𝑙−1 … 𝑘1𝑘0)2. 
This representation is extended by adding two 
zeros, one to left 𝑘𝑙=0 and the other to right 𝑘−1=0. 
After that a bitwise-subtraction ϴ between any two 
bits 𝑘𝑖 - 𝑘𝑖−1 is performed, for i =0, 1,…, 𝑙. Elliptic 
curve adding (ECADD) and elliptic curve doubling 
(ECDBL) are performed if the bitwise-subtraction 
𝑘𝑖 - 𝑘𝑖−1 =1, for i =0, 1,…, 𝑙. Furthermore, Elliptic 
curve subtraction (ECSUB) and elliptic curve 
doubling (ECDBL) are performed if the bitwise-
subtraction 𝑘𝑖 - 𝑘𝑖−1 = -1, for i =0, 1,…, 𝑙. This 
Algorithm 5 helps to reduce the processing time 
for this operation. 
 
 
 

Iteration 
value (i) 

Binary 
representation 

MOF(7) 

3  1 
2 1 10 
1 11 100 
0 111 1001� 
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Algorithm 5: Nested ECSM and MOF algorithms 
Input: 𝑘 = (𝑘𝑙−1 … 𝑘1𝑘0)2 , 𝑃1(x, y) ∈ 𝐸(𝐹𝑝)  
Output: 𝑃2= k 𝑃1 
𝑃2=0; 
𝑘−1 =0, 𝑘𝑙 =0; 
For i= 𝑙 − 1 to -1 
If 𝑘𝑖 - 𝑘𝑖+1 = 1 then 𝑃2 = 𝑃2+ 𝑃1 
If  𝑘𝑖 - 𝑘𝑖+1 = -1 then 𝑃2 = 𝑃2- 𝑃1 
𝑃2=2𝑃2 
Return 𝑃2.  

Example 3: Let k = 23= (10111)2 and  𝑃 ∈ 𝐸(𝐹𝑝) 
be a point on EC, Algorithm 5 is implemented for 
this number as presented in Table 3. 
 
6.Algorithm Analysis  
Two processors are used for the proposed method 
one for adding and other for doubling. They are 
used for calculating of ECSM based on the binary 
representation. Based on the decomposition 
principle, the proposed algorithm is work, which 
means, the ECSM is calculated by employing of 
the two processors together. There for it is easy to 
conclude that, there is dependency  between the 
adding and the doubling operations, i.e, the date 
comes from   the doubling operations is used to 
execute the adding operation .Hence, to achieve a 
data independency, the task should be decomposed 
into two  independent subtasks. This can be 
achieved by using of circular buffer for 
transmitting data between processors.The main two 

sections of the proposed algorithm, which are the 
ECDBL and the ECADD should be executed at the 
same time. It is so important to make sure that  
the MOF scalar is not zero. Before executing of the 
ECADD operation, the given point P is read by 
ECDBL processor before performing of the 
doubling operations. The proposed algorithm 
performance is measured. The execution time 
result of implementing ECADD and ECDBL 
operations is given in the second unit, as listed in 
Table 4 and Figure 1.  
  

II I.Computational Complexity of Algorithm 5 
Using hardware is a costly issue, efficient 
algorithms lead to an efficient use of the hardware. 
Studying the cost of solving the interesting 
problems is called computational complexity. It 
has two rescores; the running time, and the 
occupied space. For the proposed algorithm, the 
analysis shows that, by using the nested ECSM as a 
parallel mechanism, the computational complexity 
is reduced compared to some serial traditional. The 
required time for performing the ECSM is 𝑂(𝑛), 
whereas, using the traditional algorithm it was 
𝑂(𝑛) ∗ 𝑂(𝑛) running amount of time. Therefore, 
the proposed algorithm is implemented faster; this 
can be obviously shown in Figure 1. 
 
 
 
 
 
 
 

Table 3: ECSM by algorithm 5 for k=23 
i Binary representation Nested ECSM with MOF Operations 
4 1 2P ECDBL 
3 0 2(2P-P) ECSUB and ECDBL 
2 1 2(2(2P-P)+P) ECADD and ECDBL 
1 1 2(2(2(2P-P)+P)) ECDBL 
0 1 2(2(2(2(2P-P)+P))) ECDBL 
  2(2(2(2(2P-P)+P)))-P ECSUB 

  
Table 4: The Computational Time of Scalar Multiplication 

Length of bits Standard ECSM Nested Algorithm Speed up 
52 0.0258 0.0204 1.26 

128 0.0448 0.0344 1.30 
256 0.0831 0.0338 2.46 
512 0.4132 0.0557 7.42 
630 0.5787 0.0568 10.19 
886 1.2606 0.0717 17.58 

1024 1.6960 0.0775 21.884 
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Figure1. The Computational Time of Scalar Multiplication 

 
 
7.Conclusion 
In ECC, the scalar multiplication is the most 
important operation, while, it is the most expansive 
operation due to the consuming of the time 
implementation. The speed improvement is a 
challenge that many researchers try to reach it. The 
performance of the scaler multiplication is mainly 
based on the representation of the scalar. In our 
work, we design and implement of a new efficient 
algorithm called the nested algorithm, which is 
combined the elliptic curve scalar multiplication 
and a signed binary representation MOF algorithm. 
The running time of the nested algorithm has been 
reduced compared with ECSM based on MOF 
representation according to the results. 
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