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1- Introduction

One of the important methods in statistics is tthet regressing a
binary response variable on a set of explanatomabi@s. Binary response
variable has two values, typically coded O for ¢went did not occur and 1
for the event did occur [12]. For the standarddmeegression model the
familiar coefficient of determinationR?, is a widely used goodness of fit
measure. The term bootstrap which is due to therdfs] is an illusion to
the expression "pulling on self up by one's boatstt meaning doing the
impossible [6]. The bootstrap is a method to depraperties like standard
error, confidence intervals, of the sampling digition of estimators. The
bootstrap resampling consists felements that are drawn randomly from
the n original data points with replacement [7]. Thigppafocus on the
behavior of bootstrapping pseud®®measures. Simulation and real data
results also presented. The contents of this papgrbe divided into eight
sections. In section 2 and 3 we review the binasponse variable model
and pseudo measures, respectively. In sectionidtresluce bootstrapping

pseudo R2. The simulation results, real data results, cciohs and
references are given in sections 5, 6, 7, andspectively.

2- Binary Response Variable Model

Binary response is commonly studies in medical epdiemiologic
research, for instance, the presence or abserecparticular disease, death
during surgery. Models for mutually exclusive byautcomes focus on
the determinates of the probability of the occurrence of one outcome

rather than an alternative outcome that occurs aipnobability of 1-p.
In regression analysis we want to measure how riblegility

p varies across individuals as a function of exparyavariables. Binary

response variable has two values, typically coddédr@he event did not
occur and 1 for the event did occur [12]. The expewalue of a binary
variable is the probability that it takes the value

Let p(y; =1)=mn; andp(y; =0)=1-mn;, then
E(y;j)=0*(1-m)+1*m =p(y; =) =mn ...(1)

With explanatory variabless; 's,

E(Y;| X)) =T5 =p(Yi =1 Xq,Xp e X ) =Bo +B1Xy + o #B X . (2)

L
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Since mis a probability, it must be between 0 and 1. Thedr function
given in (2) is not an adequate statistical mod®testhe equation (2) can
lie outside|0, 1] and dose not represent a probability [3]. Binasponse

models directly describe the response probabhi#g the response variable
takes value 1 is modeled as

E(yi| %) =p(Yi =1 Xq,Xp,000 Xy ) = F(XiB) ..-(3)

A binary response model is referred to as a protadel if F() is the
cumulative normal distribution function. It is cadl logit model ifF([)is
the cumulative logistic distribution function. Tlestimation problem is to
estimate the unknown paramef@rdn practice, the ordinary least squares

predictions of the conditional probability can beeater than one or less
than zero [9]. The probit model is:

1.

. xPB xB 1
E(vilx)=(xip)= | f(dt= | ——e? dt -(4)
and the logit model is

_ exiB
E(Yi‘xi)—l_l_exzﬁ ...(5)

The probit and logit models are typically estimabgdnaximum likelihood
(ML) method. Assuming independence across obsemnstithe likelihood
function is:

L= N py;=0x) 1 ply; =1x) ..(6)
ily, =0 ily, =1

n 1-y,
=nfi-Fw)]  Fw)” (D)

where p(yi=ﬂxi)=F(Wi)=¢(Wi) in the probit model and
eXP

p(y; =JJXi) =F(w;)= ; in the logit model. The corresponding
1+e*P

Log likelihood function is:

L
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logL = Z[y; logF(w;) +(1-y;)log(L-F(w; )] (8)
The first derivative of (8) is
dlogL _ nj  f(w;) _ oy Flwy) -

8 ‘E,[y' Fo T y')F(Wi)]X' 0 -(9)

Solving (9) using an iterative method one can getrhaximum likelihood
estimation off3 [8].

3- PseudoR?Measures

For the standard linear regression model the famdoefficient of

determinationR?, is a widely used goodness of fit measure. Apfiticeof
this measure to binary response variable model aadbgit and probit has
no universal definition. A number of measures canplboposed. Pseudo-

Rzusually have the property that, on specializatmthe linear model, the
coincide with an interpretation of the linear modeR?

[1]. Many different Pseudd®?measures have been proposed in the past
four decades [11].

3-1 McFadden's Pseud®?

McFadden's [13] defines the pseuRd- based on the maximum log
likelihood, it is:

R2y =1- logL (Fullmodel) ..(10)
logL (Nullmodéel)

where the Full model is the model with all variabile the model, whereas
the null model is the model with intercept only.ebhnetically the range of
this coefficient is between 0 and 1.
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3-2 Cragg and Uhler Pseudo- R?

Cragg and Uhler [4] introduced a normal versiothef transformation
of the likelihood ratio, it is defined as:

_| exp(logL (Full mod e))?’'™ —exp(logL (Null mod el))?'"

2
R%cu _ 2/n
1-exp(logL (Nullmodel))

.(11)

3-3 Deviance Pseudo- R?

Mittlbick and Heinzl [14] proposed pseuddR?measure for
generalized linear models based on the concep¢\dldce. This measure,

R?p, is defined as:

R2, =1 D(Fullmodel) 12
D(Nullmodé)

Where D(Full model) is the deviance of the full mbdand D(Null model)
is the deviance of the null model. It cannot becoregative and increases
monotonically with increasing number of explanateayiables.

4- Bootstrap Pseudo- R?

The term bootstrap which is due to the Efron §an illusion to the
expression "pulling on self up by one's bootstrap&aning doing the
impossible [6]. The bootstrap is a method to depraperties like standard
error, confidence intervals, of the sampling dimition of estimators. The
bootstrap resampling consistsofelements that are drawn randomly from
the n original data points with replacement [7].the term of regression
analysis, we have two kind of bootstrapping, reaicapotstrapping and
paired bootstrapping. Consider a sample witmdependent observations
of the response variable and k +1 explanatory variablex. A paired

bootstrap sample is obtained by independently drgwiows with
replacement from the pairg/;(,x;). The bootstrap sample has the same

number of observations, however some observatippgaa several time
and others never. The bootstrap involves drawirlgrge numberB of

bootstrap samples. An individual bootstrap sampl#enoted jb ,XE) [2]

L
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S b
Z RZ( ) pseudo

RZ(boot) pseudo — b=1 B .. (13)
And
bias = R*®™ pseudo — R? pseudo ..(14)

5- Simulation Results

In this section, we examine by simulation the penfance of the
bootstrap procedure based on varies values of dBsample sizes of n of
the three pseudo measures in section 3. Three cds®mulation were
done; the first set the value B§,B,,andp,as 2, 0.5, and 0.5, respectively.
The second case the parameters' values were 2] 1, i@spectively. While
the third case parameter values were 2, 2, andgzctively. The number
of bootstrap sample®, set to be 1000, 10000, and 100000 respectively.
We simulate different sample sizes (10, 25, 50, 48d) from uniform
distribution with (-1,1) as explanatory variablesglasimulate the response
variable according to logit model. Tables 1, 2ai3d 4 show the results.

Table (1): Pseudo-R?when n=10

B=1000 RZM( R2Mm (boot)) R%p (RZD chu( R%cu (boot))
Bo By B (oot
2 05 05 0.1417(0.521) 0.1054(0.505 0.1417(0.571)
1 1 0.045 (0.464) 0.0451(0.417 0.026 (0.4029)
2 2 0.037 (0.181) 0.038 (0.523) 0.0272(0.1761)
B=10000
Bo B B2
2 05 05 0.1417 (0.209) 0.1054(0.185 0.1417 (0.21)
1 1 0.045 (0.426) 0.0451(0.43) 0.0268 (0.39)
2 2 0.037 (0.203) 0.038 (0.193) 0.0272 (0.155)
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B=100000
Bo B B2
2 05 05 0.1417 (0.21) 0.1054(0.181 0.1417 (0.209)
1 1 0.045 (0.425) 0.0451(0.415 0.0268 (0.394)
2 2 0.037 (0.197) 0.038 (0.228) 0.0272 (0.167)
Table (2): Pseudo-R?when n=25
B=1000 R%m(R2m(boot)) | R?% (R’ | RZcu( R%cu(boot))
Bo B B (booy
2 0505 0.664 (0.843) 0.665(0.85) 0.548 (0.794)
1 1 0.822 (0.922) 0.821(0.901) 0.742 (0.903)
2 2 0.253 (0.393) 0.254 (0.464) 0.168 (0.297)
B=10000
Bo B B2
2 0505 0.664 (0.836) 0.665(0.791) 0.548 (0.803)
1 1 0.822 (0.931) 0.821(0.81) 0.742 (0.85)
2 2 0.253 (0.373) 0.254 (0.45) 0.168 (0.301)
B=100000
Bo B B2
2 0505 0.664 (0.838) 0.665(0.82) 0.548 (0.771)
1 1 0.822 (0.925) 0.821(0.85) 0.742 (0.82)
2 2 0.253 (0.351) 0.254 (0.395) 0.168 (0.293)

|
.
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Table (3): Pseudo-R?when n=50

B=1000 RMm ( R?w (boot)) | R?p (R%p R°cu( R%cu (boot))
Bo B B (boo
2 0505 0.0732 (0.14) 0.073(0.141) 0.0489 (0.157)
11 0. 22 (0.258) 0.221(0.263) 0.1316 (0.1677)
2 2 0.592 (0.642) 0.593 (0.641) 0.458 (0.524)
B=10000
Bo B B2
2 0505 0.0732 (0.143) 0.073(0.132) 0.0489 (0.155)
11 0. 22 (0.256) 0.221(0.26) 0.1316 (0.162)
2 2 0.592 (0.632) 0.593 (0.634) 0.458 (0.519)
B=100000
Bo B B2
2 0505 0.0732 (0.135) 0.073(0.13) 0.0489 (0.143)
11 0. 22 (0.24) 0.221(0.252) 0.1316 (0.159)
2 2 0.592 (0.613) 0.593 (0.62) 0.458 (0.48)
Table (4): Pseudo-R?when n=10C
B=1000 | R2y (R (boot) | R’ (R’ | R%u(RZcu(boot))
Bo By B2 (oo
2 05 05 0.0129 (0.0425) 0.013(0.045) 0.009 (0.0307)
1 1 0. 15 (0.173) 0.151(0.177) 0.1038 (0.1258)
2 2 0.375 (0.397) 0.3751 (0.39) 0.248 (0.27)
B=10000




Bo B B2

2 0505 0.0129 (0.0422) 0.013(0.042) 0.009 (0.0302)
1 1 0. 15 (0.171) 0.151(0.175) 0.1038 (0.1248)
2 2 0.375 (0.389) 0.3751 (0.39) 0.248 (0.255)

B=100000

Bo B B2

2 0505 0.0129 (0.041) 0.013(0.041) 0.009 (0.0299)
1 1 0. 15 (0.17) 0.151(0.171) 0.1038 (0.122)
2 2 0.375 (0.385) 0.3751 (0.38) 0.248 (0.25)

From tables 1,2,3, and 4 we observe that the value of the pseudo R2Mm

, R%p, and R?cube larger than the original pseudo values and we see the
conver gency of the pseudo R2m and R?p values.

6- Real Data Results

We will use a sample of 30 person from Ibn-Alathkespital. The
response variable be binary with ( 1 if the pergbagnostic to has
Thalassemia and 0 if not). Nine variables have bstried as an
explanatory variables, they are, sex ( 1 for maid @ for female), age,
body mass index, HB, PCV, ferritin, IL-6, TNF, andc acid. The results
shown in table 5.
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Table (5): Pseudo-R? for thereal data.

R2v (R?v (boot))] R?% (R | RZ%cu( R%cu(boot))

(boot)
B=1000 0.584 (0.578) 0.582 (0.614) 0.448 (0. 581)
B=10000 0.584 (0.611) 0.582 (0.572p) 0.448 (0.484

B=100000 | 0.584 (0.602) | 0.582 (0.5718) 0.448 (0.450)

7- Conclusions

1- In this paper, we have shown from table (1) wtlensample size is 10
and for all values of B, the values of bootstrappsedudo measures greatly
difference from the original values of the pseudmasures, that is the bias
Is so large. This bias gradually be small whensdmaple size change from
25 to 50 and to 100.

2- From tables (1-5) we conclude and suggest teeiiker Rm or R%p,
since they have convergence in there values.

3- We recommended that the bootstrap procedures beayot good to
verify the asymptotic normal theory since we widitgconstant bootstrap
samples contain only 1 or 0. But asymptoticallynofmal theory be met
when the sample size is more than 50, the resuitéhé real data in table
(5) support our conclusion.
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