Piecewise Polynomial And Spline Approximation

Malik S. Al-Muhja

University of Al-Muthana, College of Sciences, Department of Mathematics and Computer Application

Abstract

Let $s \in C^{r-1}[-1,1]$ be a spline of order k, on the interval [-1,1], and v = 1,2,3. We estimate the degree of spline approximation of s by peceiwise polynomial of degree $\leq n$. In our second result of this paper we show that inverse theorem interims of higher moduli of smoothness. **Key words :** spline approximation , moduli of smoothness , algebraic polynomial approximation .

الخلاصة

لتكن
$$S$$
 متعددة حدود ريشية من الدرجة k تمتلك $(v-1)$ من المشتقات المستمرة على الفترة $[-1,1]_{e}$ و 1,2,3 .
في هذا البحث سنجد درجة التقريب لمتعددة الحدود الريشية باستخدام متعددات الحدود المتقطعة من الدرجة n في النتيجة الثانية لهذا
البحث حصلنا على المتراجحة العكسية بدلالة أعلى مقياس نعومة.

1. Introduction

Kopotun (2003), introduced a paper on k-monotone polynomial and spline approximation in L_p , 0 quasi norm. Al-Muhja (2009), discussed the errors of approximation of <math>k-monotone function by k-monotone interpolation. It turns out that any two k-monotone functions f and g, whose graphs intersect each other at certain (sufficiently many) points in [a,b], have to be "close" to each other in the sense that $||f - g||_p$, has to be small.

Let $S_r(z_n)$ be the space of all piecewise polynomial function of degree r (order r+1) with the knots a partition $z_n = (z_i)_{i=0}^n$, $-1 = z_0 < z_1 < ... < z_{n-1} < z_n = 1$ of the interval [-1,1]. In other words $s \in S_r(z_n)$ if , on each interval (z_i, z_{i+1}) , $0 \le i \le n-1$, s is in Π_r , where Π_r denotes the space of algebraic polynomials of degree $\le r$.

As usual, $L_p(J)$, 0 , denotes the space of all measurable functions <math>f on J,

such that $\|f\|_{L_{p}(J)} < \infty$, where $\|f\|_{L_{p}(J)} = \left(\int_{J} |f(x)|^{p} dx \right)^{\frac{1}{p}}$ if $p < \infty$, and $\|f\|_{L_{\infty}(J)} = \sup_{x \in J} |f(x)|$. We also denote $\|f\|_{p} \coloneqq \|f\|_{L_{p}[-1,1]}$. For k = 1,2,3,..., let $\Delta_{h}^{k}(f,x,J) = \begin{cases} \sum_{i=0}^{k} \binom{k}{i} (-1)^{k-i} f(x-kh/2+ih), & \text{if } x \pm kh/2 \in J, \\ 0, & o.w, \end{cases}$

be the *k* th symmetric difference, and $\Delta_h^k(f, x) = \Delta_h^k(f, x, [-1,1])$. The *k* th modulus of smoothness of a function $f \in L_p(J)$ is defined by

$$\omega_k(f,J)_p = \omega_k(f,|J|,J)_p$$
, and $\omega_k(f,t)_p = \omega_k(f,t,[-1,1])_p$.

The Ditzian-Totik modulus of smoothness which is defined for such an f, as

follows
$$\omega_{k,\nu}^{\phi}(f,t)_{P} = \sup_{0 < h \le \delta} \left\| \phi(\cdot)^{\nu} \Delta_{h\phi(\cdot)}^{k}(f,\cdot) \right\|_{P}, \text{ where } \phi(x) = (1-x^{2})^{\frac{1}{2}}$$

Also, note that $\omega_{0,v}^{v}(f,t)_{p} = \| \phi^{v} f \|_{p}$. One of recent results on spline of approximation due to Zhou (2001), who proved the following theorem.

1.1 Theorem A.

Let $P_n \in \Pi_n[-1,1]$, $n \ge k \ge 1$. Then for any $t \in [0, n^{-2}]$ $\omega_r(P_n, t) \approx t \omega_{r-1}(P'_n, t) \approx \dots \approx t^r ||P_n^{(r)}||$, $0 \le t \le n^{-2}$, with the equivalence constant depending only on r.

Recently , Y. Hu. And Y. Liu (2005), showed that theorem A can be considerably improved . Their result is stated as follows .

1.2Theorem B.

Let
$$r \ge 1$$
, $n \ge 1$, $0 \le t \le n^{-1}$ and $0 . then for any $P_n \in \Pi_n$
 $\omega_r^{\phi}(P_n, t)_p \approx t \omega_{r-1}^{\phi}(P'_n, t)_{\phi, p} \approx t^2 \omega_{r-2}^{\phi}(P''_n, t)_{\phi^2, p} \approx \dots \approx t^r \left\|P_n^{(r)}\right\|_{\phi^r, p}$

$$(1.1)$$$

with the equivalence constants depending only on r and q.

2. The Main Result.

Using theorems A, B for equivalence of moduli of smoothness in the L_p spaces, 0 , we shall prove the following theorems :

2.1Theorem I.

Let $n \in N$, $k \ge 1$, s be a spline of order k (i.e., $s \in S_k(I)$), and v = 1,2,3. If $s^{(v-1)}$ is continuous, then for any 0 ,

$$\left\| \boldsymbol{\phi}^{\boldsymbol{\nu}} \boldsymbol{s}^{(\boldsymbol{\nu})} \right\|_{p} \leq C(p, n) \omega_{k}^{\boldsymbol{\phi}} \left(\boldsymbol{s}, n^{-1}, \boldsymbol{I} \right)_{p}$$

$$(2.1)$$

The following Lemma is due to Kopotun (2003). It will be used to polynomial approximation of splines .

2.2Lemma C.

Let $r \in N$, $k \ge 1$, 0 , <math>I = (a,b), and $P \in \Pi_r$, and let s be a spline of order k, with at most C(k) pieces in I. Then $\|P - s\|_p \ge C_{p,r,k}\omega_k(P)_p$. **2.3Theorem II.** Let $k \in N$ be a spline of order k (i.e., $s \in S_k(I)$), and I = [-1,1] with $c_o \ge S$, for

Let $k \in N$ be a spline of order k (i.e., $s \in S_k(I)$), and I = [-1,1] with $c_o \ge S$, for some constant c_o . If s is continuous on I, then for any 0 , $<math>\omega_{k+1}(s, n^{-1}, I)_p \le C_{k,p} E_n(s')_p$.

To prove theorem I, we need the following result :

مجلة جامعة بابل / العلوم الصرفة والتطبيقية / العدد (٣) / المجلد (١٩) : ٢٠١١

2.4Lemma D. [Liu 2005]

Let $\mu, \xi \in N$ be such that $\mu \ge 7\xi$, and $1 \le t \le n-1$ be a fixed. Then there exists a polynomial T_t of degree $\le 4\mu n$, such that the following inequalities hold for $x \in I$

$$|T_t^{(k)}(x)| \le c(\mu) \psi_t^{\mu}(x) h_t^{-k}, \ 1 \le k \le \xi$$

PROOF OF THEOREM I :

 $P_{n}(x) = \begin{cases} |Q_{n} - \sigma_{i}|\vec{S}(x) + \sigma_{i}(x); x \in I \\ Q_{n} ; o.w. & \text{is piecewise polynomial of degree} \leq n \text{ (see} \\ \text{Al-Muhja 2009), and we need the spline } s(x) = Q_{n} - \sigma_{i}(x) \in S_{k}(I) \cap C^{(\nu-1)}(I), \text{ so} \\ \left\| \phi^{\nu} s^{(\nu)} \right\|_{p} = \left\| \phi^{\nu} (Q_{n} - \sigma_{i})^{(\nu)} \right\|_{p} \leq \left\| \phi^{\nu} (Q_{n} - \sigma_{i} | \vec{S}(x) - \sigma_{i})^{(\nu)} \right\|_{p} \\ \leq C n^{\nu} |I|^{\nu} \sum_{\nu=0}^{3} \left\| Q_{n}^{(\nu)} - \sigma_{i}^{(\nu)} \right\|_{\infty} \left\| \vec{S}^{(3-\nu)}(x) - \sigma_{i}^{(\nu)} \right\|_{\infty} \\ \downarrow q = 0 \end{cases}$

not true $\breve{S}^{(v)}$ we write , we make use of Markov's inequality

$$\begin{aligned} \left\| \phi^{v} s^{(v)} \right\|_{p} &\leq C(p, v, n) n^{v} \left| I \right|^{v-k-1} \sum_{\nu=0}^{3} \left\| Q_{n} - \sigma_{i} \right\|_{p} \left\| \widetilde{S}(x) - \sigma_{i}(x) \right\|_{p} \\ &\leq C(p, v, n) n^{3} \left| I \right|^{3-k-1} \left\| Q_{n} - \sigma_{i} \right\|_{p} \leq C_{p, v, n} \left\| s \right\|_{p}, \end{aligned}$$

we choose a constant K to be sufficiently large, such that $\left\|\phi^{v}s^{(v)}\right\|_{p} \leq K\left\|\Delta_{h,\phi(\cdot)}^{k}(s,\cdot)\right\|_{p} \leq C \sup_{0 < h \le n^{-1}}\left\|\Delta_{h,\phi(\cdot)}^{k}(s,\cdot)\right\|_{p} = C \omega_{k}^{\phi}(s,n^{-1},[-1,1])_{p}$

The Remez inequality (1936) is given in the following theorem . 2.5 Theorem E.

For any $P_n \in \Pi_n$, any measurable $A \in [-1,1]$, with a Lebesgue measure $2 - a n^{-2}$ for some $0 \le a \le \frac{n^2}{2}$, and 0 , we have $<math>\|P_n\|_p \le C \|P_n\|_{L_p(A)}$ (2.2)

Remark : If $A \subseteq [-1,1]$, with a Lebesgue measure . Note that , using possible theorem I, to satisfying norm $\|\cdot\|_{L_p(A)}$.

PROOF OF THEOREM II :

Let $k \in N$, $x \in I$, and $0 < h \le |I|$ be such that $x \pm \frac{(k+1)h}{2} \in I$, and suppose that q_n peceiwise polynomial which was described in proof theorem I, such that $q(\xi) = s(\xi)$, for some $\xi \in I$.

Then, for any $x \in I$, we have $\omega_{k+1}(s, I)_p = \sup_{0 < h \le \delta} \left\| \Delta_h^{k+1}(s, \cdot, I) \right\|_p \le 2^{k+1} \left\| \Delta_h^{k+1}(s, \cdot, I) \right\|_p$

$$\leq \left\|\Delta_{h}^{k+1}(s-q_{n},\cdot,I)\right\|_{p} \leq 2^{k+1}|I| \left(\int_{\xi}^{x} |(s'(u)-q_{n}'(u))|^{p} du\right)^{\frac{1}{p}}$$

$$\leq c(k,p)|I| \left\|s'-q_{n}'\right\|_{p}$$

References

- Al-Muhja, Malik S. (2009), On k-Monotone Approximation in L_p Spaces, M. Sc. Thesis, University of Kufa.
- Kopotun , K. A. (2003) , On k -Monotone Approximation by Free knot Splines , Society for Industrial and Applied Mathematics .
- Kopotun , K. A. (1996) , Simultaneous Approximation by Algebraic Polynomials , Constr. Approx. , Vol., 12, pp.67-94 .
- Liu, Y. Hu and Yo. (2005) , On Equivalence of Moduli of Smoothness of Polynomials in L_p , 0 , J. Approx. Theory , Vol., 136, pp.182-197 .
- Remez, E. J. (1936), Surune Propriete Des Polynomes de Tchebycheff, Comm. Inst. Sci. Kharkov, Vol.,13, pp.93-95.
- Zhou, S. P. (2001), Some Remarks on Equivalence of Moduli of Smoothness, J. Approx. Theory, Vol.113, pp.165-171.