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Article History: 
 The anomalous diffusion is characterized by deviation from Gaussian 

statistics and the absence of a linear time dependency in the mean square 

displacement. This study investigates anomalous diffusion processes that 

exhibit a power-law growth in mean square displacement as time 

progresses. 

The first stage is to create the model using random methods, that is, by 

using random walks. The following statement describes a continuous-time 

random walk model represented by a series of convolution-type integral 

equations depicting probability density functions. Fractional differential 

equations for time and space are derived from the master equations by 

choosing probability density functions with infinite first and/or second 

moments. 

The obtained model equations are analyzed with respect to elementary 

boundary value problems in constrained fields. The main focus is on 

studying elementary boundary value problems related to the generalized 

fractional time diffusion equation, especially using the fractional Caputo 

derivative. 

This equation applies a well-established maximum principle to stochastic 

partial differential equations of the elliptic and parabolic type (SPDEs). 

This concept is used to make preliminary estimates of the answer before 

using it to prove the uniqueness of the solution. To prove the existence of 

a solution, a clearly defined generalized solution is first generated using 

the spectroscopic method. Under certain additional circumstances, a 

comprehensive solution may be considered a solution in the traditional 

sense. 
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Introduction  
    Anomalous transport processes provide a natural means of describing the structural and dynamic 

features of complex systems, which are characterized by a wide range of elementary particles 

participating in the transport processes. This thesis will mostly examine anomalous diffusion 

processes[1]. We define anomalous diffusion processes as those processes that no longer follow 

Gaussian statistics for long periods of time. In particular[2], a deviation from the linear time 
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dependence of the mean squared displacement (MSD) of the particle participating in the anomalous 

diffusion process can be observed, i.e. the relationship.  

  
 ̅̅̅̅      (1) 

It is important to observe that the relationship (1) can be understood as the primary 

characteristic of (gBm)[10], and furthermore, it is a direct consequence of the central limit theorem 

and the Markovian property of the underlying random process. Contrary to (1), the anomalous 

diffusion exhibits a non-linear increase in the mean square displacement (MSD) as time 

progresses[3], as depicted by the following relationship. 

  
 ̅̅̅̅     

  (2) 

The equation suggests that the mean squared displacement does not follow a linear time 

dependence, as is typically observed in normal diffusion processes that follow Gaussian statistics. 

instead, in anomalous diffusion processes, the mean squared displacement exhibits a power-law 

growth, indicating a deviation from the expected behavior. This equation is derived from a 

stochastic formulation of the model using random walk processes and is based on the analysis of 

probability density functions. Understanding the behavior of the mean squared displacement in 

anomalous diffusion processes is important for characterizing and modeling these processes 

accurately. For cases of anomalous diffusion, the central limit theorem is invalidated and must be 

substituted by the generalized Levy-Gnedeuko central limit theory.The relationship (2) 

distinguishes states for the anomalous diffusion. Following [1-15] 

 Sub diffusion (      ) 
 Normal diffusion (    ) 
 Super diffusion (       ) 
We investigate the generalized fractional time diffusion equation and its significant variations, 

namely the polynomial equation and the distributed order equation. The time fractional diffusion 

equation is mathematically equivalent to the continuous time random walk model, specifically the 

mean squared displacement (MSD). Where the interval of time between two consecutive jumps 

varies. However, the magnitude of the variance in jump length remains minimal and directly related 

to    (refer to the provided source). 

A derivative of the distributed order is defined as the average value of fractional derivatives 

inside a specified interval (such as [0; 1]), where each derivative is weighted by a positive weight 

function  ( ). The multi-term time-fractional diffusion equation is a significant and specific 

instance of the time-fractional diffusion equation of dispersed order. In this scenario, the weight 

function is expressed as a finite linear combination of                   with positive weight 

coefficients. 
     

Continuous-time random walk 

      The continuous-time random walk (CTRW) is a stochastic process characterized by jumps and 

used to represent both standard and anomalous diffusion. It is applicable when the time spent at a 

particular location is significantly longer than the time required to go to a new position, meaning 

that leaps can be treated as instantaneous occurrences. Montroll and Weiss[2] introduced the 

Continuous Time Random Walk (CTRW) in the field of physics. Shlesinger [11 ] recently produced 

a review that helped increase the popularity of the CTRW. Theoretical, numerical, and empirical 

investigations on the CTRW have been reviewed by Weiss, Metzler, and Klafter[9]. 

Within the context of the established random walk model for grey Brownian motion, the 

random walker makes jumps at each time step                     , and so on, in a direction 

chosen randomly. This results in the walker covering a distance of   , which represents the lattice 

constant. 

Let  (   )   represent the probability of a random walk from   and        at time t. The primary 

equation. 

 (      )   
 

 
  (      )  

 

 
  (      ) (3) 
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It can be derived for one-dimensional grey-Brownian motion (gBm), the Taylor expansions 

 (      )   (   )      
  

  
  ((  ) ) 

The equation states that the updated value of  (        ) is equal to the current value of 

 (   ) plus the product of the time step Δt and the partial derivative of   with respect to time (
  

  
)  

the equation is commonly used in numerical methods for solving partial differential equations, 

where it is known as the forward Euler method, the equation allows for the estimation of the value 

of   at a later time based on its current value and the rate of change at that point in time. 

 (      )   (   )      
  

  
  

(  ) 

 
 
   

   
  ((  ) ) 

The equation is an approximation that involves the function values at two neighboring 

points,   and       , and their derivatives, the equation is commonly used in numerical methods 

to approximate the behavior of a function  (   ) at neighboring points in space. It provides an 

estimate of the function value at a point        based on the function value and its derivatives at 

the point  . Lead to  

  

  
 
(  ) 

   
 
   

   
      ( 

(  ) 

  
 )   (  ) (4) 

The equation that represents a stochastic partial differential equation (SPDE) for a function 

  with respect to time t and space   and this equation is derived from a stochastic formulation of a 

model for anomalous diffusion processes, the equation captures the behavior of anomalous 

diffusion, which is characterized by deviations from Gaussian statistics and a non-linear time 

dependence of the mean squared displacement the equation is used to model anomalous diffusion 

processes that exhibit a power-law growth of the mean squared displacement over time its derived 

from a stochastic random walk model and is solved in the Fourier-Laplace domain the equation is a 

special case of a time-fractional diffusion equation with the Caputo fractional derivative. 

The equation is important for understanding and analyzing anomalous diffusion processes and can 

be used to study initial-boundary-value problems in bounded domains. 

In the continuum limit      and     , this equation becomes the diffusion equation. 

  

  
   

   

   
 (5) 

provided that the diffusion coefficient 

      
          

(  ) 

   
 

This is a linear diffusion equation. However, if we introduce a non-linear term in the 

diffusion coefficient, such as     (
   

   
) , we get a non-linear diffusion equation: 

  

  
    (

   

   
)

 

 (6) 

 

This equation shows a non-linear dependence of the diffusion coefficient on the second spatial 

derivative. 

In contrast to the random walk model of Brownian motion. Continuous time random walk is 

based on the idea that there is a certain jump length. In addition, the waiting time elapsed between 

two successive jumps is governed by a joint probability density function (pdf), which we will refer 

to as jump pdf. For   (   ), the jump length pdf. 

 ( )   ∫  (   )   
 

 

 (7) 

 

and the waiting time pdf 

 ( )   ∫  (   )   
 

  

 (8) 
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Can be inferred. 

The primary attributes of CTRW procedures are the distinctive waiting time. 

   ∫  ( )    
 

 

 (9) 

 

and the jump length variance 

    ∫  ( )
 

  

     (10) 

 

The distinction between CTRW processes lies on their finite or infinite nature. Typically, the 

following distinct cases are identified[11]]: 

 Both   and    are finite: Brownian motion ( diffusion equation as a deterministic model ) 

   divergent,    is finite: Sub-diffusion ( time-fractional diffusion equation as a 

deterministic model ) 

   is finite,    divergent: Levy flight ( space-fraction equation as a deterministic model ) 

 Both   and    are infinite: Levy flight ( time-space-fraction equation as a deterministic 

model ) 

The CTRW model can be characterized by the primary equation in the form of integral equations of 

the twisted type  [8]. Here, we demonstrate the procedure for constructing these equations. 

Let  (   ) represent the probability density function (pdf) of a particle arriving at place   during 

time  . 

 (   )   ∫    
 

  

 ∫  (      )
 

 

  (         )      ( ) ( ) (11) 

The probability density function, denoted as  (    ), represents the likelihood of being at position   

at time  . 

 (    )   ∫  (    )
 

 

  (     )    (12) 

Where  

 ( )     ∫  (  )   
 

 

 (13) 

     The equation represents a mathematical model for atypical diffusion processes. The function 

 (   ) can be evaluated using the probability density function   and the kernel function  , which 

are essential for analyzing anomalous diffusion models and their solutions. The kernel function is 

employed in formulating the continuous time random walk (CTRW) model within the paper's 

framework [9]. The selection of the kernel function dictates the characteristics of the random walk 

process and therefore influences the attributes of the final diffusion model. Distinct kernel functions 

can result in various forms of anomalous diffusion, such as subdiffusion or superdiffusion, which 

are distinguished by diverse growth patterns of the mean squared displacement as time progresses. 

The characteristics of the kernel function, such as its moments, can also impact the mathematical 

analysis of the resulting model equations, including the determination of whether solutions exist and 

are unique. Hence, the choice of a suitable kernel function is crucial for accurately representing and 

studying anomalous diffusion processes[9,10,11]. The equation enables the examination and 

investigation of anomalous diffusion processes, which do not adhere to Gaussian statistics and 

demonstrate a departure from the linear time dependence of the mean squared displacement. 

Comprehending and resolving this equation can yield valuable knowledge on the behavior and 

characteristics of abnormal diffusion phenomena, which have utility in several domains including 

finance, economic, and biology. 

    Now, we convert these equations into the frequency domain by utilizing the Fourier and Laplace 

transforms. By utilizing the established product property of the Fourier and Laplace transforms, we 

can determine the Fourier-Laplace transform of the jump probability density function  (    ) from 

equations above. 
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 ̃̂(   )   
    ̃( )

 
 

  ̂( )

    ̂̃(   )
 (14) 

where   ̂( ) denotes the Fourier transform of the initial condition   ( ). It is worth to note that a 

purely probabilistic proof of this equation is given in [7 ]. 

let's examine the Continuous Time Random Walk (CTRW), in which the waiting time 

between jumps becomes infinitely large, while the variance of the distance covered in each jump 

remains finite. In order to achieve this objective, a specific probability density function (pdf) with a 

long-tailed waiting time and its asymptotic behavior are considered. 

 ( )     (  ⁄ )                           

The formula states that as   approaches positive infinity, the function  ( ) can be 

approximate by    times (  ⁄ )   , where     .  

Here,    is a constant and   is a parameter. The formula suggests that the behavior of  ( ) 
follows a power-law growth with respect to time. The exponent     in the formula indicates the 

rate of growth, with larger values of   leading to faster growth. Its asymptotics in the Laplace 

domain can be easily determined by the so-called Tauberian theorem and is as follows[8]: 

The Tauberian theorem provides a connection between the asymptotic behavior of a 

function in the time domain and its behavior in the Laplace domain. In the case of the waiting time 

PDF  ( ) given by  ( )     (  ⁄ )    as      we can use the Tauberian theorem to find its 

Laplace domain asymptotics. 

The Laplace transform of a function  ( ) is denoted by  ̃( ) and is defined as: 

 ̃( )   ∫  ( )
 

 

       

Using the given form of  ( )  we can compute its Laplace transform: 

 ̃( )   ∫   (  ⁄ )   
 

 

       

This integral may not have a closed-form solution, but we're interested in its behavior as    , 

where we can approximate        for   in a neighborhood of  . Using this approximation, we 

have: 

 ̃( )     ∫ (  ⁄ )   
 

 

   

Now, we evaluate this integral. We can perform a change of variables to simplify the 

integral: 

∫ (  ⁄ )   
 

 

        ∫   (   )  
 

 

 

The integral on the right-hand side is a well-known integral and converges for      . 

Its value is  (   ) where   is the gamma function. 

Therefore, we have: 

 ̃( )      
    (   ) 

As    , we can use the small argument approximation for the gamma function 

 (   )  
 

   
 , which gives: 

 ̃( )      
   

 

   
 

Finally, we rewrite this expression in a more convenient form: 

 ̃( )    (  )          

This is the Laplace domain asymptotic behavior of the waiting time PDF  ( ) as    . It shows 

that the Laplace transform of  ( ) exhibits a power-law behavior in   with exponent   as      
This can be assumed without any loss of generality. The Laplace transform of the function w can be 

easily determined. 
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 ̃( )   
 

     
 (15) 

 

Together with the Gaussian jump length pdf, the Fourier transform in the form 

 ̂( )                   (16) 
 

By applying Tauber's theorems to Laplace and Fourier transforms, the final equation can be 

transformed into a time fractional partial differential equation for large values of   and      To 

derive the asymptotic expression  ̃̂(   )from the asymptotic expression 

 ̃̂(   )   
    ̃( )

 
 

  ̂( )

    ̂̃(   )
                 (17) 

Applying the partial differentiation operator D t to equation (17) transforms the continuous random 

walk (CTRW) model into an initial value problem for big   and       (   )    ( ). Time 

fractional diffusion equation 

  
      

   

   
 (18) 

 

Practical application 
We gave a specific definition of the anomalous diffusion equation driven by CTRW in Eq. 

(35) and a wide range of random integrals in Eq. (36) in the previous section. These equations can 

be effectively achieved through simulation with respect to stochastic partial differential equations 

driven by CTRWs as described in Section II. 

The marginal distributions of hops and waiting periods are described in Section II. These 

conditions may seem strict, but they can be illustrated by [11,14,15]. A random number can be 

generated from a symmetric stable Lévy probability density using the Laplace transform method 

developed by Chambers et al [10]. And implemented by McCulloch [8]. The results were obtained 

using the R programming language and visualized in a 3D diagram. The simulation involved 

modeling the motion of dust particles at high temperatures using the anomalous dispersion equation. 
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Summary and conclusions 
This brief paper outlines a basic analysis of a stochastic process defined as the product of 

ggBm, an independent random variable, and a power law with respect to time. Various analytical 

and numerical observations are being discussed. 

The key characteristic of the suggested stochastic process is its ability to bridge the gap 

between ggBm and CTRW, producing outcomes consistent with experimental observations of air-

dust motion. 

We view the suggested stochastic technique as a promising model for the complex 

phenomenon of abnormal diffusion . Future research will focus on systematically studying diffusion 

processes in financial sciences. 
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 وتحليله الشار الانتشار نوارج
 م.م نصير ابراهين ناصر  أ.د ههنذ فائز كاظن السعذوني   

Muhannad.alsaadony@qu.edu.iq Nasir.ibrahim@qu.edu.iq 

 لسى الاحصاء، كهٍح الاداسج ٔالالرصاد، جايؼح انمادسٍح، انمادسٍح، انؼشاق

 

 الوستخلص  هعلىهات البحث

 تىاريخ البحث:

 
 فً انخطٍح انضيٍُح انرثؼٍح ٔغٍاب انغٕسٍح الإحصائٍاخ ػٍ تالاَحشاف انشار الاَرشاس ٌرًٍض 

ا ذظٓش انرً انشارج الاَرشاس ػًهٍاخ فً انذساسح ْزِ ذثحث. انًشتؼح الإصاحح يرٕسط ًٕ  فً ًَ

 .انٕلد ذمذو يغ انًشتؼح الإصاحح يرٕسط فً انمٕج لإٌَ

 يساساخ تاسرخذاو أي انؼشٕائٍح، انطشق تاسرخذاو انًُٕرج إَشاء ًْ الأٔنى انًشحهح          

 يٍ سهسهح ًٌثهّ انزي انًسرًش انٕلد فً انؼشٕائً انًشً ًَٕرج انرانً انثٍاٌ ٌصف. ػشٕائٍح

 اشرماق ٌرى. الاحرًانٍح انكثافح ٔظائف ذصٕس انرً انًهرٕي انُٕع يٍ انركايهٍح انًؼادلاخ

 دٔال اخرٍاس طشٌك ػٍ انشئٍسٍح انًؼادلاخ يٍ ٔانًكاٌ نهضياٌ انكسشٌح انرفاضهٍح انًؼادلاخ

 .انلآَائٍح انثاٍَح أٔ/ٔ الأٔنى انؼضٔو راخ الاحرًانٍح انكثافح

 انحذٔد لًٍح تًشاكم ٌرؼهك فًٍا ػهٍٓا انحصٕل ذى انرً انًُٕرج يؼادلاخ ذحهٍم ٌرى        

 الأٔنٍح انحذٌح انمًٍح يسائم دساسح ػهى انشئٍسً انرشكٍض ٌُصة. انًمٍذج انًجالاخ فً الأٔنٍح

 .انكسشٌح كاتٕذٕ يشرك تاسرخذاو ٔخاصح انًؼًًح، انكسشٌح انضيٍ اَرشاس تًؼادنح انًرؼهمح

 يٍ انؼشٕائٍح انجضئٍح انرفاضهٍح انًؼادلاخ ػهى انشاسخ الألصى انحذ يثذأ انًؼادنح ْزِ ذطثك

 لثم نلإجاتح أٔنٍح ذمذٌشاخ لإجشاء انًفٕٓو ْزا ٌٔسرخذو(. SPDEs) ٔانًكافئ الإْهٍهجً انُٕع

 تٕضٕح يحذد يؼًى حم إَشاء أٔلاً  ٌرى انحم، ٔجٕد لإثثاخ. انحم ذفشد لإثثاخ اسرخذايٓا

 حلاً  انشايم انحم اػرثاس ًٌكٍ يؼٍُح، إضافٍح ظشٔف ظم ٔفً. انطٍفٍح انطشٌمح تاسرخذاو

 .انرمهٍذي تانًؼُى
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 12/4/2024ذاسٌخ لثٕل انثحث:
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