

 376

Proposed Data Integrity Algorithm
Safaa O. Mahdi

Department of Computer Science, University of Babylon

Abstract
In this paper, we introduce a new algorithm for detecting changes that happen in files. The

proposed algorithm uses an array of sixteen locations that is contains the unique information about file

as proved practically. It can be used for error detection but not correction. It can specify the type of

alteration such as modify, addition or losing.

Terms: Error detection, Integrity.

 الخلاصة
ة في هذا البحث، قمنا باقتراح خوارزمية جديدة لاكتشاف التغييررا التري صح ري فري الم. را و الموارزمير

المقترحررة صخررتمدف م رر وفة ةا رررتة شررر ن ررر لمحت رراد بمن.ومررا محيرردة مررع الم.رر مررا رر ةلرر م.يررا و
تم ررأ م الميررذ الررذف ح رري فرري مهرري صخررتمدف لاكتشرراف اوخيرراص ملرريو ص ررحيحنا مصخررتييا صميرر ررو ال

 الم. الإضافة م الحذف م التحديث، ملنا القدرة .ى اكتشاف الميذ ملو ا بتا ماحدا فقطو
Introduction
 Data can be corrupted during transmission. For reliable communication, errors

must be detected and corrected.

 The concept of including extra information in the transmission solely for the

purposes of comparison is a good one. But instead of repeating the entire data stream,

a shorter group of bits may be appended to the end of each unit. This technique is

called redundancy because the extra bits are redundant to the information; they are

discarded as soon as the accuracy of the transmission has been determined. Error

detection uses the concept of redundancy, which means adding extra bits for detecting

errors at the destination (Forouzan, 1998).

Once the data stream has been generated, it passes through a device that

analyzes it and adds on an appropriately coded redundancy check. The data unit, now

enlarged by several bits, travels over the link to the receiver. The receiver puts the

entire stream through a checking function. If the received bit stream passes the

checking criteria, the data portion of the data unit is accepted and the redundant bits

are discarded (Forouzan, 1998).

While error correction can be handled in two ways. In one, when an error is

discovered, the receiver can have the sender retransmit the entire data unit. In the

other, a receiver can use an error correction code, which automatically corrects certain

errors (Forouzan, 1998).

Proposed Algorithm
In this section, we state our algorithm that is used to detect the errors in files or

check the integrity of the files. The algorithm computes and stores only array (16

values) that is stating the information about the file. But Why The Array Length Is 16?

Because We Take the Length Of Segment From File Four Bits And The Combination

Of Four Bits Is 16 Value.

We assume that the target file is circular by linking the end of file with the

beginning of it, as shown in figure (1). This is because the stop condition of the

algorithm is to reach the end of file and pass it to the first three bits from the beginning

of file. When The Window Shifts And Reach The End Of File, The Window Length

Become Three ,So We Take First Bit From Beginning Of File To Make Window

Length Four And Repeating This Process Three Times (Three Bits).

Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(19): 2011

 377

The Flowchart of the algorithm is shown in figure (2). The algorithm can be

used for error detection but not correction.

All our information about file is stored in the C array, so after declaring it, we

open the target file and read a segment (window) of length four bits and convert them

to integer digit (Z), after that we increment its index in C array (C[Z]). We can

imagine Z as window of size four bits and move it toward the end of file, this can be

done by shifting the window to right one bit and make new value of Z. This process is

repeated until we reach the end of file and loop back to the beginning of file and take

three bits from beginning of file only. The suggested algorithm can detect the type of

alteration such as “modify”, “add” or “delete“ by compute the length of file from the

following equation:

Begin Of File End Of File

Figure (1): Circular File

Begin

Declare C[] as array contain 16 elements contains zeros

Open the target file

Z=Read window of length 4 bits from target file and convert them as integer digit

Close the target file

End

C[Z] = C[Z] + 1

Shift the window to right one bit and

convert the window contents to integer

digit as Z

Yes

No

Figure (1) The proposed algorithm for Alteration Detection

Store C array, which

contains the integrity

information about file

Is

EOF and pass to first 3

bits from BOF?

 378

8

])[(

__

15

0

 i

iC

FileOfLength …(1)

The resulting value from equation (length of file in byte) is compared with the

computed length of file stored previously. If they are equal, then there is no adding to

the file or deletion from it and we must test the values for checking alteration,

otherwise there is an adding or deleting operation from the file and there is no need to

test the values, this process is described in figure (3).

The algorithm uses an array of sixteen elements only (C array) and it can detect

if at least one bit is changed. The time complexity of the algorithm is shown in figure

(4), and it has linear complexity. Where the X-axis is the Size in Kilobyte and the Y-

axis is the Time in second.

Begin

Compute New_C[] from Figure (2)

Old_C[] = Stored C[]

Sum1 =

15

0

][_
i

i

iCOld

Sum2 =

15

0

][_
i

i

iCNew

Report an

Addition or

Deletion from file

Yes

No

I=0

I=16 Yes
Report there is no

change in file

No

Report an

Alteration has

occurred in file Yes

No

I = I + 1

End

Figure (3) The process of verifying the change in Contents of files

Is

Sum1≠Sum2 ?

Is

Old_C[I] ≠New_C[I]?

Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(19): 2011

 379

Example:

If we take the content of a file in binary form (has length 3 bytes) like below:

(1 0 1 1 0 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0)

by applying the suggested algorithm, we obtain the following results:

Index 0 1 2 3 4 5 6 7 8 9 1

0

1

1

1

2

1

3

1

4

1

5 Value 1 2 1 1 1 2 1 2 2 0 2 2 1 2 2 2

This result is store in the database to use it in another time for checking

purposes.

If one bit has been changed by any way as shown below:

(1 0 1 1 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 0)

so, when applying the suggested algorithm, we obtain the following results:

Index 0 1 2 3 4 5 6 7 8 9 1

0

1

1

1

2

1

3
14 15

Value 1 2 1 1 1 2 3 1 2 0 2 3 1 3 1 0

As we mention, when we apply equation (1) we obtain the same length of file,

so there is no addition operation to the file or deletion from it. Then we compare the

value of C array computed with the stored one, thus we note that there is a difference

between them (6 values changed), so the file was altered.

If two bits has been changed, as shown below:

(1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 0 0 0)

By applying the suggested algorithm, we obtain the following results:

Index 0 1 2 3 4 5 6 7 8 9 1

0

1

1

1

2

1

3

1

4

1

5 Value 0 1 1 2 3 2 0 2 1 2 4 0 0 2 2 2

We note that 10 values is changed, so the file was altered.

Figure (4): Time Complexity of The Proposed Algorithm

)(3
8

24
__ BytesFileOfLength

 380

Conclusion
The efficiency of the algorithm is accepted because it is applied to about 40 files

and get good results in detect errors in files such as adding, deleting and modification.

We implement a program in C++ language to check the algorithm, so we prove that

there is not found two files having the same array values because we test it in different

file lengths.

References

Forouzan, B. (1998). “Introduction To Data Communications And Networking”,

McGraw-Hill Companies.

