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Abstract

This paper presents a method for monitoring, evaluation and improving of electrical power
system voltage stability that is based on Artificial neural networks(ANN). The training data is obtained
by solving several normal and abnormal condition using the Linear Programming technique. The
selected objective function gives minimum deviation of the reactive power control variables, which
leads to the maximization of minimum Eigen value of load flow Jacobian. The considered reactive
power control variables are switchable VAR compensators, OLTC transformers and excitation of
generators. The method has been implemented on a modified IEEE 30-bus test system. The results
obtain from the test clearly show that the trained neural network is capable of improving the voltage
stability in power system with a high level of precision and speed. Thus, the method can be used as a
guide by the operator in Energy Control Center (ECC) for power system control.
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List of Symbols
[A] :Square matrix.
q; ij" element of square matrix [A].

[B] : Bus susceptance matrix.

AUr : Deviation of reactive power control variables.
0, : Voltage phase angle at bus-i.

n« - Left Eigen vector corresponding to K" Eigen value.
n.. . Left Eigen vector corresponding to minimum Eigen value of load flow
Jacobian.

G] :Bus conductance matrix.
H] : System subjacobian matrix.
: System jacobian matrix.
- System subjacobian matrix.

—

Ay : K™ Eigen value of square matrix.
Amin - Minimum Eigen value of load flow Jacobian.
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: New minimum Eigen value of load flow Jacobian.
: Old minimum Eigen value of load flow Jacobian.

[M] : System subjacobian matrix.
[N] :System subjacobian matrix.

NC : Number of system control variables.
P : Net active power at bus-i.

Q.  : Shunt capacitive compensations.
Q. : Reactive power generation.

Q,  :Netreactive power at bus-i.
SA Sensitivity of minimum Eigen value with respect to reactive power control
variables.

SA. : Sensitivities of minimum Eigen value with respect to K" reactive power

control variable.
Tp  : Tap changing transformers.

. Phase angle of ij" element of bus admittance matrix.
. System control variables.

1]
U
Ur : Reactive power control variables.
M|  : Voltage magnitude of generator bus.

\' : Voltage at bus-i.

& Right Eigen vector corresponding to K™ Eigen value.

&... - Right Eigen vector corresponding to minimum Eigen value of load flow
Jacobian.

‘Yij‘ : Magnitude of ij™ element of bus admittance matrix.

1. Introduction

Most of the time, power Systems operate under semi-steady state conditions,
many types of disturbance frequently occur on electric power system which result in
loss of stability. Voltage stability is concerned with the ability of a power system to
maintain acceptable voltages in the system under normal conditions and after being
subjected to a disturbance. A system enters a state of voltage instability when a
disturbance causes a progressive and uncontrollable decline in voltage.
Fundamentally, voltage instability is caused by the system inability to meet reactive
power demand.

One of the main considerations in power system operation and control is to
provide solutions in real time to the system operator in the Energy Control Center
(ECC). This will enable system operators to meet the ever growing demand of electric
power while maintaining system security.

As a consequence, the terms "voltage instability” and "voltage collapse"” are
appearing more frequently in the literature and in discussions of system planning and
operation. Many approaches have been used for power system voltage stability
assessment, e.g., power flow Jacobian matrix techniqgue[Mohamed E.A.,2000 ], total
active and reactive power losses technique [Elrazaz et al., 1998 ], singular value
decomposition method [Lof et al., 1993 ], multiple load flow solution technique
[Abdelkader, 1998,], energy function methods[Overbye., 1993], and Artificial neural
networks (ANN)[ Andrade. et al., 2006][ Elkady et al., 2001] [Abdelaziz, et al.,
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2003]. Most of the methods discussed above have assessed the voltage instability
based on the indices which depend on load bus voltage magnitudes. However, voltage
magnitude alone is not a sufficient indicator of voltage instability. Load bus voltages
may be high but the maximum load ability may be very close to the present operating
point. It is the demand of the day that modern large interconnected power system's
load buses should not only have high voltage magnitude but the operating point
should have sufficient distance in term of MVVA from voltage collapse point. This
distance is of extreme importance in the enhancement procedure of voltage stability
margin. This can be incorporated via a proximity indicator. Minimum Eigen value of
load flow Jacobian is such a proximity indicator that it can be used in this case, but it
requires comparatively large computation time and does not offer quick screening of
outages and hence is not suitable for online applications.

Anrtificial Neural Networks (ANN) [Demuch H., et al., 2000] can give fast,
through approximate, but acceptable solutions in real time as they mostly use parallel
processing technique for computation.

In this research, a method is introduced to monitor, evaluate, and improve
steady state voltage stability in electrical power systems. The proposed method uses
artificial neural networks (ANN) as a decision making tool to enhance steady state
voltage stability. Learning vector necessary to train the ANN is generated using
Linear Programming (LP) technique introduced in the MATLAB's optimization
toolbox. The selected objective function gives minimum deviation of the control
variables, which leads to the maximization of minimum Eigen value of load flow
Jacobian. The proposed method was tested on the modified IEEE 30-bus test system.

2. Eigen Sensitivities
An estimate of absolute sensitivity of Eigen value of A, in relation to any

element a; of square matrix [A] can be written as follows [Souza Lima, et al., 2000].

Oy Mk (I)gK(J)
orch 77KT%EK

where, a; is ij" element of square matrix [A]; A is k' Eigen value of square matrix
[A]; 7 (i), & (j)are i and j™ element of left and right Eigen vector corresponding to
A s Tk, & are left and right Eigen vectors respectively corresponding to A, . Further
each element a; is a function of system control variables (U ) i.e. ;

g =f(Upnnn Uw) ()

Hence, the sensitivity of A, with respect to system parameter of control variable can
be written using chain rule of differentiation as follows;
0A¢ Za;t,( y 0a;

=) —CXxX—= 3
ou, 47 da; 0U, )
or
Oy :Z”K(i)@(j)x O @)
ou, T me ou,

3. Formulation of Objective Function with Respect to Reactive Power

Control Variables
It has already been emphasized that minimum Eigen value of load flow
Jacobian signifies proximity of the present operating point to the voltage collapse
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point. All Eigen values of load flow Jacobian are positive in upper segment of PV-
curve. At least one Eigen value becomes negative in low segment of this nose curve.
At voltage collapse point, one of the Eigen value becomes zero. Hence, the magnitude
of minimum Eigen value is an indicator of relative voltage stability margin [AL-
Hinai, 2000]. Sensitivities of minimum Eigen value with respect to reactive power
control variables are derived in this section.

The load flow Jacobian at solution point can be written as follows:

[J]:{H N} .......................... (5)

M L
The elements of subjacobians [H], [M], [N], and [L] are given as follows;
Diagonal and off diagonal element of [H];

Hi=-Q-M[B: (6)
Hy =NV vfsin -5,-6,) (7)

Diagonal and off diagonal element of [M ];

M,=P-NM[G, (8)
M, =V Vlcoesls -s,-6,) )
Diagonal and off diagonal element of [N];
o]
N; =MGi+=5 (10)
M
N, =MV [cos(s -5,-6,) (11)
Diagonal and off diagonal element of [L];
Q
Li==2-MBy (12)
Vi
L =MlYfsin(s-5,-6,) (13)
Let £ . and 77, are right and left Eigen vectors corresponding to minimum

Eigen value (4., ) of load flow Jacobian, then from Eq.(3), the sensitivity of A_.

with respect to reactive power control variable (Ur, ) can be written as follows;

SA, = O2imin :zaimin oy +za/1mm M +za/1mm N +za/1mm b
our,  f7oH; aUr 45 oMy  aUr. 43 ON;  oUr. 47 ol U

where;

Ur = Vector of reactive power control variables.

Ur =[Ur,Ur,......... Ur |

Ur = [Vo|: Qc :Tp]

This means reactive power control variables consist of generator-bus voltage,
shunt capacitive compensations and tap changing transformers.

The sensitivities O , ——min Zﬁm‘” ,and O can be evaluated using Eq.(1).
i,j i,] (] i,]

Expressions for other partial derivatives in Eq(14) are evaluated using the element of

load flow Jacobian as given in Eq.(5)[Arya L. D. et al., 2005].
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The total deviation of minimum Eigen value with respect to all reactive power
control variables can be written as follows;

NC
Ao =D AUR xSA (15)
K=1
Where;
Aiin = Ainge, — Aming, e (16)
After simplification, the final form of the Eq.(15) is;
Aoi =g +AUF xSA e (17)

Equation (17), is used as the objective function of Linear Programming (LP)
technique and from it the minimum rescheduling of reactive power control variables
can be obtained.

4. Optimal Reactive Power Control Variables for Improving of

Voltage Stability

The purpose of optimal reactive power control variables is to improve the
voltage stability in the power system by the control of generators voltage, transformer
tap setting, and switching of VAR sources.

Linear Programming (LP) introduced in the MATLAB's optimization toolbox
IS used to find the optimal value of the minimum Eigen value of load flow Jacobian so
as to maintain desired voltage profile with minimum shift in reactive power control
variables, such that the limits of reactive power is not violated. Eq.(17) has been used
as objective function, this function is maximized to obtain the highest minimum Eigen
value corresponding to the best voltage stability margin. Therefore;

Maximize F(AUN)=A,, =Au  +AUF xS1 e (18)

The constraints of problem are formulated as:

VISV SV (19)
M <Qu QI (20)
M <Qy <QI (21)

Tp™ <Tp, <TP™ (22)

5. Voltage Stability Improvement By Using ANN

The method proposed is based on using linear programming technique to
generate different training patterns and obtain the input data to ANN. In this study,
feed-forward ANN which contains three layers (Two hidden layers and one output
layer) is trained by using Back propagation algorithm to determine the proper
adjustment of the reactive power control variables required to improve voltage
stability. The block diagram of the ANN-based algorithm for improving voltage
stability in power systems is shown in figure (1). Furthermore, to design a neural
network, it is very important to train and test the network. The well-trained neural
network should give the right decision for both normal and abnormal operating
conditions.
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Figure (1), The block diagram of the ANN-based algorithm for improving
voltage stability in power systems

Training is a stage at which all the weighting factors and thresholds are
regulated according to a specific rule, in such a way that the objective function may
be minimized. The usual method for training a multi-layer feed-forward neural
network is the method of error back-propagation (or back-propagation). In order to
use this method, both the desired output and the real output of the network must be
available. The difference between desired output and real output is called the error.
The algorithm of error back-propagation is based on the learning rule of error
correction. This algorithm is an iterative method designed for minimizing the average
of the squared error.

In order to improve the performance and speed of the training process, it is
very important to reduce the number of training data. In a real power system, the
working conditions of the system change by variations in the scale of load demand.
The load variations themselves bring about variation in the load bus voltages and
sometimes cause buses to violate their voltage limits and in turn causes the system
stability to violate their authorized limits. In this study, in order to improve the
voltage stability against load variations in the modified IEEE 30-bus test system,
initial load flow analysis is carried out for the considered power system for different
load conditions. Voltage instability analysis is performed from the data that obtained
from load flow. Sensitivities of minimum Eigen value with respect to reactive power
control variables are computed. By performing the LP, the recommendations of
transformer taps, shunt capacitors, generator voltages are computed. Voltage profile at
load buses are considered as inputs to the neural network. The LP recommendation
values form the target vectors (desired output). The considered structure of the neural
network is shown in figure(2).

Reactive
power
control

variables

VL30

Figure (2), Structure of neural network concerning IEEE 30-bus test system
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6. The Case Study

The modified IEEE 30-bus power system given in [Saddat H.,1998] and
shown in figure (3) has been studied and considered to test the performance of the
proposed method. Its bus data are given in table (1). The limits of bus voltages, tap
settings, shunt capacitors, and generators VAR's are given in table(2). The line data
of the system are given in table(3).
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Figure (3), The modified IEEE 30-Bus Test System

Table(1), Bus data

Bus Generation Load

No. | P(MW) | Q(MVA)R) | P(MW)) | Q(MVAR))
I e 0.00 0.00
2 200 | - 21.7 12.7
3 100 | - 74.2 19.00
4 100 | - 30.0 30.00
5 50 | - 0.00 0.00
6 50 | - 0.00 0.00
7 0.00 0.00 25.4 1.2
8 0.00 0.00 7.6 1.6
9 0.00 0.00 0.00 0.00
10 0.00 0.00 18.8 10.9
11 0.00 0.00 0.00 0.00
12 0.00 0.00 15.8 2.00
13 0.00 0.00 11.2 75
14 0.00 0.00 6.2 1.6
15 0.00 0.00 18.2 25
16 0.00 0.00 35 1.8
17 0.00 0.00 9.0 5.8
18 0.00 0.00 3.2 0.9
19 0.00 0.00 9.5 3.4
20 0.00 0.00 2.2 0.7
21 0.00 0.00 125 11.2
22 0.00 0.00 0.00 0.00
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23 0.00 0.00 3.2 1.6
24 0.00 0.00 14.7 6.7
25 0.00 0.00 0.00 0.00
26 0.00 0.00 115 2.3
27 0.00 0.00 0.00 0.00
28 0.00 0.00 0.00 0.00
28 0.00 0.00 124 0.9
30 0.00 0.00 10.6 1.9
Table(2), Limits of system variables
Variables LovblmltHsigh
(Generator voltage) V, p.u. 1.00 | 1.10
Vifigggs (Tap setting) Tp pu | 095 | 1.05
(VAR source) Q. MVAR | -15 36
(Load bus voltage) V, p.u. 0.90 | 1.10
Depgndent (Generator reactive power)
variables MVAR | -40 | 100
Qs
Table (3), Line data
From| To R X B/2 Tap
bus bus | (P.U) | (P.U) | (P.U) | Ratio
1 2 0.0192 | 0.0575 | 0.0264 -
1 7 0.0452 | 0.1852 | 0.0204 -
2 8 0.057 | 0.1737 | 0.0184 -
7 8 0.0132 | 0.0379 | 0.0042 -
2 3 0.0472 | 0.1983 | 0.0209 -
2 9 0.0581 | 0.1763 | 0.0187 -
8 9 0.0119 | 0.0414 | 0.0045 -
3 10 0.046 | 0.116 | 0.0102 -
9 10 | 0.0267 | 0.082 | 0.0085
9 4 0.012 | 0.042 | 0.0045 -
9 11 0 0.208 0 1
9 12 0 0.556 0 1
11 5 0 0.208 0 -
11 12 0 0.11 0 -
8 13 0 0.256 0 1
13 6 0 0.14 0 -
13 14 | 0.1231 | 0.2559 0 -
13 15 | 0.0662 | 0.1304 0 -
13 16 | 0.0945 | 0.1987 0 -
14 15 0.221 | 0.1997 0 -
16 17 | 0.0824 | 0.1923 0 -
15 18 | 0.1073 | 0.2185 0 -
18 19 | 0.0639 | 0.1292 0 -
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19 20 0.034 | 0.068 0 -
12 20 | 0.0936 | 0.209 0 -
12 17 | 0.0324 | 0.0845 0 -
12 21 | 0.0348 | 0.0749 0 -
12 22 | 0.0727 | 0.1499 0 -
21 22 | 0.0116 | 0.0236 0 -
15 23 0.1 0.202 0 -
22 24 0.115 | 0.179 0 -
23 24 0.132 0.27 0 -
24 25 | 0.1885 | 0.3292 0 -
25 26 | 0.2544 | 0.38 0 -
25 27 | 0.1093 | 0.2087 0 -
28 27 0 0.396 0 1
27 29 | 0.2198 | 0.4153 0 -
27 30 | 0.3202 | 0.6027 0 -
29 30 | 0.2399 | 0.4533 0 -
4 28 | 0.0636 0.2 0.0214 -
9 28 | 0.0169 | 0.0599 | 0.065 -

7. Results

Both methods of linear programming and artificial neural networks have been
simulated in a MATLAB(7.5) and have been applied to the modified IEEE 30-bus test
system. The ANN was trained with the three sets of data as shown in table(4),
obtained by performing load flow and voltage instability analysis for different load
factors such as 0.8, 1.0, and 1.2.

The data indicated in table(5) are used for testing the ANN, these data are
obtained in exactly the same way as the training set. The ANN is tested with data
corresponding to load factors of 0.75 and 1.3 to determine the effectiveness of the
proposed method. Proper actions suggested by both techniques are shown in Table(6).
The decision of each method (LP and ANN) are almost coincident, however the ANN
gives these decisions in almost on time. A comparison between the computational
time of the proposed ANN technique and LP is shown in table(7). It is clearly shown
that the ANN technique requires very small computational time to improve voltage
stability. These results have been achieved by using a computer with Pentium CPU of
2.6 GHz, 512MB RAM specifications.

The results of pre and post optimization conditions for full load conditions
(unity load factor) are shown in table(8). We can conclude that the voltage profile has
increased from 0.86 to 0.968 at bus-26, as the minimum Eigen value is increased from
0.194 to 0.214 and the power loss is reduced from 24.27MW to 20.46MW. Figures
(4)&(5) show the voltage profiles at each bus of the system under test at pre and post
optimization conditions, assuming unity load factor.
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Table(4.a), Input data used for training the ANN.

No. Voltage with Voltage with Voltage with
Load load factor load factor load factor
bus 80% (P.U) 100% (P.U) 120% (P.U)
7 0.98 0.98 0.97
8 0.98 0.98 0.97
9 0.99 0.98 0.98
10 0.99 0.98 0.98
11 0.98 0.97 0.96
12 0.96 0.95 0.93
13 0.98 0.97 0.95
14 0.96 0.95 0.93
15 0.95 0.94 0.92
16 0.96 0.95 0.93
17 0.96 0.94 0.92
18 0.94 0.93 0.9
19 0.94 0.92 0.9
20 0.95 0.93 0.91
21 0.95 0.93 0.91
22 0.95 0.93 0.91
23 0.94 0.92 0.9
24 0.93 0.91 0.88
25 0.93 0.91 0.88
26 0.9 0.86 0.82
27 0.95 0.93 0.9
28 0.99 0.98 0.97
29 0.92 0.89 0.85
30 0.91 0.88 0.84

Table(4.b), The output data (desired) used for training the ANN.

Recommendations Provided by LP Technique

gﬂirgr Control variables Control variables Control variables
variables with load factor with load factor with load factor
80% (P.U) 100% (P.U) 120% (P.U)
Vo -1 1.07 1.09 11
Ve -2 1.02 1.04 1.04
Ve -3 1 1.05 1.06
Ve -4 1.01 1 1
Vo -5 1.08 1 1
Ve -6 1.05 1.05 1.07
s 0.12 0.36 0.369
" b(ag-lZ 0.221 0.198 0.12
o 0.293 0.179 0.382
e 0.035 0.159 0.112
ol 0.974 0.98 0.982
9sz 1.041 1.04 1.027
sTfs 0.95 0.95 0.965
28T_ ';7 0.995 1.011 1.028
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Table(5), Input data used for Testing the ANN.

No. Load | Voltage with load | Voltage with load
bus factor 75% (P.U) | factor130% (P.U)
7 0.99 0.96
8 0.99 0.96
9 0.99 0.97
10 0.99 0.97
11 0.98 0.95
12 0.96 0.92
13 0.98 0.95
14 0.96 0.92
15 0.96 0.91
16 0.97 0.93
17 0.96 0.91
18 0.95 0.89
19 0.95 0.89
20 0.95 0.9
21 0.95 0.9
22 0.95 0.9
23 0.94 0.88
24 0.94 0.86
25 0.94 0.86
26 0.91 0.79
27 0.95 0.89
28 0.99 0.96
29 0.92 0.83
30 0.92 0.82
Table(6), The Recommendations Provided by both techniques (LP and ANN).
Recommendations Provided | Recommendations Provided
by LP Technique by ANN Technique
Type of Control Control Control Control
Control variables variables variables variables
variables with load with load with load with load
factor 75% | factor 130% | factor 75% | factor 130%
(P.U) (P.U) (P.U) (P.U)
Ve -1 1.06 1.09 1.06 1.089
Vg -2 1.03 1.05 1.03 1.045
Vi -3 1.02 1.04 1.01 1.06
Vi -4 1.0 1.0 1.0 0.998
Vg -5 1.1 1.04 1.2 1.04
Vi -6 1.06 1.01 1.05 1.015
Qc
at bus-7 0.36 0.38 0.35 0.38
Qc
at bus-12 0.026 0.039 0.025 0.035
Qc 0.055 0.32 0.057 0.34
at bus-24 ' ) ) )
Qc 0.082 0.156 0.08 0.16
at bus-27 ' ' ' )
T
011 0.98 1.024 0.98 1.025
Tp
9-12 1.037 0.95 1.04 0.95
P 0.956 0.983 0.95 0.97
8-13 ' ' ' )
TP 0.987 1.030 0.99 1.03
28-27 ' ' ' '
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Table(7), Computation times for LP and ANN methods.

Method

LP

ANN

Time (Sec.)

6.39

0.21

Table(8), The pre and post optimization conditions with full load state.

Load factor (unity) | Pre Optimization Post Optimization
Viin 0.86 P.U. 0.968 P.U.
Amnin 0.194 0.214
power losses 24.27 MW 20.46MW
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Figure (4), The pre optimization voltage profiles at each bus of the system under test.
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Figure (5), The post optimization voltage profiles at each bus of the system under
test.

8. Conclusions

A fast technique to monitor and improve power system voltage stability is
proposed, the method is based on ANN. Three layers feed-forward ANN with back-
propagation is trained to give the proper rescheduling of reactive power control
variables required to achieve voltage stability in the day-to-day operation. The
considered reactive power control variables are switchable VAR compensators,
OLTC transformers and excitation of generators. The training data is obtained by
solving several conditions using the LP technique. The results obtained show clearly
that the ANN approach is capable of improving voltage stability in power systems.
The trained network is capable of improving the power system voltage stability from
minimum to maximum range of load variations at very high speed. A comparison
with the LP technique shows the clear superiority of the proposed ANN in achieving
the control decision in a short computational time. Furthermore, the ANN is simple in
structure and easy to operate compared with linear programming technique. Thus, the
method can be used as a guide by the operator in Energy Control Center (ECC) for
power system control. The proposed method indicates a significant improvement in
voltage stability which eventually leads to a considerable decrease in system losses.
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