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Article Information  Abstract 

 

Article History: 

Noise affects images by distorting the features or reducing the required 

information. Gaussian noise is one of many types of noise that are 

characterized by normal distribution's statistical properties. Removing or 
reducing this noise is an essential step in image processing. James Webb Space 

Telescope (JWST) is a crucial tool for advancing our understanding of the 
universe across various domains. The images taken by the (JWST) are not only 

scientifically valuable for advancing our understanding but also have the 

potential to captivate and inspire people around the world. In this paper, we 
introduce several nonlinear filters, including Non-Local Mean (NLM) which 

gives weights to the pixels based on the distance from the noisy pixel. A 

Bilateral filter that gives weights for each pixel and then calculates the 

weighted distance. Propose a nonlinear filter depends on obtaining an 

appropriate smoothing parameter for the image by using the plug-in method 
and using it to estimate the image's density function, then using an appropriate 

noise reduction method on the estimated density function to extract the denoised 

image by removing the Gaussian noise from the Carina Nebula Image, the first 
image taken by (JWST) on 12 July 2022. The importance of this image lies in its 

potential to advance scientific knowledge, showcase technological prowess, 
inspire the public, and contribute to the broader mission of exploring and 

understanding the cosmos, Also, since it is the farthest point in the universe that 

humanity has been able to reach or take pictures of, it is therefore essential to 
preserve its quality to study all its elements or details. These nonlinear filters 

were therefore selected to highlight the significance of selecting the right 

technique that can handle, process, and preserve as many details as possible. 
They also elucidate the degree of advancement achieved in denoising and the 

distinction between the classical filters and the more sophisticated ones that 
have evolved to handle finer details. These filters consider the similarities and 

distances between the central pixel and its neighbours, they preserve the edges 

of the image as advanced features. Based on quality measurements Peak Signal 
to Noise Ratio (PSNR) and  Structural similarity index measure (SSIM), the 

filter results were compared and show that the proposed filter gives high 
performance in restoring images under different Gaussian noise densities. 

Where it gives values of (42.51) and (0.99) for (PSNR) and (SSIM) respectively, 

then the bilateral filter gives (30.65) and (0.93) respectively. 
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Introduction 
In many life applications, satellite images are crucial because they provide a precise and 

unambiguous image of the subject being studied (Abdul Wadood & Ghalib, 2018; Abdul Wadood 

& Ghalib, 2019). Examples of these applications include tracking the motion of galaxies, planets, 

and celestial objects and the degree of climate change and rising and falling ocean water levels. The 

satellite image is a digital image that is displayed as a series of numbers that can be saved and 

managed by a digital computer (Muslim & Ghalib, 2019; Ghalib & Abdul Wadood 2020). To 

translate an image into numbers, it is divided into tiny pieces known as pixels (Muslim & Ghalib, 

2019). As with other image types, noise from transmission and acquisition affects satellite images 

(Kolhe & Yogendra, 2013). This could affect studies and image analysis. Reducing or eliminating 

the noise is essential for assessing and scrutinizing the image(s). According to (Swamy & Kulkarn; 

2020), noise in satellite images is an undesirable physical phenomenon that arises from variations in 

atmospheric layers. Mention that noise comes in different forms, the most common of which is 

Gaussian noise (Hambal & Faustini, 2017). According to (Liu & Jianbin; 2018), each pixel in the 

noisy image is the sum of the true pixel value and a random noise value distributed according to the 

Gaussian distribution. Additive White Gaussian Noise (AWGN) is the term used to describe this 

statistical noise, which has a normal distribution-like probability density function (Ali, 2018). 

The emergence of noise on telescope images during the acquisition or transmission process 

is the topic of discussion in this paper. This phenomenon reduces the quality of the images and, as a 

result, the quality of the analysis and interpretation. With space telescope images being so important 

for scientific research and studies, the objective is to reduce this noise by using nonlinear techniques 

to preserve as much information as possible about space telescope pictures. The nonlocal Mean 

(NLM) and Bilateral (BF) filters are the best for image denoising and edge preservation. (NLM) 

denoising techniques, finding nearby pixels within a large search window, and calculating the 

weight of each pixel by comparing and averaging its intensities and similarities (Anh, 2014). These 

algorithms were developed by Buades et al (Wilson & Julia, 2013). In contrast, Manduchi's (Tomasi 

& Manduchi, 2005) straightforward, steady, and noniterative bilateral filter (BF) accounts for 

changes in both spatial and intensity from the central pixel while minimizing noise and avoiding 

edges (Angulo, 2013). Furthermore, we put forth a successful image-handling method that 

considers the impact of additional noise on individual image pixels. Each image element's proper 

smoothing parameter must be chosen, the image's Gaussian density function must be estimated 

using that parameter, and the estimated Gaussian function must then be subjected to a noise 

reduction technique. Many researchers have attempted to use these filters in their studies to lower 

noise in recent years. These studies illuminate the most notable results in the field of digital image 

denoising, using the filters used in this paper. As a result, by leveraging the features and 

enhancements made to them, we can apply these techniques to our intended research objective and 

enhance their performance. For instance, (Arabi & Habib; 2020) discovered that the SNR quality 

measurement increased from 25.1 when employing Gaussian filtering to 28.8 when utilizing the 

MRNLM technique, which employed multiple reconstruction NLM filtering (MRNLM) to 

eliminate redundant information from auxiliary images. (Heo et al.; 2020) carried out a systematic 

review to evaluate the NLM denoising algorithm's efficacy in MR imaging, demonstrating an 

accurate method for disease diagnosis. Their findings imply that the NLM denoising algorithm is a 

practical strategy. More perceptive results are expected from enhanced methods based on fast or 

optimization terms and various functions. Based on the relativity of the Gaussian adaptive bilateral 

filter, (Feng & Zhongliang; 2021) proposed a new three-step algorithm for improving infrared 

images. The recommended algorithm successfully increases the contrast of infrared images by 

multiplying the image by the suggested weight coefficient, dividing it by the relativity of the 

Gaussian-adaptive bilateral filter, and combining the processed base layer and detail layer. (Chen & 

Jing; 2022) proposed an NLM algorithm based on the fractional compact finite difference scheme 

(FCFDS) to reduce speckle noise in OCT images. When compared to integer order difference 

operators, FCFDS uses more local pixel data. Simulations demonstrate that, in comparison to other 
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cutting-edge despeckling techniques, the suggested method significantly reduces noise and 

preserves image details. (Wagner et al.; 2022) proposed a hybrid denoising technique that combines 

a convolutional deep learning denoising network with a set of trainable joint bilateral filters (JBFs) 

to predict the guidance image. The outcome demonstrates a high level of noise reduction efficacy. 

Appropriate parameter selection is essential for the whale optimization algorithm (WOA), a 

bilateral filter for image denoising that (Nabahat et al.; 2022) propose. The bilateral filter cannot 

function effectively unless the parameters are chosen with care. The WOA algorithm optimizes the 

filter's parameters by designing the filter using the weighted sum of PSNR and SSIM as a fitness 

function. The results show that the recommended approach performs better than the others. 

(Wagner et al.; 2022) proposed a bilateral filter that can be integrated into any deep learning 

algorithm and optimized purely through data-driven means by computing the gradient flow toward 

its input and hyperparameters. The suggested approach can rival cutting-edge denoising 

architectures. (Huihua et al.; 2023) Extracted gradient information from images more accurately by 

combining the Laplacian of the Gaussian operator with an enhanced NLM denoising algorithm. To 

recover CT images with a high PSNR, the suggested algorithm suppresses noise while maintaining 

the image edge. 
 

Non-Local Mean Filter (NLM): 
The Non-Local Mean Filter (NLM) algorithm was first introduced by A. Buades and is 

based on a non-local averaging of all pixels (Sarker; 2012); (Dore & Cheriet; 2009). This nonlinear 

filter, according to (Angella & Rini; 2019), is used to remove Gaussian noise from images while 

preserving image details. For a pixel (i) in the noise image v = v{v(i)│i∈I}, the estimated value 

NL[v](i) is calculated as. 

  [ ]  ∑ (   ) ( )

   

 (1) 

The weights, denoted by w(i, j), are determined by the similarity between pixels (i) and (j) and must 

meet the standard conditions 0 ≤ w(i,j) ≤ 1 and ∑  (   )     (Buades et al; 2005). When the 

intensity of the vectors v(Ni) and v(Nj) is similar, the two pixels (i) and (j) are similar. (NK) 

denotes a fixed-size square neighborhood centered at a pixel (k). The similarity is quantified as a 

decreasing function of the weighted Euclidean distance. 

‖ (  )   (   )‖   

 
 (2) 

In noisy neighborhoods, the Euclidean distance increases the following equality (Kommineni; 

2019). 

‖ (  )   (   )‖   

 
 ‖ (  )   (   )‖   

 
     (3) 

 

Since the order of similarity between pixels is expected to be conserved by the Euclidean distance, 

it clarifies the robustness of the (NLM) (You & Nam; 2013). The definition of the weights is: 

 (   )  
 

 ( )
 

 ‖ (  )  (   )‖   

 

   (4) 

Where Z(i) is the normalizing constant and (h) is the filtering degree or smoothing parameter. 

 ( )  ∑ 

 ‖ (  )  (   )‖   

 

   
 

(5) 

It regulates the weights' decay as a function of Euclidean distances by controlling the exponential 

function's decay. This image filter's implementation method is explained by the algorithm that 

follows. 

Step 1: Input the colour image ―Carina Nebula‖. 

Step 2: Add Gaussian noise to the input image with a mean and sigma to obtain a noisy image. 
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Step 2: Convert the noisy image from RGB colour space to YUV colour space to obtain a YUV 

image. 

Step 3: Extract the luminance channel Y from the YUV image. 

Step 4: Apply NLM filtering to the luminance channel Y by calculating the similarity to obtain a 

filtered luminance channel FY. 

Step 5: Replace the original luminance channel Y with the filtered luminance channel FY. 

Step 6: Convert the filtered YUV back to RGB colour space to obtain the denoised colour image. 

Step 7: Output the denoised colour image. 
 

Bilateral Filter (BF): 
Bilateral is a nonlinear filter used to preserve edges and smooth out images. As stated by 

(Liu et al.;2020), (Anchal et al.; 2018). It uses a different kernel to measure proximity in intensity 

space, in contrast to traditional convolutional filters (Ghosh et al., 2018). (BF) stands for a weighted 

average of adjacent pixels (Chen et al., 2020). 

  [ ]  
 

  
∑   

(‖   ‖)   
(‖     ‖)  

 ∈ 

 (6) 

 

Where (Wp) is the normalization factor, which is defined as follows (Kaur & Bhawna, 2020): 

   ∑   
(‖   ‖)   

(‖     ‖)  
 ∈ 

 (7) 

The parameters    and    dictate the level of filtering that is applied to the image (I). When (q) 

pixels' intensity values differ from (Ip), the Gaussian range    
 reduces their impact.    

is a 

Gaussian weight that is employed to lessen the effect of distant pixels. The following algorithm 

explains how this image filter is implemented. 

Step 1: Input the colour image ―Carina Nebula‖. 

Step 2: Add Gaussian noise to the input image with a mean and sigma to obtain a noisy image. 

Step 2: Convert the noisy image from RGB colour space to YUV colour space to obtain a YUV 

image. 

Step 3: Extract the luminance channel Y from the YUV image. 

Step 4: Apply bilateral filtering to the luminance channel Y by measuring proximity in intensity to 

obtain a filtered luminance channel FY. 

Step 5: Replace the original luminance channel Y with the filtered luminance channel FY. 

Step 6: Convert the filtered YUV back to RGB colour space to obtain the denoised colour image. 

Step 7: Output the denoised colour image. 
 

Proposed Filter 
Our Proposed filter works on converting the image from (R, G, B) to (Y, U, V) colour 

space, where the (Y, U, V) is a colour representation commonly used in digital image and video 

processing (Podpora, 2014). It separates the luminance (brightness) information (Y component) 

from the chrominance (colour) information (U and V components) in an image. By separating the 

luminance and chrominance components, the YUV colour space allows for efficient compression of 

colour information in image and video data, as human perception is more sensitive to changes in 

brightness than colour changes (Podpora et al., 2014). A bandwidth selection method applies to the 

Y channel. In nonparametric estimation techniques, choosing the bandwidth, also referred to as the 

smoothing parameter, is an essential step (Azzabou et al, 2007). To control the blurring or 

smoothing effect of the kernel function, the appropriate bandwidth parameter must be selected 

(Hussein, 2022). The bandwidth selection has a significant impact on the quality and accuracy of 

the estimated function. An overly broad bandwidth may lead to an estimate that is too smooth and 

overlooks important structures or features in the data (Chiu, 1996). On the other hand, an estimate 

with an excessively narrow bandwidth may exhibit a high degree of noise and may reflect the 

distinctive characteristics of each data point rather than the underlying pattern (Loader, 1999). 

There are several ways to choose your bandwidth, including (plug-in) techniques. One method used 
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in nonparametric density estimation, specifically in kernel density estimation, is the bandwidth 

selection (plug-in) method (Chu, 2015). By minimizing a selected criterion or objective function, 

the optimal bandwidth is estimated using the (plug-in) method. According to Chacón (2009), these 

criteria evaluate how well the estimated density fits the observed data, and the best bandwidth is 

determined by minimizing the criterion of choice. The (plug-in) method seeks to achieve an 

appropriate degree of smoothing for the given data by balancing over- and under-smoothing the 

density estimate by plugging in the estimated optimal bandwidth (Oliveira, 2012).  Plug-in 

bandwidth selectors are a major class of bandwidth selectors that are derived from the (AMISE) 

expansion (Ibraheem, 2012). The  (   )in (hAMISE) is replaced by an estimate by choosing a pilot 

Bandwidth (b) to get  ( ̂ 
  ) An initial density estimate, commonly from the Gaussian kernel, is used 

to estimate h. This value is plugged into the (hAMISE) and computed (Florence, 2019). The result 

will be: 

         [
 ( )

  ( ̂ 
  )  

 
]

 
 

 

(8) 

 

After we get the bandwidth for the Y channel, we use it for density estimation, where the kernel 

density estimation (KDE) is a non-parametric method used to estimate the probability density 

function (PDF) of a random variable based on a set of observed data points (Hang, 2016). Gaussian 

kernel density estimation is a specific type of (KDE) that uses a Gaussian distribution as the kernel 

function (Węglarczyk, 2018). In kernel density estimation, the estimated density at any point x is 

formulated as (Dubeya, 2022). 

 ̂ ( )  
 

 
∑ 

 

   

(
   ( )

 
) (9) 

 

Where x(i) is a neighbouring point to x, n is the number of neighbours, K (·) is the kernel function, 

and (h) is its bandwidth also called the smoothing constant. The kernel function can be considered a 

weighting factor that gives a larger value when x(i) is close to x. 

Finally, we apply a denoising method to the Gaussian kernel density function. Wavelet Shrinkage 

also called wavelet threshold algorithm is a nonlinear denoising method (Liu, 2023). The key step 

in the threshold denoising method based on wavelet transform is to process the decomposed wavelet 

coefficients by setting a threshold. Then, we get estimated wavelet coefficients (Lin, 2017). These 

wavelet denoising methods suppress the noisy coefficient magnitudes while keeping the local 

structures. Ideally, only the wavelet coefficients that correspond to the noise component should be 

removed, whereas the coefficients containing a significant structure component should be reduced 

(Singh & Nirvair, 2012). There are two types of thresholds (hard and soft) threshold (Khedkar, 

2016). Hard thresholding is the most straightforward technique for implementing wavelet 

denoising, which interprets the ―keep or kill‖ statement (Kumar, 2014). The wavelet coefficient is 

set to the vector   
(  )

with element 

  
(  )

 [
     |  |   

      |  |   
] (10) 

 

If the coefficients are more significant than the threshold value ( ), They remain without changing. 

However, if they are smaller than or equal to the threshold value ( ), They are eliminated or set to 

zero. On the other hand, soft thresholding which is defined as follows: 

  
(  )

     [  ](   (  )   )    
(11) 

 

    [  ]  [

          
         

          
] (12) 
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(   (  )   )  [
(   (  )   )    (   (  )   )   

     (   (  )   )   
] 

 

(13) 

Soft thresholding brings all coefficients to zero when the wavelet coefficient is less than the 

threshold and when the coefficients are more significant than the threshold (η), they persist after 

reducing by the amount of the threshold. In contrast, the soft threshold is a continuous function is 

what the statement ―Shrink‖ interprets. This provides the results of the wavelet thresholding 

estimator. For small samples, hard thresholding has a lower mean square error and less sensitivity to 

small noises in the data. Soft thresholding has negligible deviation and an overall mean square error 

(Gilda, 2019). 
 

Discussion of Results 
The experiment was carried out by adding AWGN with zero mean and 0.01 variance to the 

approved image as shown in Figure 1, which is the first James Webb space telescope image taken to 

the Carina Nebula on July 12, 2022 (https://webb.nasa.gov/). With thousands of astronomers using 

JWST worldwide, JWST is the leading observatory of the coming ten years. It takes images from 

the first bright lights following the Big Bang to the creation of solar systems that could support life 

on planets like Earth and the development of our own Solar System, it examines every stage of our 

Universe's history. So, this image must be clear and free of impurities. Considering the significance 

of these images, we should work to eliminate any noise that may have been introduced during the 

transmission and acquisition process. So, in this experiment, we added different percentages of 

Gaussian noise to the adopted image and then applied the adopted filters, the code of these filters is 

written using MATLAB. 
 

 

Figure 1: Original Image of Carina Nebula (A), Gaussian Noise Image of Carina Nebula (B). 

https://webb.nasa.gov/
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To evaluate the quality of the obtained results the Structural Similarity Index Measure 

(SSIM) and the Peak Signal to Noise Ratio (PSNR) are used to calculate this quality. Where 

(PSNR) is regarded as a quality measurement that is frequently used to quantify reconstruction 

quality for images and video (Hore & Djemel, 2010): 

              (
    

   (   )
) (14) 

Where: 

   (   )  
 

  
∑∑(       )

 

 

   

 

   

 (15) 

On the other hand, (SSIM) is a quality measure that determines how similar the two digital image 

structures are (Wang et al., 2004). The following equation provides it: 

     ( (   ))  ( (   ))
 
 ( (   )) 

 
(16) 

 

Which stand for three weights (Bakurov et al., 2022) with exponents (α), (β), and (γ), respectively. 

 (   )  
        

  
    

    
 (17) 

 

 (   )  
        

  
    

    
 

(18) 

 

 (   )  
      

       
 

(19) 

 

Where C1, C2, and C3 are small quantities for numerical stability. To assess the efficacy of the 

approved filters, we added different amounts of Gaussian noise ratios to the image. Where The 

quality of the restored images varies, as Table 1 illustrates. The results indicate that the proposed 

filter performs best in terms of both PSNR and SSIM when there is a noise density of 0.01 where it 

is given the values 42.51 PSNR, and 0.99 SSIM respectively, while the Bilateral filter ranks second 

with 30.65 PSNR and 0.93 SSIM. According to measurements, Nonlocal mean filters have the 

values 24.32 PSNR and 0.89 SSIM, respectively. Figure 2 displays the images that have been 

restored. 

Table 1: PSNR and SSIM values for the restored images of each filter 

Filters 
Image Quality Measurements 

PSNR SSIM 

Bilateral 30.65 0.93 

NLM 24.32 0.89 

Proposed 42.51 0.99 

 

When we implement the filters in different noise Ratio (50%, 75%), to denoise the (Carina 

Nebula) image, we get the following results: 

 

Table 2: PSNR and SSIM values of the restored images calculated for different noise ratio 

Filters 

Image Quality Measurements in Different Noise Ratios 

50% 75% 

PSNR SSIM PSNR SSIM 

Bilateral 34.63 0.98 59.43 0.98 

NLM 13.12 0.80 12.63 0.80 

Proposed 37.30 0.99 35.36 0.99 
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 Figure 4: Showing (A) Restored Image of Carina Nebula by Proposed Filter, (B) Restored 

Image by Bilateral Filter, (C) Restored Image by Nonlocal Mean Filter 
 

We can observe from the results in Table 2 that the order of filters about the restored image 

quality and the presence of various noise levels did not change. The first filter is the proposed one, 

which has 37.30 PSNR and 0.99 SSIM in 50% and 35.36 PSNR and 0.99 SSIM in 75% noise 

density, respectively. The second one is the bilateral filter with 34.63 PSNR, 0.98 SSIM in 50% 

noise density, 34.98 PSNR, and 0.98 SSIM in 75% noise density. 

The mechanism used by the proposed method to analyze the image, which was represented 

by a series of stages, is what accounts for its superiority. First, an appropriate bandwidth parameter 
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was extracted using a plug-in method designed to minimize errors. The Gaussian density function 

was then estimated using this parameter by calculating the mean and variance of the noise contained 

in the image. Finally, a useful denoising method is to divide the image using thresholding. Because 

the bilateral filter assigns more weight to pixels that are both spatially close and have similar 

intensity values, it has the benefit of reducing noise while maintaining image edges. In this manner, 

critical features are retained while noise is reduced and edges are maintained, giving the filtered 

image a smoother visual quality. Conversely, the nonlocal mean filter takes into account an image's 

overall structure and is a flexible and powerful denoising method. However, it requires adjustments 

and modifications to make it more feasible for use in practical applications because it is 

computationally demanding. 
 

Conclusion 
The outcomes demonstrate how adaptable the suggested filter was in lowering noise levels 

without sacrificing any of the original image's characteristics. It moved the PSNR almost eleven 

degrees away from its nearest filter and achieved a high image quality index. Furthermore, the 

structural similarity quality index (SSIM), which gave the filter a high-efficiency level of 0.93, 

demonstrates how well the bilateral filter maintains image contrast and edges. This is not to say that 

the nonlocal mean filter is not effective; in fact, the NLM considers the global structure of the 

image, providing better preservation of edges and details, but at a higher computational cost, it is 

regarded as one of the most cutting-edge and effective filters for noise reduction, as demonstrated 

by its performance. Ultimately, the findings demonstrate that the quality of the restored image 

decreases with increasing added noise density. 
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 هعلوهاث البحث
 

 الوستخلص

 تواريخ البحث:

 
، انًٛضاخ أٔ ذمهٛم انًعهٕياخ انًطهٕبذؤثش انضٕضاء عهٗ انصٕس عٍ طشٚك ذشّٕٚ    

ً ْٔٙ إَٔاع انضٕضاء ٖ اكثش انضٕضاء انغٕعٛح أزذٔذعذ  ذرًٛض تانخصائص  شٕٛعا

أٔ ذمهٛهّ خطٕج أعاعٛح فٙ يعاندح  ، ٔعًهٛح إصانح ْزا انضٕضاءالإزصائٛح نهرٕصٚع انطثٛعٙ

ا نهكٌٕ عثش ( أداج زاعًح نرعضٚض فJWSTًُٓٚعذ ذهغكٕب خًٛظ ٔٚة انفضائٙ ) ،انصٕس

نٛغد راخ لًٛح عهًٛح نرعضٚض ب رهغكٕانرمطٓا ٚهانصٕس انرٙ ، ار ذعرثش يخرهف انًدالاخ

 .فًُٓا فسغة، تم نذٚٓا أٚضًا انمذسج عهٗ خزب ٔإنٓاو انُاط فٙ خًٛع أَساء انعانى

 (NLMغٛش انًسهٙ )عذج يششساخ غٛش خطٛح تًا فٙ رنك انًرٕعظ لذيُا فٙ ْزا انثسث 

انعُصش انصٕس٘ انًرأثش انًغافح يٍ  اعرًاداً عهٗ نهعُاصش انصٕسٚحأٔصاٌ انز٘ ٚعطٙ 

ً ان ثى ٚسغة  عُصش صٕس٘ يٍٚعطٙ أٔصاَاً نكم انز٘ ثُائٙ انًششر تانضٕضاء، ٔاٚضا

يعايم اعرخشاج  يششر غٛش خطٙ ٚعرًذ عهٗانًٕصَٔح انفاصهح تُٛٓى، ٔالرشزُا انًغافح 

ٔاعرخذايٓا نرمذٚش دانح كثافح انصٕسج، ثى  plug-inذُعٛى يُاعة نهصٕسج تاعرخذاو طشٚمح 

دانح انكثافح  انغأعٛح يٍنرمهٛم انضٕضاء  أعهٕب ذُعٛى أ ذمهٛم ضٕضاء يُاعةٚغرخذو 

يخفضح انضٕضاء، ْٔٙ انصٕسج الأٔنٗ انًهرمطح عذٚى كاسُٚا انًمذسج لاعرخشاج صٕسج 

فٙ سج فٙ لذسذٓا عهٗ انرمذو . ٔذكًٍ أًْٛح ْزِ انص1211ٕٕٚنٕٛ  21( فٙ JWSTتٕاعطح )

ٔإظٓاس انثشاعح انركُٕنٕخٛح ٔإنٓاو اندًٕٓس ٔانًغاًْح فٙ انًًٓح الأٔعع  حانعهًٛانًعشفح 

أتعذ َمطح فٙ انكٌٕ ذًكُد انثششٚح يٍ ذعذ كًا أَٓا  ،انًرًثهح فٙ اعركشاف ٔفٓى انكٌٕ

ٓا نذساعح خًٛع انٕصٕل إنٛٓا أٔ انرماط صٕس نٓا، نزنك يٍ انضشٔس٘ نهسفاظ عهٗ خٕدذ

نرغهٛظ انضٕء عهٗ ْزِ ٔنزنك ذى اخرٛاس انًششساخ غٛش انخطٛح  ،عُاصشْا أٔ ذفاصٛهٓا

أًْٛح اخرٛاس انرمُٛح انًُاعثح انرٙ ًٚكُٓا انرعايم يع أكثش عذد يًكٍ يٍ انرفاصٛم ٔيعاندرٓا 

انرًٛٛض تٍٛ كًا أَٓا ذٕضر دسخح انرمذو انز٘ ذى ذسمٛمّ فٙ ذمهٛم انضٕضاء ٔ ،ٔانسفاظ عهٛٓا

انًششساخ انكلاعٛكٛح ٔانًششساخ الأكثش ذطٕسًا انرٙ ذطٕسخ نهرعايم يع انرفاصٛم انذلٛمح. 

انًشكض٘  انعُصش انصٕس٘ذأخز ْزِ انًششساخ فٙ الاعرثاس أٔخّ انرشاتّ ٔانًغافاخ تٍٛ 

ٔتالاعرًاد عهٗ لٛاعاخ اندٕدج  ،ٔخٛشاَّ، ٔذسافع عهٗ زٕاف انصٕسج كًٛضاخ يرمذيح

(PSNR(ٔ )SSIM ذًد يماسَح َرائح انًششر ٔذثٍٛ أٌ انًششر انًمرشذ ٚعطٙ أداء ،)

زٛث ٚعطٙ لٛى ، عانٙ فٙ اعرعادج انصٕس ذسد كثافاخ انضٕضاء انغٕعٛح انًخرهفح

يماسَح تانًششر انثُائ انزٚسم   ( عهٗ انرٕانPSNR( ٔ )SSIMٙ( نـ )2.44( ٔ)91.32)

 ( عهٗ انرٕانٙ.2.45( ٔ)52.03ثاَٛاً تـ )
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