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1.Abstract

This research deals with the optimal design of reinforced concrete plate and shell structures based on
nonlinear finite element method. The eight-node degenerated curved shell element is used in which five
degrees of freedom are specified at each nodal point. A layered model is considered in the modeling of
the reinforced concrete behaviour and a perfect bond between the concrete and reinforcement has been
assumed. The compressive behaviour of the concrete has been modeled by employing two approaches
both elastic-strain hardening and elastic- perfectly plastic plasticity approach. The yield condition is
formulated in terms of the first stress and second deviatoric stress invariants. The motion of the
subsequent loading surface is controlled by the hardening rule that is extrapolated from the uniaxial
stress-strain relationship given by a parabolic function. The behaviour of cracked concrete has been
modeled using a smeared fixed crack approach, coupled with a tensile criterion to predict crack
initiation. Gradual bond deterioration with progressive cracking is simulated by means of a tension
stiffening model. A reduced shear modulus is employed in the cracked zone. The behaviour of steel
reinforcement is idealized by elastic-perfectly plastic relation with linear strain hardening for tensile
and compressive stresses. The nonlinear equations of equilibrium have been solved using an
incremental-iterative technique operating under load control. Modified Newton-Raphson method has
been employed.. A nonlinear geometrical model based on the total Lagrangian approach and taking into
account the von Karman assumptions. For the structural optimization problem, which is dealt with as a
constraint nonlinear optimization, the so-called Modified Hooke and Jeeves method, (1) is employed
by considering the total cost of the structure as the objective function and the dimensions as the design
variables with geometrical constraints. For the analysis of reinforced concrete plates and shells, the
results show good agreement with experimental results and the difference at the range of (3%-16.8%)
for the ultimate load. The results of optimization for reinforced concrete plates show that the optimal
cost occurs when using of minimum thickness of slab. The optimal cost for reinforced concrete
cylindrical shell occurs when the thickness and curvature of the shell increases and shell angle
decreases.
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2.1 Concrete Model

In the present study, a plasticity based model is used for simulairs the nonlinear
behaviour of reinforced concrete members under static loads. An elasto-plastic work
hardening model has been used to simulate the behaviour of concrete in compression
with limited ductility, which is terminated at the onset of crushing. The model will be
described in terms of the yield criterion, the hardening rule, the flow rule, and the
crushing condition.

In tension, the response is assumed to be elastic until cracking occurs. The onset
of cracking is controlled by a maximum principal stress criterion. The behaviour of
cracked concrete has been modeled using a smeared fixed crack approach, coupled
with a tensile criterion to predict crack initiation. Gradual bond deterioration with
progressive cracking is simulated by means of a tension stiffening model. A reduced
shear modulus is employed in the crack zone.

2.2 Steel Reinforcement Modeling

The steel reinforcement is smeared into equivalent steel layers with uniaxial
properties. An elasto-plastic behavior with possible strain hardening assumed and
elastic unloading and reloading in the plastic range are allowed.

3. Stiffness Matrix Formulation
3. 1 Degenerated Shell Element Formulations

Ahmad and Zienkiewicz(2) appeared to open a possible and promising avenue by
giving fundamental idea of formulation of degenerated elements. The suggested
process by Ahmed uses a full quadratic three-dimensional (20-noded) isoparametric
for deriving (or degenerating) the formulation necessary to give the basic assumption
of degenerated shell element. This approach employs a reference surface translations
and rotations (mid-surface), which represent a replacement of the independent top and
bottom node displacements in three dimension brick element and variation of
displacements across the thickness is prescribed only linear. This is a great
improvement of the element in the formulation to overcome some difficulties, which
arise in satisfying the necessary continuity of slopes at interfaces and the inability of
such formulation to account for shear deformation. The strain energy corresponding to
the stresses perpendicular to the middle surface is ignored but those surfaces normal
to mid-surface before deformation remain straight but not necessarily normal to mid-
surface after deformation as shown in Fig. (1).
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Fig. (1) Coordinate systems( Nodal and Global Coordinate System)

Some difficulties appeared, due to degeneration processes. The thickness of the
element was reduced, but also a great improvement of the model was achieved by the
application of the so-called reduced integration technique. Since then the element has
become applicable to thin as well as thick shells.

3. 1.1 Geometry of the Element

The general formulation of the coordinates defines the geometry of the

shell element which represents the rotations between the curvilinear coordinates
&,n,¢ andglobal coordinates (X, Y, Z).

Xi:Zn:Nf(fyU)HTg[Xiflop"'Zn:Nf(g’U)JrTg[XifLm or
x] X ) ch Vi

...... MAY F=DN(EqRYE +DN (&) 2f Vi
z] ™ z) Vs

where,

n is the number of nodes per element,
h; is the shell thickness at node f, i.e. the respective “normal” length,

X is the Cartesian coordinate of nodal point f, and
N, (&,n) is the two dimensional interpolation functions corresponding to
the surface. (£ =constant) at nodal point f. (see Table (1.1)).

\7i3f is the component of the unit normal vector to the middle surface.
The elements considered are the 8-node serendipity element.
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Table (1.1) Shape Functions And Their Derivatives

Shape element function for 8-node Serendipity

Function corner nodes
(1,3,5,7) Edge nodes (2,6) | Edge nodes (4,8)

Hs2)ten)e 40,

%k(lwo)(%o +7,)

Mg Non, +4,)

3.1.2 Displacement Field”

Five degrees of freedom at each node of shell element specify the displacement
field, as the strain in the directions to" the mid-surface is assumed to be negligible.
The displacement throughout the element can be defined by the three displacements
(u,v,w ) of its mid-point and two rotations of the nodal vector V3f about orthogonal
directions normal to it.
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Where ,Ntis the shape function matrix of the degenerated shell element.

3.1.3 Definition of Stresses
For the shell assumption of zero local stress in the direction normal to the shell or

slab mid-surface in Z -direction (o, =0) enables the stresses vector to be reduced to
the following five stress components (Ahmad and Zienkiewic 1970).
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where,



{80} is the initial strain vector and may also represent the expansion due to thermal

load,
{g} is the strain vector and details of its formulation are explained in the next

section, and
[D] s the elasticity matrix given by,
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3.1.4 Definition of Strains
The normal strain in the Z -direction (8'2) is neglected. Therefore the general

vector of Green strains will be reduced to the following five components.( Hinton and
Owen1984)
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Where B is The strain-displacement matrix.
and: {5}is the displacement vector
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or:

3.1.5 The Element Stiffness Matrix

The stiffness matrix of degenerated shell element is computed at the
mid-section of each layer. The Jacobian matrix through the shell thickness must be
taken into account. It is more appropriate to use an integration process, which may
split the volume integral into integrals over the area of the shell mid-surface and
through the thickness (h). Therefore, the process consists of the calculation of strain
matrix [Bj] at the mid-surface of each layer. Consequently it is used in the calculation
of the stiffness matrix [K] using the mid-ordinate rule. Thus, the stiffness matrix is
computed by summing up the contribution of each layer at the Gauss points and may
be written as follows (Owen and Hinton1980):
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[K]= \J;[B]T [D][B]dV _ .!.‘-_hr:/zz([B]T [D][B]dz )dS .............................................
[K]= J‘jllj-:[jj[B]T [D][B]‘J(é-ﬂvg)‘dgjld‘:dn ............................................................. (9)

Then, [K] can be written as summing up the contribution of each layer at the
Gauss points,

2Ahj}

k=L BT e Jolne) %5

where;
[K] = is the stiffness matrix.
[D]= is the elasticity matrix modified to account for tensile cracking, nonlinear
behavior in compression and material matrix of steel layer.
[Bj]= is the strain matrix calculated at the mid section of each layer.
N(E, m, ))|= is the determinant of the Jacobian matrix for layer (j).
Ahj= is the thickness of the jth layer.
n=is the total number of layers.
4. Numerical Integration and Nonlinear Solution
The Numerical rules adopted in this study.
1. Full integration rule
2. Reduced integration
3. Selective integration rule

The basic solution technigues of the above nonlinear of system equations are the
iterative, incremental and combined incremental-iterative approaches.
5. Nonlinear Geometric Analysis
In the present work, a specific and appropriate formulation for the
nonlinear analysis of reinforced plates and shells has been employed. In this
formulation, large deflections and moderate rotations are taken into account with the

simplified Von-Karman assumptions.
By applying Von — Karman assumptions, the strain vector component
may be expressed in terms of local derivatives of the displacements for the degenerate

shell element and can be written as:
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Separating the strain components into a linear part {0} and a nonlinear part
{eL} which can be expressed as,

{e}={eo}+{ey . (12)
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The strain displacement matrix [B] may be separated into two parts,
B]=[BoJ+B . (15)
where;

is the linear part, [Bo]
is the nonlinear part.  [Bi]
The tangential stiffness matrix for the current configuration [K] can be
derived from the variation of internal force vector with respect to a displacement
variation {a}.
[K]= [leT[olBlav e (16)

The geometric stiffness matrix [K]s must be defined explicitly in order
to determine the tangential stiffness [K].

k] =[6] Gy L (17)
\%
Finally the total stiffness matrix can be written as

-[K]+[K] [K]

6. The Employed of Computer Program

The computer program has been used for nonlinear analysis of reinforced
concrete plates and shells structures (Hinton and Owenl1984). In this program a
layered approach is adopted with material and geometric nonlinear effects may also
be considered. The reinforcement is represented by a smeared layer of equivalent
thickness. The nonlinear solution technique includes standard and modified Newton-
Raphson and the initial stiffness methods may optionally be performed.

The program is coded in FORTRAN-90 Language. | used PC Pentium4
MHz Intel MMX compatible computer with 256 megabyte Ram.
7. Optimization

Reinforced concrete structural problem has numerous solutions. The purpose of

optimization is to find the best possible solution among the many alternative solutions
satisfying the prechosen criteria. The objective function is often the minimum weight
especially for steel structures, or minimum cost taking into account function, safety
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and serviceability .The objective function is the minimum amount of reinforcement
for reinforced concrete plates and shells since reinforcement cost, nowadays,
represents the major portion in the total cont of construction.

Since the minimization of the objective function depends on the section
resistance, which is an implicit function of the independent design variables and
cannot be expressed directly as a function of these variables, it cannot be derived with
respect to the independent design variables. Hence the gradient method of non —linear
optimization such as Hooke and Jeeves is simpler than ( SUMT Method ) ( sequential
unconstrained minimization technique ) therefore can be used in this study. So the
modified direct search method of Hooke and Jeeves (Bunday 1984) will be used
which uses the function values only. The search consists of a sequence of exploration
steps about a base point which if successful are followed by pattern moves. The
modification was made on this method to take account of constraints.

8. Application and Discussions
8.1 One-Way Reinforced Concrete Slab

A one-way slab supported at two edges was tested experimentally by
(McNiece and Jofriet1971).The geometrical details, reinforcement layout, loading are
shown in Fig. (2). Utilizing symmetry of loading and geometry, only a quarter of the
slab is modeled by the finite elements method. Two mesh of four and nine eight-node
shell elements are used for this quarter structure are shown in Fig. (3). The steel
reinforcement is represented by a layer with a thickness equals to 0.356 mm. Material
properties of concrete and steel are given in Table ( 2).

Table (2) Material Properties for (McNiece.and Jofriet) Slab considered in the
analysis

Material properties and parameters

Concrete Young’s Modulus, E¢, MPa 31000
Compressive Strength, f¢’, MPa | 35.0
Tensile Strength, f;, MPa 3.0
Poisson’s Ratio, v 0.15
Uniaxial crushing strain &cu.

0.0035
Steel Young’s Modulus, Es, MPa 210000
Yield Strength, fy, MPa 345

Tension- om 0.50
Stiffening | ¢, 0.002
Parameters
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Fig. ( 2).Slab geometry and reinforcement details for One-Way reinforced concrete
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Fig.(3). Finite element mesh for One —-way reinforced concrete slab
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Very small difference in load deflection behaviour for the two mesh at shown in

Fig(4)
The load-deflection curve at midspan of the slab is shown in Fig. (5), Good
agreement with experimental results are obtained through most loading level.

Crushed gauss points were initiated at a load of 0.97 of ultimate load. The presence of
these crushed points at the top layer began when the compressive strain of the gauss point
increased the ultimate crushing strain. The consideration of geometrical nonlinearity in the
finite element analysis has been found to be the major parameter in the analysis of reinforced
concrete plate structures, which exhibit relatively large deformations before failure as shown
in Fig (5).

Load(KN)

McNiece et. al.(Exp.)

2 2 Mesh 1
——ufm— Mesh 2

0.00 1.00 200 3.00 400 500 600 7.00 800 9.00 10.00
Deflection(mm)

Fig. (4). Comparison of load-deflection curves for One-way slab

——=f=——— Geometrically Nonlinear Analysis
""""" A Geometrically Linear Analysis

— McNiece et al.(Experimental)

0.00 1.00 2.00 3.00 4.00 500 6.00 7.00 800 9.00 10.00
Deflection(mm)

Fig. (5).Load-deflection curves at midspan of one- way
Simply supported slab

AR



8.2 Reinforced Concrete Cylindrical Shell

The reinforced concrete cylindrical shell, simply supported in the circumferential
direction at the curved edges was tested experimentally under pressure load by Van
Riel et.al. (1957) and theoretical by (Arnesen, and Bergan 1980).Several investigators
proved their theoretical work by comparing their analytical results with that of Van
Riel shell. Geometric details, reinforcement layout and finite element idealization are
shown in Fig.(6). Taking the symmetry of loading and geometry, only a quarter of the
shell-beam system is modeled by the finite element method. A mesh of nine eight-
node shell elements is used for this quarter structure is shown in Fig.(6).

The steel reinforcement for the shell is represented by four layers with a
thickness equals to 0.04 mm each. While, the reinforcement for the beam is
represented by a layer with thickness equals to 5.6 mm.. Material properties of
concrete ant steel are given in Table (3).

Table (3): Concrete and steel material properties for the shell.
| Material properties and parameters Value |

Concrete Young’s Modulus, E¢, MPa 30000.
Compressive Strength, fc', MPa 30.0
Tensile Strength, f;,, MPa 491
Poisson’s Ratio, v 0.15
Uniaxial crushing strain ecy
0.0035
Steel Young’s Modulus, Es, MPa 210000
Yield Strength, fy, MPa 295
Tension- om 0.50
Stiffening | ¢, 0.002

Parameters

Crushed gauss points were initiated at a load of 0.978 of ultimate load. The
presence of these crushed points at the top layer began when the compressive strain of
the gauss point increased the ultimate crushing strain. When the gauss points are
considered crushed, zero stresses and stiffness are assigned to them.

A number of previous theoretical results are plotted in Fig. (7), (Arnesen, and
Bergan 1980) employed a triangular shell element with numerical integration through
thickness. They used end chronic theory for the concrete and a trilinear stress-strain
law for the steel. Nonlinear geometry was included using an updated Lagrange
approach. Cyclic loading was also considered. Crushed gauss points were initiated at
a load of 0.91 of ultimate load. (Chan 1982), analyzed reinforced concrete shell finite
element with edge beams using a layered curved shell finite element. He also used a
filament line reinforced concrete beam element to model the edge beams. Each
filament was assumed to be in a uniaxial stress state, i.e., cracks in the beam filaments
were formed perpendicular to the axis of the beam. Hence tensional cracking could
not be modelled with such an assumption. The beam elements were connected to shell
elements at discrete points by means of rigid links to model eccentric beams. Concrete
was modelled as a nonlinear orthotropic hypo elastic material with biaxial state of
stress in shell and uniaxial state of stress in beams. Steel was considered in uniaxal
state of stress with a bilinear stress-strain model. Crushed gauss points were initiated
at a load of 0.84 of ultimate load together with the results of the present analysis for
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comparison purposes. The present model seems to provide good representation of
deformation path.

Cross section

side view

Top view___|.

k|

All dimension in mm

(a) Shell geometry and loading

For shell
All dimensions in mm

For edge beam

(b) Steel arrangement



R=1000mm

All dimensions in mm

(c) Finite element mesh
Fig. (6). Reinforced concrete shell

"""" B Present Analysis

""" 49— Amesen et al

Van Riel et al
Chan
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H\H\H‘HHH\H‘H\HHH‘HHHH\‘HHH\H

0.00 10.00 20.00 30.00 40.00 50.00
DEFLECTION AT MIDPOINT(mm)

Fig. (7) Load-deflection curves at midspan of edge beam
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9. Optimal Design Application
9.1 One-Way Reinforced Concrete Slab

The optimal design of One —way reinforced concrete slab is investigated. The
slab is exposed to concentrated load of 2.0 kN. Nine elements and six equal concrete
and one steel layers through the thickness discredited a quarter of the slab. The design
variable is thickness t. The initial values used are t=0.0445 and the step length is 0.01.
.0432 <t <0.2055 The material properties and

The non — linear cost objective function (Z) involving the cost of steel
reinforcement, concrete and formwork is used in the optimization problem of this
study.
where :
Cost of steel = Cs((4/3).As.b.(1/5)+(1/3).As.b.(I-(2.1/5))+Asmin.b.t ).ws

Cost of concrete = Cc ( b.t.I)
Cost of formwork = Cs (b.1+ 2.1.t + 2.b.t)
where :
Cs = unit price of steel reinforcement involving material and labour cost
As = area
| = slab length
b = slab width
t = slab thickness
ws = unit weight of steel
Cc = unit price of concrete involving material and labour cost
Ct = unit price of formwork
Assume
Cs=800 unites/ton, Cc=400 unites/m3, Cs=10unites/m?.

»
L
=
o
@
1=
S
=
>
=

\ \ \
4.00 6.00 8.00
Number of cycles (Analysis)

Fig.(8) .Variation of Total Cost with No. of Analysis

It can be seen from Fig(8)that the total cost is reduced when the thickness
is reduced .The minimum thickness gives the minimum cost.



9.2 Reinforced Concrete Cylindrical Shell

The optimal design of reinforced concrete cylindrical shell is investigated. The
shell is exposed to uniform distributed load including self weight. Nine elements and
eight equal concrete and five steel layers through the thickness discredited a quarter of
the shell. The design variable is thickness t and shell angle. The Initial values used are
t=0.005 and the step length is 0.005. The Constraints are.
0.005<t<0.02 and 35 ° << 45 °.

The non — linear cost objective function (Z) involving the cost of steel
reinforcement, concrete and formwork is used in the optimization problem of this
study.
where :

Cost of steel = Cs.As1.2.p.R.I+As2.2.p.R.1+As3.2.p.R.I+As4.2.5.R.1).ws
Cost of concrete = Cc(p.R.t.1.2)
Cost of formwork =Ct (B.R.1.2+p.R.t.2+t.1.2)
where :
Cs = unit price of steel reinforcement involving material and labour cost
As = area of tension reinforcement
L = shell length
b =shell width
t = shell thickness
ws = unit weight of steel
Cc = unit price of concrete involving material and labour cost
Ct = unit price of formwork
Assume
Cs=800 unites/ton, Cc=400 unites/m?, Ct=10 unites/m?.
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I I I I
2.00 3.00 4.00 5.00
Number of Cycles(Analysis)

Fig. (9) :Variation of Total Cost with No. of Analysis

It can be seen from Fig(9) that the total cost is reduced when the thickness,
curvature of the shell increases and the shell angle decreases.
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10. Conclusions
Based on the numerical results obtained from the finite element tests, which have

been carried out throughout the present research work, the following conclusions can

be drawn:

1.The finite element results obtained for different types of reinforced concrete
members show that the computational model adopted in this study is versatile and
suitable for prediction of the load-deflection behaviour and collapse load of
reinforced concrete plates and shells with maximum difference in calculation of
load is about 16.8% when compared with experimental results. The numerical tests
carried out in the different cases studied reveal that the predicted load-deflection
curves and collapse loads are in good agreement with the experimental results.

2. Quadratic degenerated Serendipity shell elements with five degrees of freedom per
node proved to be efficient for structural discretization. They can adequately
simulate the actual geometry of plate and shell structures.

3.The numerical tests carried out on reinforced concrete plate and shell structures
show that the inclusion of the geometric nonlinearity together with the material
nonlinearity in the finite element model can significantly improve the correlation
of the predicted load-deflection behaviour and collapse load with experimental
results at all stages of loading by increasing the predicted deformation before
failure.

4.The nonlinear constrained optimization problem is solved by using the modified
Hooke and Jeeves method. It has been shown that this method is efficient, easy to
be programmed and can be used in general nonlinear constrained optimization.

5. In the case of reinforced concrete plates, the optimal cost will be obtained when
the minimum thickness (In/20 for one way reinforced concrete slab.

6. In the case of reinforced concrete cylindrical shell, the optimal cost will occur when
the thickness increases and shell angle decreases.
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