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1. INTRODUCTION 

In many disciplines, including epidemiology, finance, and environmental research, the Poisson–Lindley distribution 

(PLD) is a crucial distribution for analyzing over dispersed count data. We observe that the typical Poisson distribution, 

which requires that the variance and the mean be equal, cannot handle overdispersion in count data, when the variance is 

greater than the mean. The parameters of the Poisson–Lindley distribution must be estimated using a variety of techniques 

in order to increase the model's accuracy and dependability. It makes it a crucial field of research for statistical modelling. 

The growing need for precise and trustworthy parameter estimate techniques inside the Poisson–Lindley distribution is 

what spurred this investigation. To increase the prediction power of statistical models and better comprehend the behavior 

of the data, particularly in the presence of overdispersion, accurate parameter estimations are crucial. In applications like 

disease outbreak modelling, financial risk assessment, and environmental monitoring where count data is widely used, 

this precision is crucial.  In these areas, precise estimation plays a key role in informing policy decisions, managing risks, 

and guiding interventions. However, despite its advantages, the Poisson-Lindley distribution presents challenges in 

parameter estimation due to the complexity of over-dispersed count data.  

Traditional methods, such as those used for the simpler Poisson distribution, often fall short when dealing with the 

variability seen in real-world data. To address this, alternative distributions like the Poisson-Generalized Lindley (PGL) 

distribution have been proposed to handle sparse and highly variable data more effectively [1]. Additionally, recent 

advancements in reliability analysis have offered robust techniques for assessing the stability and accuracy of parameter 

estimates, contributing to more reliable statistical models [2]. Recent literature also highlights the importance of 

developing new methods for estimating parameters in discrete distributions. For instance, [3] introduced the Poisson 

quasi-XLindley distribution, a novel two-parameter discrete distribution framework that addresses limitations in existing 

methods and offers enhanced parameter estimation techniques. Furthermore, [4] introduced parameters and reliability 
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characteristics of the failure distribution of a mixture of failure rates, which are estimated based on a complete sample 

using both the Markov Chain Monte Carlo (MCMC) method and Maximum Likelihood Estimation (MLE). The research 

landscape is further enriched by alternative mixing distributions, such as the inverse Poisson Gaussian distribution [5], 

and the Lindley distribution, which acts as the mixing component of the Poisson-Lindley distribution [6]. Building on 

these foundational works, Mahmoudi and [7] introduced the generalized Poisson-Lindley distribution using the 

generalized Lindley distribution as the mixing component. Similarly, [8] proposed the Poisson weighted exponential 

distribution, leveraging the weighted exponential distribution for modeling over-dispersed count data. In addition, recent 

studies have expanded the application of alternative distributions to lifetime data modeling. For example, [9] explored 

the use of the Weibull distribution for modeling lifetime data, showcasing its versatility in real-world scenarios. This 

evaluation involved using key model comparison metrics such as Akaike’s Information Criterion (AIC) and Bayesian 

Information Criterion (BIC), alongside MLE for parameter estimation. Likewise, [10] focused on the transmuted Weibull 

distribution, emphasizing its utility in practical applications. Building on this foundation, the present study critically 

evaluates various parameter estimation methodologies for the Poisson-Lindley distribution, incorporating recent 

developments in reliability analysis and statistical techniques. By doing so, this research contributes to the ongoing efforts 

to improve statistical modeling for over-dispersed count data, with particular attention to its practical applications in 

fields where accurate estimation is essential.  

This research is structured as follows. Section 2 presents the methodology of the Poisson-Lindley distribution, 

followed by Section 3, which introduces various estimation approaches for the distribution. Section 4 discusses the 

application of these techniques, and Section 5 provides a summary and conclusions. 

 

2.  METHODOLOGY 

The probability density function (PDF) of Lindley distribution's is given by: 

𝑓(𝑥, 𝜃) =
𝜃2

(1 + 𝜃)
(1 + 𝑥)𝑒−𝜃𝑥,   𝑓𝑜𝑟 𝑥 > 0 𝑎𝑛𝑑 𝜃 > 0 

Where θ is the shape parameter.  

The (PLD), which was proposed for modeling count data, is derived from the Poisson distribution. The parameter λ of 

the Poisson distribution follows the Lindley distribution, The Poisson probability density function(pdf) is given: 

𝑃(𝑋 = 𝑥 ∣ 𝜆) =
𝑒−𝜆𝜆𝑥

𝑥!
; 𝜆 > 0, 𝑥 = 0,1,2, … 

The probability density function of Lindley distribution’s is: 

𝑓(𝜆; 𝜃) =
𝜃2(1 + 𝜆)𝑒−𝜆𝜃

𝜃 + 1
; 𝜆 > 0, 𝜃 > 0 

Therefore, the probability mass function (pmf) of the Poisson-Lindley distribution can be written as: 

𝑃(𝑋 = 𝑥) = ∫ 𝑃(𝑋 = 𝑥 ∣ 𝜆)𝑓(𝜆)𝑑𝜆
∞

0

= ∫
𝑒−𝜆𝜆𝑥𝜃2(1 + 𝜆)𝑒−𝜆𝜃

𝑥! (𝜃 + 1)
𝑑𝜆

∞

0

 

=
𝜃2

𝑥!(𝜃+1)
∫ 𝑒−(𝜃+1)𝜆∞

0
(𝜆𝑥 + 𝜆𝑥+1)𝑑𝜆  

Solving the integral gives the PMF of the Poisson-Lindley distribution, which is defined by the following equation [11] 

𝑝(𝑥) =
𝜃2(𝜃+𝑥+2)

(1+𝜃)(𝑥+3) ,  𝑓𝑜𝑟 𝑥 = 0,1,2, …         𝑓𝑜𝑟 𝜃 > 0 .                                                 (1) 

Where. X: count variable, θ: shape parameter. 

This equation expresses the probability mass function of the Poisson-Lindley distribution. We will discuss the 

distribution's characteristics, including the probability mass function graph, mean, variance, moment, skewness, and 

kurtosis. Next, we'll discuss using PLD to generate random numbers and estimate their parameters.  

Figure 1 shows how the pmf for the Poisson-Lindley distribution in Equation (1) evolves with θ values. It also displays 

the function’s shape for each parameter selection. 
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FIGURE 1: various parameter choices and the shape of the Poisson Lindley Distribution density function. 

The cumulative distribution function (cdf) of the Poisson-Lindley Distribution can be expressed as follows 

[6]: 

𝐹(𝑥) =  𝑃(𝑋 ≤  𝑥) =  1 −  𝑃(𝑋 >  𝑥 +  1) =  1 − ∑ ∫ 𝑃(𝑋 =  𝑡|𝜆)𝑓(𝜆)𝑑𝜆
∞

0

∞

𝑡=𝑥+1

=  1 − ∑ ∫
𝑒−𝜆𝜆𝑡

𝑡!

∞

0

∞

𝑡=𝑥+1

  
𝜃2 

(𝜃 + 1)
 (1 +  𝜆)𝑒−𝜃𝜆𝑑𝜆 

𝐹(𝑥) =  1 −  
𝜃2 + 3𝜃 + 1 + 𝜃𝑥

(𝜃 + 1)𝑥+3 
          , 𝑥 =  0, 1, 2, . . .           𝑓𝑜𝑟 𝜃 >  0                             (2). 

Figure 2 illustrates the cumulative distribution function (CDF) given by Equation (2) for varying values of θ. 

Additionally, the quantile function (QF) of the Poisson-Lindley distribution are provided. 

 𝑥𝑤 = −3 − 𝜃 −
1

𝜃
−

1

log(𝜃+1)
 𝑈 [

(𝜃+1)
− 

𝜃2+1
𝜃  (𝑤−1)𝑙𝑜𝑔(𝜃+1)

𝜃
]                                             (3) 

accordingly, where 𝑈[∙] denotes the Lambert function's negative branch. 

  

 
 FIGURE 2: various parameter choices and the shape of the cumulative distribution function of the Poisson 

Lindley Distribution. 
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2.1 MOMENT 

The (PLD) distribution’s rth central moment has the following formula: 

𝐸(𝑥𝑟) = 𝜇𝑟                                                                                                           (4) 

 To find the derivative of the mean of the PLD distribution, we need to first calculate the first central moment or the 

mean:  

 𝜇 = 𝐸(𝑥)      

 After simplification and solving (4) the integral, we get:[ 12] 

𝜇 =
(𝜃+2)

𝜃(1+𝜃)
                                                        (5) 

𝐸[𝑋2] =
θ2   +  4θ +  6

(θ +  1)θ 2
 

The formula can be used to compute the PLD distribution’s variance.:  

 𝜎2 = 𝐸[𝑋2] − (𝐸[𝑋])2 

𝜎2 =
θ 3+ 4θ2+6θ+ 2

θ2(θ + 1)2 
                                                                                          (6) 

 where 𝐸[𝑋2] is the second moment and 𝐸[𝑋]is the mean.  

Note that 𝜎2 = 𝜇 [1 +
(𝜃2+4𝜃+2)

𝜃(𝜃+1)(𝜃+2)
] > 𝜇, This indicates that the Poisson-Lindley distribution is overly scattered. Finally, 

the third and fourth central moments are: 

𝐸[𝑋3] =
(θ2   +  6θ +  12)(θ + 2)

(θ +  1)θ 3
 

𝐸[𝑋4] =
(θ4   +  16θ3  + 78θ2 + 168θ + 120)

(θ +  1)θ 4
 

Thus, the skewness and kurtosis of the PLD are provided by the following relations, respectively: 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
2(𝜃+1)4(𝜃+2)−𝜃3(𝜃+2)(𝜃+3)

[2(𝜃+1)3−𝜃2(𝜃+2)]3 2⁄                                                                      (8) 

kurtosis = 3 +
2(𝜃+1)5[(𝜃+3)2−3]−𝜃4(𝜃+2)[(𝜃+4)2−3]

[2(𝜃+1)3−𝜃2(𝜃+2)]2                                                      (9) 

 

3. VARIOUS ESTIMATION TECHNIQUES  

 Numerous estimating methods within the classical paradigm are documented in the statistical literature. 

However, we will only provide three of these techniques here: maximum likelihood, least squares method and LQ-

moment.  

3.1 MAXIMUM LIKELIHOOD ESTIMATOR 

This section explains how to derive MLEs from a PLD (𝜃) distribution’s unknown parameter. Consider a sample of size 

n from a PLD (𝜃) distribution as 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑛) [12, 13]. The likelihood function can be given as follows based on 

the observation function (PDF) evaluated at each observation in the sample. The log-likelihood function for the PLD 

distribution is:  

 ℒ(𝜃) = ∑𝑛
𝑖=1 ln[𝑢(𝑥𝑖 ; 𝜃)] 

where n= sample size and 𝑥𝑖 = observed values in the sample. To maximise the log-likelihood function, we must take 

the partial derivatives of each parameter (𝜃) and set them to zero. The log-likelihood function’s derivative is:  

𝐿(𝜃) = ∏ 𝑓(𝑋𝑖 , 𝜃)

𝑛

𝑖=1

= ∏
𝜃2 ∗ (𝜃 + 𝑋𝑖 + 2)

(1+𝜃) ∑ ln (
𝜃2∗(𝜃+𝑋𝑖+2)

(1+𝜃)𝑋𝑖+3 )

𝑛

𝑖=1

+3

𝑛

=1

 

𝑙(𝜃) = ln (𝐿(𝜃)) = ∑ ln (
𝜃2∗(𝜃+𝑋𝑖+2)

(1+𝜃)𝑋𝑖+3 )
𝑛

𝑖=1
                                                            (10) 

Although Equation (11) has a unique solution for all n, it lacks a closed-form solution and must be calculated 

numerically.  [14]. 

∂l

∂θ 
=  

2𝑛

𝜃
  −  

𝑛(�̅� + 3)

𝜃 + 1
  +  𝑛 ∑  

1

𝑥𝑖+ 𝜃 + 2

𝑛

𝑖=1
=  0                                                             (11) 

 

3.2 LINEAR QUANTILE MOMENT METHOD 

Obtaining the Quantile Function involves deriving it from the Cumulative Function (F(x)), using equation (3), [ 14 & 

15]. 
The Quantile moments of a random sample of size n 

𝑋1:𝑛 ≤  𝑋2:𝑛 ≤ ⋯ ≤ 𝑋𝑛:𝑛  

As follows 

𝜖�̂� =
1

𝑟
∑ (−1)𝑘𝑟−1

𝑘=0 (
𝑟
𝑘

) �̂�𝑝,𝑚(𝑋𝑟−𝑘:𝑟)                                                                          (12) 
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Where 𝑋𝑟−𝑘:𝑟 represents the ordered sample values from 𝑋𝑟−𝑘 to 𝑋𝑟. 

�̂�𝑝,𝑚(𝑋𝑟−𝑘:𝑟) is the quantile estimator defined as a weighted combination of quantile estimates:  

�̂�𝑝,𝑚(𝑋𝑟−𝑘:𝑟) = 𝑝�̂�𝑟−𝑘:𝑟(𝑚) + (1 − 2𝑝)�̂�𝑟−𝑘:𝑟 (
1

2
) + 𝑝�̂�𝑟−𝑘:𝑟(1 − 𝑚)                   (13) 

𝑝 is the quantile level typically set to 0.5 for median estimation. 

𝑚 is a parameter that determines the fraction of the quantile level on each side typically set to 0.5 for symmetric 

estimation. 

�̂�𝑟−𝑘:𝑟(𝑢) is the quantile estimator obtained using the sample data.  

�̂�𝑟−𝑘:𝑟(𝑢) = ∑ [
1

𝑛
𝑘ℎ(∑ 𝑤𝑗,𝑛

𝑖
𝑗=1 − 𝑢)]𝑛

𝑖=1 𝑋𝑖,𝑛                                                               (14) 

𝑘ℎ(𝑡) is the kernel function which is defined as the standard normal density function:  

𝑘ℎ(𝑡) =
1

√2𝜋
𝑒−

𝑡2

2                                                                                                   (15) 

𝑤𝑗,𝑛 are the weights used in the quantile estimator defined as  

 

𝑤𝑗,𝑛 = {

1

2
(1 −

𝑛−2

√𝑛(𝑛−1)
) ,   𝑖𝑓 𝑖 = 1, 𝑛

1

√𝑛(𝑛−1)
,     𝑖𝑓 𝑖 = 1,2, … , 𝑛 − 1

                                                             (16) 

With the aim of deriving estimations through the LQM approach, equation 12 is employed, and the R 

programming language is utilized to determine the parameter 

4.  ANALYSIS OF RELIABILITY 

The Poisson Lindley Distribution’s reliability function(survival function )[16, 17], which is the survival analysis, can 

be represented as the complement of its cumulative distribution function. Figure 3 depicts the reliability function for 

various 𝜃 values., given by 

R(t) = 1 - F(t) 

 
FIGURE 3: The survival analysis (Reliability Function) of the Poisson Lindley Distribution 

 

4.1 HAZARD RATE FUNCTION 

The Hazard Rate (HR) Function (failure rate) of a lifetime random variable X with the Poisson Lindley Distribution 

(PLD) is given by.  

ℎ((𝑡)) =
𝑓(𝑡)

𝑅(𝑡)
 

ℎ(𝑡) =

𝜃2(𝜃+𝑡+2)

(1+𝜃)(𝑡+3)

1−[1−
(𝜃2+3𝜃+1+𝜃𝑡)

(𝜃+1)(𝑡+3) ]
                                                                                                        (17) 

Figure 4 depicts the Hazard Rate Function  
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FIGURE 4: Hazard Rate Function (HR) of random variable x for the lifetime with the (PLD) 

 

4.2 REVERSED HAZARD RATE FUNCTION 

The Reversed Hazard Rate Function for a discrete random variable is defined as the ratio of the pmf f(t) to the 

cumulative distribution function F(t) For the Poisson-Lindley Distribution, it can be expressed as follows [18]: 

𝜆∗(𝑥) =
𝑓(𝑥)

𝐹(𝑥)
                                                                                                                                (18) 

The Reversed Hazard Rate Function is depicted in Figure 5.  

 
FIGURE 5: The Reversed Hazard Rate Function for PLD with different value of 𝜽 

 

4.3  MEAN RESIDUAL LIFE (MRL) 

The Mean Residual Life (MRL) for a lifetime random variable x in the context of survival analysis and reliability 

theory is defined as: 

MRL(𝑡) = 𝐸(𝑋 − 𝑡 ∣ 𝑋 > 𝑡) 

MRL(𝑡, 𝜃) =
1

𝑅(𝑡)
∫

∞

𝑡
𝑥 𝑓(𝑥)𝑑𝑥 − 𝑡    where     𝑡 > 0                                                                 (19) 

Where: 

• t is a specific time point for which you want to calculate the MRL. 

• θ is a parameter of the distribution. 

R(t) is the survival function, which represents the probability that the random variable x is greater than or equal to t 

with a given θ. 

• x is a variable representing time to failure. 
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This equation calculates the expected remaining lifetime at time t for a random variable x following a specific 

distribution characterized by the parameter θ. It takes into account both the shape of the distribution (through the survival 

function) and the time point t of interest. 

 
FIGURE 6: The Mean Residual Life (MRL) 

4.4 MEAN INACTIVITY TIME 

The Mean Inactivity Time (MIT) function is used as a reliable measure in forensic science, reliability theory, and 

survival analysis, to name a few fields. The MIT function for the random variable x’s lifetime is shown below [5]. 

𝑀𝐼𝑇(𝑥) = ∑ (𝑘 − 𝑥)
𝜃2(𝑘+𝜃+2)

(1+𝜃)𝑘+3

∞

𝑘=𝑥+1
                                                                        (20) 

Figure (7) shows The value of the Lindley Mean Inactivity Time with parameters 𝜃 = 0.25, 0.5 , 1, 1.5, 2, 2.5, 3. 

 

Figure 7: Mean Inactivity Time 

4.5 STRESS-STRENGTH RELIABILITY  

The life of a component with random strength X and random stress Z is described by the stress-strength model in 

dependability [19,20]. The component will stop working properly when the stress applied to it surpasses its strength, and 

it will fail at the moment when 𝑋 > 𝑍. As a result, a measure of component reliability is 𝑅 = 𝑃𝑟(𝑋 > 𝑍). It has numerous 

uses in a variety of scientific and engineering fields. Now that X and Z have independent f(x, 𝜃1)  and F(z,  𝜃2)) 

distributions, we can calculate the reliability R. One can express the PDF of X and the CDF of Z, respectively, as     

𝑆𝑆𝑅 = ∑ [
𝜃1

2(𝜃1+𝑥+2)

(1+𝜃1)𝑥+3 ]
∞

𝑥=0
[1 − (1 −

𝜃2
2+3𝜃2+1+𝜃2𝑥

(𝜃2+1)𝑥+3 )]                                        (21) 
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The likelihood function L(𝜃1,𝜃2) can be expressed as: 

𝐿(𝜃1, 𝜃2) = ∏[
𝜃1

2(𝜃1 + 𝑡 + 2)

(1 + 𝜃1)𝑡+3
]

𝑛

𝑖=1

[1 −
𝜃2

2 + 3𝜃2 + 1 + 𝜃2𝑡

(𝜃2 + 1)𝑡+3
] 

To maximize the likelihood, we typically take the logarithm (log-likelihood) and solve for the parameters: 

log 𝐿(𝜃1, 𝜃2) = ∑ log [
𝜃1

2(𝜃1 + 𝑡 + 2)

(1 + 𝜃1)𝑡+3
] + log [1 −

𝜃2
2 + 3𝜃2 + 1 + 𝜃2𝑡

(𝜃2 + 1)𝑡+3
]

𝑛

𝑖=1

 

Next, compute the partial derivatives of the log-likelihood function with respect to 𝜃1 and 𝜃2 . 

∂log 𝐿

∂𝜃1

= ∑[
∂

∂𝜃1

log (
𝜃1

2(𝜃1 + 𝑡 + 2)

(1 + 𝜃1)𝑡+3
)]

𝑛

𝑖=1

= 0 

∂log 𝐿

∂𝜃2

= ∑[
∂

∂𝜃2

log (1 −
𝜃2

2 + 3𝜃2 + 1 + 𝜃2𝑡

(𝜃2 + 1)𝑡+3
)]

𝑛

𝑖=1

= 0 

After obtaining the log-likelihood function, numerical optimization methods (e.g., using the optim function in R) can 

be applied to find the values of �̂�1 and �̂�2 that maximize the log-likelihood, thereby providing the MLE estimates. The 

results are presented in Table 1.  

𝐓𝐚𝐛𝐥𝐞 𝟏: 𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞𝐬 𝐨𝐟 𝐭𝐡𝐞 𝐬𝐭𝐫𝐞𝐬𝐬– 𝐬𝐭𝐫𝐞𝐧𝐠𝐭𝐡 𝐑𝐞𝐥𝐢𝐚𝐛𝐢𝐥𝐢𝐭𝐲 𝐰𝐢𝐭𝐡 𝐩𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫𝐬,  at t=1 

paramete

r 

Estimate  R(t) HR RH MRL AIC BIC 

𝜽𝟏 = 𝟎. 𝟗 

𝜽𝟐 = 𝟎. 𝟖 

38.37324 

57.38643 

 

2.011730e-01 37.409 0.02673 4.940523e-02 77.22048 82.43082 

𝜽𝟏 = 𝟎. 𝟕 

𝜽𝟐 = 𝟎. 𝟖 

64.76526 

57.38639 

 

1.598804e-01 13.233 0.01568 4.028622e-02 81.90263 87.11297 

 

5. APPLICATION  

5.1 SIMULATION STUDY 

Simulation serves as the method for representing real-world phenomena through specific models. In the realm of 

complex operations, which are often challenging to comprehend and analyze, models resembling real-world scenarios 

are instrumental. These models aid in grasping and scrutinizing intricate processes. Simulation, as a tool, enhances our 

understanding of original processes and real-world dynamics. This research stage focuses on a simulation study involving 

the generation of data using the inverse transformation method based on the cumulative distribution function equation 

(3). The primary objective is to compare the performance of two distinct estimators: Maximum Likelihood Estimators 

(MLEs) and the combination of Least Square and LMQ estimators. This comparison will be grounded in their respective 

estimates and mean squared errors (MSEs). The study incorporates various sample sizes (25, 50, 75, 100, 150), employs 

the R program, and explores diverse values for the theta parameters. To encompass all conceivable combinations of 

sample size and shape parameter values, the experiment will be iterated 1000 times. The outcomes, encompassing the 

estimated parameters and MSEs for both estimators, will be systematically presented in Tables 2 . 

 

Table 2: MSE of the parameter estimations and a comparison of the two methods of estimation at the sample 

sizes (25,50,100,150) For the initial value set. 

methods 

 

Sample 

size 

 

value estimate Statistics Reliability 

𝜃 �̂� MSE(�̂�) AIC BIC 
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MLE 25 0.25 0.316 0.004356 25.2783 25.668 0.47116 

LQM 0.2818 0.00101124 17.4767 17.866 0.7292351 

MLE 50 0.25 0.2123 0.00142129 18.8638 18.9791 0.441222 

LQM 0.2715 0.00046225 14.8947 14.9100 0.79917 

MLE 100 0.25 0.234487 0.0002406532 18.6254 18.7666 0.42775 

LQM 0.2382 0.00013924 14.14601 14.56310 0.8128402 

MLE 150 0.25 0.24365 4.03225e-05 18.58464 18.6915 0.423222 

LQM 0.2441 3.481e-05 14.05621 14.2872 0.820173 

MLE 25 0.5 0.35083 0.02225169 24.148545 24.5386 0.45901 

LQM 0.5554304 0.00307252 20.337444 20.72752 0.729602 

MLE 50 0.5 0.52720473 0.000740097 22.68327 22.89854 0.435071 

LQM 0.48514327 0.000220722 16.12748 16.34275 0.5130255 

MLE 100 0.5 1.1470 0.4186 349.5226 56.4329 0.4245096 

LQM 0.7312 0.0534 -15.5903 -8.38004 0.4964696 

MLE 150 0.5 1.14244 0.4127 509.1133 517.1346 0.42103 

LQM 0.7610 0.0681 -27.2034 -19.3822 0.4807262 

MLE 25 1 1.0738264 0.005450345 19.31630 19.45751 0.437082 

LQM 1.028069 0.000787868 11.145448 11.53552 0.8586 

MLE 50 1 1.06510 0.00423801 19.25684 19.39238 0.4256 

LQM 1.01817774 0.000330430 10.095828 10.2370 0.8101 

MLE 100 1 0.9854590 0.000211440 19.177117 19.36374 0.4203 

LQM 0.9887855 0.000125763 10.095733 10.20262 0.842517 

MLE 150 1 1.0007744 5.997263e-07 18.51142 18.90150 0.41842 

LQM 1.0000875 7.668505e-09 9.3375461 9.552818 0.89574 

MLE 25 1.5 2.1289 0.3955 20.7402125 20.9554848 0.615369 

LQM 0.9031 0.3563 13.2556176 13.645697 0.60930 

MLE 50 1.5 2.0579 0.3112 20.3481738 20.4893795 0.42187 

LQM 0.9455 0.3074 11.5160797 11.6572854 0.6968512 

MLE 100 1.5 2.0215 0.2719 20.227250 20.6173304 0.41865 

LQM 0.9861 0.2640 11.480190 11.4801902 0.8265945 

MLE 150 1.5 2.0096 0.2596 20.1585418 20.2654372 0.4173 

LQM 0.9947 0.2553 11.3844624 11.5997348 0.8263621 

MLE 25 2 2.99975 0.9995 19.4512682 19.592473 0.568742 

LQM 2.35840 0.1284506 11.0760328 11.466112 0.46353 
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MLE 50 2 2.461513 0.2129942 19.3991800 19.529776 0.5391 

LQM 2.344135 0.1184 10.344744 10.48594 0.460023 

MLE 100 2 2.295922 0.0875698 19.3145039 19.506075 0.4177 

LQM 2.258038 0.0665836 10.3378268 10.444722 0.458388 

MLE 150 2 2.286174 0.0818955 17.8485466 18.238626 0.55919 

MLE 25 2.5 2.21659 0.080321 18.6930806 18.83428 0.5767 

LQM 2.25232 0.061345 10.9456870 11.33576 0.3637 

MLE 50 2.5 2.76611 0.070818 18.6209113 18.72780 0.51996 

LQM 2.71842 0.047707 10.3966089 10.53781 0.36289 

MLE 100 2.5 2.27823 0.049181 18.2968551 18.51212 0.55242 

LQM 2.30279 0.038891 10.3799173 10.48681 0.36328 

MLE 150 2.5 2.304577 0.038190 16.9933777 17.38345 0.558450 

LQM 2.34514 0.023981 10.233130 10.44840 0.36337 

MLE 25 3 2.18756 0.660058 18.29747 18.438684 0.57564 

LQM 2.70125 0.089251 10.89592 11.28600306 0.30306 

MLE 50 3 2.3806 0.560536 18.17272 18.2796201 0.51883 

LQM 2.851310 0.022108 10.31502 10.42192432 0.30297 

MLE 100 3 2.380371 0.383940 17.82421 18.03948788 0.54345 

LQM 2.88747 0.012663 10.24445 10.38566187 0.30372 

MLE 150 3 2.81755 0.033288 16.79956 17.189648 0.49514837 

LQM 2.9344 0.004303 10.07834 10.293615 0.3035 

 

5.2 DISCUSSION 

Table 2's simulation experiments show that the LQM method consistently produces lower MSE values and has a 

better model fit, as indicated by the AIC and BIC, than MLE Estimation. This constant advantage motivates additional 

investigation into why LQM beats MLE, particularly given the parameters of this study, which include small to medium 

sample sizes, a wide range of parameter values, and unique distribution features. 

Theoretical Foundations of MLE and LQM: MLE has long been the standard approach for parameter estimation due to 

its strong theoretical foundations. MLE determines parameter values that maximise the likelihood function and make the 

observed data most likely. As sample sizes increase, MLE estimators become more efficient, producing unbiased 

estimates with low variation. However, these asymptotic gains might be lost in smaller samples, when MLE may become 

unreliable, particularly in the presence of outliers or when important distributional assumptions are violated. LQM, on 

the other hand, focusses on quantiles (such as medians or percentiles) rather than MLE's moments (mean, variance). This 

focus allows LQM to be more resilient to departures from normality and the assumptions that MLE is based on. Because 

LQM is less impacted by extreme values and outliers, it produces more stable estimates in small to medium sample sizes, 

making it a viable option when MLE assumptions are not met.  

Flexibility with Model Misspecification: One key advantage of LQM is its adaptability in the situation of model 

misspecification. MLE relies largely on the chosen model accurately representing the underlying data-generation process. 

Deviations from the anticipated distribution can produce biassed estimates, raising MSE and reducing model fit, as 

evidenced by AIC and BIC. In contrast, LQM's lower reliance on the specifics of the likelihood function increases its 

adaptability in such scenarios, allowing it to perform effectively even when the model does not completely correlate with 

the data. 
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This work demonstrates that LQM regularly delivers correct parameter estimates under varied settings, retaining 

resilience across varying parameter values and distributions. For lesser parameter values (e.g., θ=0.25), LQM surpasses 

MLE in terms of MSE. Although the disparity narrows as θ grows, LQM still has an edge in MSE. 

Specific Distributions and Computational Complexity: It is important to highlight that these conclusions only apply to 

the specific distributions and parameter values studied. MLE may outperform LQM under different conditions, 

necessitating more research into a larger range of distributions. Furthermore, because LQM is a relatively new approach, 

it may have greater computational costs, particularly with large datasets, which could provide issues in large-scale 

applications in terms of processing time and resource allocation. 

 

5.3  REAL DATA 

This section shows how the  Poisson Lindley Distribution can be used in practice by fitting it to a real-world dataset. 

Bjerkedal initially supplied the dataset for this analysis in 1960. The dataset includes the survival durations of guinea 

pigs that were subjected to different tubercle bacilli dosages. It is known that guinea pigs are more vulnerable to 

tuberculosis than humans. Interestingly, a minimal infection with a few virulent tubercle bacilli can cause the disease to 

progress and eventually kill the patient. There are a total of 72 observations in Table 3, and the individual data points are 

listed below: 

 

Table 3: Seventy-two Guinea Pigs under Regime 6.6: Survival Times 

0.12 0.15 0.22 0.24 0.24 0.32 0.32 0.33 

0.34 0.38 0.38 0.43 0.44 0.48 0.52 0.53 

0.54 0.54 0.55 0.56 0.57 0.58 0.58 0.59 

0.60 0.60 0.60 0.60 0.61 0.62 0.63 0.65 

0.65 0.67 0.68 0.70 0.70 0.72 0.73 0.75 

0.76 0.76 0.81 0.83 0.84 0.85 0.87 0.91 

0.95 0.96 0.98 0.99 1.09 1.10 1.21 1.27 

1.29 1.31 1.43 1.46 1.46 1.75 1.75 2.11 

2.33 2.58 2.58 2.63 2.97 3.41 3.41 3.76 

 

A descriptive summary of these data can be found in the following table 4. 

 

Table 4: A few properties of the data collection. 

mean variance Skewness Kurtosis 

0.9981944 0.6580122 1.758953 2.459565 

 

Table 5 presents variance estimates for the unknown parameters and the associated Kolmogorov–Smirnov (K–S) 

statistics, along with their corresponding p-values for the Poisson-Lindley Distribution (PLD). An observation from Table 

5 reveals that the small K–S distance and the substantial p-value for the test collectively suggest a strong fit of the LQM 

estimates to the Poisson-Lindley Distribution. 

 

Table 5: Outcomes and Parameter Estimates with Goodness-of-Fit Test P-Values (P-values shown in 
parentheses) for Real Data 

methods 

 

estimate Statistics 

�̂� MSE AIC BIC Kolmogorov 

Smirnov 

𝜒2 

MLE 0.7806483 78.82717 297.4119 303.9652 0.20167 

(0.005723) 

398.28 

(2.2e-16) 

LQM 4.190217 78.71956 105.223 111.7763 0.076257 

(0.7965) 

2.0845 

(1) 

 

Based on a combined evaluation of Mean Squared Error (MSE), Akaike Information Criterion (AIC), and Bayesian 

Information Criterion (BIC), LQM is suggested as one of these approaches for this dataset. When it comes to parameter 

estimation for the Poisson Lindley distribution, LQM performs better. The data presented in Table 5 and Figure 8 provide 

substantial support for this inference, demonstrating that the LQM approach provides the most accurate fit to the dataset. 
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FIGURE 8: LQM estimate approach offers the best fit to the dataset 

6. CONCLUSION 

In conclusion, this study on Poisson Lindley Distribution parameter estimation techniques emphasises the superiority 

of the Linear Quantile Moment (LQM) approach and the significance of reliability analysis in assessing their 

dependability. In terms of accuracy and model fit, LQM consistently outperformed Maximum Likelihood Estimation 

(MLE) and a combined method, as demonstrated by extensive simulations and real guinea pig survival data analysis. 

These results highlight the effectiveness of LQM for this distribution and provide insightful information for applications 

in epidemiology, finance, and environmental studies. The work advances statistical methods for intricate processes and 

highlights the usefulness of using LQM for more accurate parameter estimation. 
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