
1

IJCCCE, VOL.9, NO.1, 2009

*Department of Electrical & Electronic Engineering University Of TechnologyBaghdad-Iraq,

Design of a Stochastic Re-Configurable Artificial Neural

Networks Using FPGA

Dr. Mutaz S. Abdul-Wahab* Dr. Hannan A. R. Akkar* Dr. Manal

H. Jassim*

Received on: 3/10/2007

Accepted on: 10/6/2009

Abstract

This paper uses the theory of stochastic arithmetic as a solution for the

FPGA implementation of a complex feed forward, multi layered neural network.

Compared with the traditional digital implementations, the stochastic approach

simplifies the computation involved and saves digital resources. The architecture

combines stochastic computation techniques with a novel Look Up-Table-based

that fully exploits the Look Up-Table structure of many FPGAs. Basic operations

of simple ANN are mapped into a modular design. The system control module,

random pulse generating module , bit stream generating module ,

LFSR_32(Liner Feedback Shift Register) sub module, modulator sub module,

neuron module and bit stream converter module , are described in hardware using

a schematic editor of the Foundation 4.1i, which is a software tool from Xilinx.

Thus the modules can be parameterized, providing easy scalability of the system

to the different applications constraints and requirements. The feasibility of the

proposed ANN is demonstrated by testing it using two case studies. The objective

of the first test is the to decomposition of Boolean Function sets (AND, OR,

EXOR) the simulation results show that the design is able to find the obtainable

values for the functions, while, the objective of the second test is to find the

frequency recognition for square wave with different frequencies, the simulation

results show that the design is suitable for using in this field.

 الخلاصة

(Field Programmable

Gate Array)4.1i

Stochastic Computing

Schematic Editor

HDLs

يخى ححٕيم انعًهياث الأساسيت .Xilinx ْٕٔ أداة بشيجيّ حٕفشْا 4.1iانًبشيجت باسخخذاو انبشَايج الأساسي

حيث يخى ٔصف انٕحذاث الأساسيت . انًكَٕت نٓزِ انشبكت انزكيت إنٗ حصًيى يكٌٕ يٍ ٔحذاث أساسيت

ٔحذة حٕنيذ انُبضاث , System Control Moduleأنًكَّٕ نهشبكت انزكيت ٔانخي حشًم ٔحذة انسيطشة

 Bit Streamٔحذة حٕنيذ سهسهت انبج , Random Pulse Generation Moduleانعشٕائيت

Generating Module , ٌٔٔحذة انُيشNeuron Module ٔحذة ححٕيم انبج ٔ Bit Stream

Converter Module بٕاسطت Schematic Editor ْٔزا يٕفش أيكاَيت بُاء حهك انٕحذاث ٔانخحكى بٓا

 ٔبانخاني يٕفش سٕٓنت Hardware Parametersيٍ قبم انًصًى ٔعٕايم أخشٖ خاصت بانًكَٕاث أنصهبّ

ٔنهخأكذ يٍ حصًيى انشبكت انًقخشح حى اخخباسْا باسخخذاو .يٕائًت انخصًيى نًخطهباث انخطبيقاث انًخخهفت

 ٔرنك يٍ خلال Boolean Gatesأنحانّ انخطبيقيت الأٔنٗ ْي حطبيق انذٔائش أنشقًيّ ,حانخيٍ حطبيقيخيٍ

أيا الاخخباس , Boolean Neural Networkححٕيم انخصًيى إنٗ شبكّ ركيت نخطبيق انعًهياث أنشقًيّ

ٔقذ أثبج انخطبيقاٌ َجاح , Frequency Recognitionانثاَي فٕٓ حطبيق حًيز انخشدداث أنًخغيشِ

 .انخصًيى

2

IJCCCE, VOL.9, NO.1, 2009 Design of a Stochastic Re-Configurable

 Artificial Neural Networks Using FPGA

1. Introduction

An artificial neural network

(ANN) is a parallel and distributed

network of simple non-linear

processing units interconnected in a

layered arrangement. Parallelism,

modularity and dynamic adaptation

are three computational

characteristics typically associated

with ANNs. FPGA-based

reconfigurable computing

architectures are well suited to

implement ANNs as one can exploit

concurrency and rapidly reconfigure

to adapt the weights and topologies

of an ANN.

1.1Review
All FPGA implementation of

ANNs attempt to exploit the

reconfigurability of FPGA hardware

in one way or another. Identifying

the purpose of reconfiguration sheds

light on the motivation behind

different implementation approaches

[1].

1-[1992][10]Max van Daalen, Pete

Jeavons, John Shawe-Taylor, and

Dave Cohen proposed a novel

technique for the generation of high

speed stochastic bit streams in which

the '1' density is proportional to a

given value. Bit streams of this type

are particularly useful in bit serial

stochastic computing systems, such

as digital stochastic neural networks.

This proposed circuitry is highly

suitable for VLSI fabrication.

2-Then in [1994][3] they present the

hardware design of an extremely

compact and novel digital

stochastic neuron, that has the

ability to generate the derivative of

its output with respect to an

arbitrary input. These derivatives

may be used to form the basis of

an on chip gradient descent

learning algorithm. Then they

present an expandable digital

architecture that provides an

efficient real time implementation

platform for large neural networks

[1994] [4]. The architecture makes

heavy use of the techniques of bit

serial stochastic computing to

carry out the large number of

required parallel synaptic

calculations. In this design all real

valued quantities are encoded on to

stochastic bit streams in which the

'1' density is proportional to the

given quantity. The actual digital

circuitry is simple and highly

regular thus allowing very efficient

space usage of fine graind FPGAs.

Another feature of the design is

that the large number of weights

required by a neural network are

generated by circuitry tailored to

each of their specific values, thus

saving valuable cells. Whenever

one of these values is required to

change, the appropriate circuitry

must be dynamically reconfigured.

This may always be achieved in a

fixed and minimum number of

cells for a given bit stream

resolution.

3-[1994] [5] Michael Gschwind,

Valentina Salapura, Oliver

Maischberger show how FPGA

can be used to efficiently

implement neural nets. By

implementing the training phase in

software and the actual application

in hardware, conflicting demands

can be met: training benefits from

a fast edit-debug cycle, and once

the design has stabilized, a

hardware implementation results in

3

IJCCCE, VOL.9, NO.1, 2009 Design of a Stochastic Re-Configurable

 Artificial Neural Networks Using FPGA

higher performance. They present

a bit-serial encoding scheme and

computation model, which allows

space-efficient computation of the

sum of weighted inputs, thereby

facilitating the implementation of

complex neural networks. Then

they present an expandable digital

architecture which allows fast and

space-efficient computation of the

sum of weighted inputs, providing

an efficient implementation base

for large neural networks[1994][6].

4-[1994] [6, 8, 9,10] James G.

Eldredge and Brad L.Hutchings

proved that the Run-Time

Reconfiguration is a way of more

fully exploiting the flexibility of

reconfigurable FPGAs. The

RRANN uses run-time

reconfiguration to increase the

hardware density of FPGAs. This

is done by dividing the

backpropagation algorithm into

three sequentially executed stages

and configuring the FPGAa to

execute only one stage at a time.

The FPGAs are reconfigured as

part of normal execution in order

to change stages. Using

reconfigurability in this way

increases the number of hardware

neurons a single FPGA can

implement by 500%.

5-[1994] [11] Stephen L. Bade and

Brad L. Hutchings present an

architecture that makes it feasible

to implement large ANNs with

FPGAs. The architecture combines

stochastic computation techniques

with a novel lookup-table-based

architecture that fully exploits the

lookup-table-structure of many

FPGAs.

6-[1995] [12] M. van Daalen, T.

Kosel, P. Jeavons, and J. Shawe-

Taylor present the results of

experimental work that

demonstrates the generation of

linear and sigmoid activation

functions in a digital stochastic bit-

stream neuron.These activation

function are generated by a

stochastic process and require no

additional hardware, allowing the

design as an individual neuron to

be extremely compact.

7-[1996] [13] Michael Gschwind,

Valentina Salapura, Oliver

Maischberger present an

extendable digital architecture for

the implementation of a Hopfield

NN using FPGAs. They exploit the

reprogrammability of these devices

to support on-chip learning.

8-[1997] [14] M. Rossmann, A.

Buhlmeier, and G. Manteuffe, K.

Goser present the implementation

of the Hebbian learning rule in a

hardware-friendly architecture

based on a stochastic pulse

representation of the signals. They

compare implementation costs and

speed of this approach with those

of a parallel and a bit-serial

implementation.

9-[1998] [15] Jean-Luc Beuchat,

Jacques-Olivier Haenni and

Eduardo Sanchez present the

concept of reconfigurable systems

using the example of a digital

hardware implementation of NN,

as well as RENCO, a platform

very well-suited for the

prototyping of such systems.

10-[2000] [16] Kathernie Compton

and Scott Hauck give an

overview of the hardware

architectures of reconfigurable

computing machines, and the

software that targets these

machines, such as compilation

4

IJCCCE, VOL.9, NO.1, 2009 Design of a Stochastic Re-Configurable

 Artificial Neural Networks Using FPGA

tools. And they consider the

issues involved in run-time

reconfigurable system, which re-

use the configurable hardware

during program execution.

11-[2000] [17] Hector Fabio

Restrepo, Ralph Hoffmann and

Andres Perez-Uribe describe a

networked FPGA-based

implementation of the FAST

(Flexible Adaptable-Size

Topology) architecture. They

used a network of Labomat 3

boards (a reconfigurable

platform developed in this work

laboratory).

12-[2003] [18] Kristian Robert

Nichols created in his Master

thesis a new FPGA-based ANN

architecture, called RTR-MANN

to demonstrate the performance

enhancements gained from using

current-generation tools and

methologies. RTR-MANN was

shown to have an order of

magnitude with more scalability

and functional density compared

to order-generation FPGA-based

ANN architectures.

13-[2004] [19] Dennis Duncan Earl,

in his PhD. Thesis, genetic

algorithms to evolve complex

architecture ANN designs in

FPGAs using reconfigurable

hardware. His system presented

as a powerful new tool for

researchers working to develop

both artificially intelligent

systems and complex evolvable

hardware.

14-[2005] [20]David Verstracten,

Benjamin Schrauwen and Dirk

Stroobant used analogue neurons

to build an RC-system(Reservoir

Computing) on FPGA, using

stochastic neurons that

communicates using stochastic

bit streams instead of fixed-point

values. This drastically

simplifies the hardware

implementation of arithmetic

operations such as addition, the

nonlinearity and multiplication.

15-[2006] [21] Roman Kohut, Bernd

Steinbach and Domink Frohlich

suggest a new approach for the

modelling of Boolean NN on

FPGAs using UML. In this work

they decreased of the required

number of configurable logic

blocks(CLB) for the realization

of Boolean neuron that is

mapped directly to Look Up-

Table(LUT) and configurable

logic block(CLB) of FPGAs.

16-[2006] [22] Saumil G. Merchant,

Gregory D. Peterson and Seong G.

Kong designed an intrinsic

embedded online evolution system

using Block-based neural networks

and implemented on Xilinx Virtex

II Pro FPGAs. The designed

network can dynamically adapt its

structure and parameters to input

data pattern variations without any

FPGA reconfiguration overheads,

overcoming a major bottleneck for

online evolution systems.

2. Stochastic Arithmetic

The hardware implementations

of many Artificial Neural Networks

applications are normally space

consuming due to the huge size of

digital multipliers, adders, etc.

Stochastic arithmetic provides a way

to carry out complex computations

with very simple hardware and very

flexible design of the system. The

stochastic implementation is also

compatible with modern VLSI

design and manufacturing

technology. The fundamental

5

IJCCCE, VOL.9, NO.1, 2009 Design of a Stochastic Re-Configurable

 Artificial Neural Networks Using FPGA

principles of the stochastic

arithmetic are summarized as

follows [11]:

 All inputs are transformed into

the binary stochastic pulse streams.

This is called randomization. In this

step, the real number is coded into a

sequence of binary bits where the

information is contained in the

probability of any given bit in the

stream being logic '1'.

 The stochastic arithmetic that

consists of digital gate circuits takes

place of the normal arithmetic. After

the first step, the real number

becomes the one bus random stream

and so the math operations including

multiplication, addition, division,

integration and many others can be

implemented with simple digital

circuits.

 The stochastic pulse streams are

converted back to the normal

numerical values. After these

corresponding mathematical

operations, the result is still the

stochastic binary streams. This

process is to extract the probability

information from the streams and get

the real number with the proper

representation type. This step is

called de randomization.

2-1 Stochastic Multiplication (Bit-

Serial Multipliers)

Multiplication is the basic

arithmetic operation and typically

presents the advantage of the

stochastic arithmetic. Figure-1a

shows the traditional digital logic

unsigned 4 x 4 multiplier which

composes tens of logic gates,

however, the stochastic unsigned

multiplier shown in Figure-1b

greatly reduces the number of the

logic elements used for the

calculation. Figure-1c presents an

example of unsigned stochastic

multiplication. The stochastic

unsigned multiplier uses an AND

gate as the arithmetic operator. With

the one-bit stream represented

inputs, the unsigned multiplication is

as simple as just one AND gate. It is

obvious that (Px AND Py) = Px . Py

= X . Y. The digital implementation

of signed multiplication is derived

based on the following equations [8]:

X=2Px–1

(2.1)

Y=2Py–1

(2.2)

PXNOR= Px . Py + (1–Px). (1– Py) = 2 .

PxPy – Px – Py + 1

(2.3)

X.Y = (2Px – 1). (2Py – 1) = 4. PxPy

– 2Px – 2Py + 1 = 2.(2 . PxPy – Px –

Py + 1) – 1 = 2PXNOR – 1

(2.4)

(Eq.2.3) gives the signed

representation of X, Y and X.Y

while the output of a XNOR gate has

the probability relation of (Eq.2.4)

that derives the expression of the

signed multiplication and so the

signed multiplication could be

performed using one XNOR gate.

2.2 Stochastic Addition (The Bit-

Serial Adder)

The stochastic unsigned

addition presents in Figure-2. It is

based on a two-port selector and the

selection signal is decided by a

stream of random bits which has the

equal probability to be '1' and '0' .

The two inputs are all transformed

into stochastic representations. The

selector randomly chooses the output

from the two input streams. Since

the possibility of both ports is the

same, so the result contains the

probability information from both

6

IJCCCE, VOL.9, NO.1, 2009 Design of a Stochastic Re-Configurable

 Artificial Neural Networks Using FPGA

two input ports which gives the

addition performance. From Figure-

2, if the input X has the probability

of Px and the probability of Py, the

output stream has the output

probability of (Px+Py)/2 which is

automatically normalized [11].

2.3 Stochastic Square.

The stochastic square

operation presents in Figure-3. It is

composes of a D Flip-Flop and an

AND gate. The AND gate performs

the stochastic unsigned

multiplication and the two inputs are

the input X and its sequence after the

D Flip-Flop. Based on the random

theory, the output of the D Flip-Flop

has the same probability as the input

sequence. However, it is

independent of its input sequence,

which is an important condition for

the stochastic unsigned

multiplication [11].

2.4 Stochastic Signed Subtraction

(Bit-Serial Subtracted)

The stochastic signed

subtraction presents in Figure-4. It is

similar to the unsigned addition

where a NOT gate is used to change

the sign [11].

3. Design Re-Configurable ANN

Circuitry

The design of re-configurable

ANN circuit consists of the

following five top-level modules:

 System Controller

Module

 Random Pulse

Generator Module

 Bit-Stream

Generator Module

 Bit-Stream

Converter Module

 Neuron Module

The overall layout and

interconnection of the five top-level

modules is shown in Figure-5.

3.1 System Controller Module

The System Controller Module

is responsible for resetting and

initializing all of the modules during

power-up or reset and for controlling

all timing signals. There is only one

system controller module for any

given design. The schematic of

module is shown in Figure-6. 4 MHz

(time period of clock signal =

0.25µs) is the system clock that

serves as the global clock for the

circuit. Upon power up, the system

clock feeds an 8-bit counter whose

output feeds three comparators used

for system initialization. After 100

pulses of the system clock, one

comparator sends an enable signal to

the Random Pulse Generator

module. After 200 pulses, one

comparator sends an enable signal to

the Bit-Stream Generator modules.

After 250 pulses, one comparator

sends an enable signal to the Bit-

Stream Converter modules. This last

comparator's signal is routed back to

the 8-bit counter's enable pin

allowing the comparator signals to

remain static (until the reset pin to

the module is triggered), the system-

controller operation was tested using

simulation tools as shown in Figure-

6a .

3.2 Random Pulse Generator

Module

 RPG module is responsible for

generating a random 4-bit address

value to be used by the Neuron

modules. This level of randomness is

more than suitable for ANN designs.

An overview of Random Pulse

Generator module is shown in

Figure-7. The clock input triggers an

7

IJCCCE, VOL.9, NO.1, 2009 Design of a Stochastic Re-Configurable

 Artificial Neural Networks Using FPGA

LFSR_32 sub module and four

bs_generator12 sub modules

(because most multifunction data

acquisition boards are of a 12 digital

I/O pins).The LFSR_32 sub module

is a 32-bit Maximal Length Linear

Feedback Shift Register (LFSR)

that generates a pseudo-random

stream of pulses . The LFSR_32 sub-

module (consisting mainly of D-flip-

flops) is shown in Figure.8: .the

probability of receiving a high

output from the LFSR_32 is 0.5 (i.e.

for a given clock cycle, there is an

equal chance of receiving a high

output versus a low output). In

Figure-7, it is seen that the random

output from LFSR is passed through

to an output pin on the Random

Pulse Generator module and it is

also used internally to produce four

unique random pulses via the

bs_generator12 sub-module. The

bs_generator12 sub module allows

the 'firing' probability of the original

LFSR output to be weighted. The

details of the bs_generator12 sub

module are shown in Figure-9. The

waveform output from

bs_generrator12 sub module (which

is presented in RPG module) are

shown in Figure-7a:.The

bs_generator12 sub-module modifies

the input firing probability using the

stochastic arithmetic techniques .The

circuitry at the heart of the sub-

module is the modulator, shown in

Figure-10.

The four bs_generator12 sub-

modules, contained within the

Random Pulse Generator module,

allow the LFSR output to be

modified such that it creates four

outputs having a firing probability of

0.666178 (0.101010101000),

0.799511 (0.110011001010),

0.947008 (0.11110010011) and

0.994383 (0.111111101000).These

outputs are assigned the labels

Address-Bit-Stream[0], Address-Bit-

Stream[1], Address-Bit-Stream[2]

and Address-Bit-Stream[3] .The

result is a randomly generated 4-bit

Address value that can take on any

value between 0 and 15.

3.3 Bits-Stream Generator Module

The Bit-Stream Generator

module is responsible for taking 12-

bit input values and converting them

into stochastic bit-streams. The

number of Bit-Stream Generator

modules required in an ANN design

depends on the number of

inputs .The circuitry for the Bit-

Stream Generator is very similar to

the bs_generator12 sub-modules

shown previously in Figure.9: .The

only difference is that the input to

the Bit-Stream Generator module is

an external 12-bit pin on the FPGA

chip, and these inputs are AND-ed

with an ' Enable ' pin.

3.4 Neuron Module

The Neuron module is

responsible for multiplying chosen

inputs by static weight values,

summing the results, and then

producing a non-linear (pseudo-

sigmoid) output. These are the

fundamental operations of the

neuron model. Because these

operations are performed through

stochastic arithmetic techniques, the

circuitry for the Neuron module is

actually quite small. 3-input Neuron

shown in Figure-11: consists of three

Look Up-Tables (labelled LUT0),

some AND and OR gates, and two

D-Flip-Flop. Each Look Up-Table

has a 4-bit Address line (which is fed

by the Random Pulse Generator

module discussed previously), a 16-

8

IJCCCE, VOL.9, NO.1, 2009 Design of a Stochastic Re-Configurable

 Artificial Neural Networks Using FPGA

bit weight value input, and a clock

input. The 16-bit weight value fills

the Look Up-Table with data to be

accessed by the address lines

resulting in a final output, q, which

is a stochastic representation of a 16-

bit weight value. Based on the

weight value for the ANN design,

these weight values are multiplied

(stochastically) with the inputs

(input as bit-streams from the Bit-

Stream Generator modules) using

AND gates. The result of each

multiplication is summed and

thresholdned using OR gates. The

output is a bit-stream of date

representing the neuron's final

output. This output can then be fed

to other neurons based on the

connectivity in the ANN design.

3.5 Bits-Stream Converter Module

The Bit-Stream Converter

module is responsible for converting

bit-stream signals into 12-bit output

signals. To do this, it is necessary to

define a fixed bit-stream pulse length

over which to calculate the average

probability of firing. The circuitry of

the Bit-Stream Converter module is

shown in Figure-12. For an ANN

design with N number of primary

outputs, N numbers of Bit-Stream

Converter modules are required.

4. Experimental Result and

Implementation

4.1 Case Study 1 : AND- OR-

EXOR Decomposition of the

BNN.

The trained Boolean Neural

Network represents an output signal

y0, y1, …., y8 . Each of which is

defined on three variables x1, x2 and

x3 (Table 1 :). Let the transfer

functions of hidden neurons be

Boolean dependences, which are

expressed as:

 Hidden neuron

Out
[z]

 = f
 [z]

 (Inpi . wi
[z]

)

(4.1)

Out
[z]

 - output signal of the neuron

with number z.

 f
 [z]

 - transfer function of the

neuron with number z.

[z] - index z = 1,…., zN .

zN - number of neurons on the

hidden layer,

 f
[i]

 ≠ f
 [j]

 : i ≠ j i , j [1,

zN]

 Output neuron

Out
[j]

 =
nz

if 1 (Inpi wi

[j]
)

(4.2)

 f { AND, OR, EXOR }

 [j] - number of neuron on the

output layer of the BNN

Table 1: The Input of the BNN

The weight coefficients obtained by training

the net in MATLAB program are shown in

Table 2: and Table 3:

Table 2: Weight Coefficients for

Input, Hidden neurons

 W1 W2 W

3

W4 W5 W6

AND 1 1 0 1 1 1

 0 1 1 1 1 1

 1 1 1 1 1 1

OR 1 1 1 1 1 1

 1 1 1 0 1 1

 0 1 1 1 1 1

EXOR 1 1 1 1 1 1

 1 1 1 1 0 1

 1 1 1 1 1 1

X1 X2 X

3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

9

IJCCCE, VOL.9, NO.1, 2009 Design of a Stochastic Re-Configurable

 Artificial Neural Networks Using FPGA

Table 3: Weight coefficients for

Hidden, Output neurons

By training of BNN, the number

of inputs for neurons was restricted

to the number of inputs of the LUT

of the FPGA .The structure of the

BNN for a set of Boolean function

(AND, OR, EXOR) in to common

NN. The output waveform shown in

Figure-13

4.2 Case Study 2: Frequency

Recognition

The proposed network is tested

with another experiment which is a

frequency recognition problem for a

square waveform of varying

frequency (ranging from 1MHz,

0.5MHz, 0.25MHz, 0.1MHz, and

0.125MHz). Figure-14: shows the

output waveform from the

Frequency Recognition NN with

three inputs and three Hidden

Neurons and one output neuron with

weight equal to [1 0 1] .

4.3 Reports
The reports can be summarized

as shown in Table 4: as follows:

1- The hardware cost for the Neural

network design is shown in

Table 4:. It is clear that the

hardware utilization for the

proposed BNN is 100% of FPGA

platform but for Frequency

Recognition NN is 34%.

2- All modules which belong to the

neural network design are fitted

on the same FPGA platform

Spartan-xl. The hardware

utilization for BNN was 100% of

the platform capacity. i.e. a

larger capacity version is needed

for this applications on the

proposed Neural Network design

such as Virtex to be fitted on the

same FPGA platform (Virtex

xcv400 hase a Number of

Slices=4800, IOB=404, Block

RAM=20).

The software (Xilinx Foundation

v4.1i) which was used, was not

produced

3- No error was declared in all the

reports with the analysis

components belonging to Virtex

but from the results of the

reports it is noted that the

proposed BNN design needs a

larger number of units from

Spartan-xl) ..

4- The worst case connection delay

for the BNN network is

10.950ns, for Frequency

Recognition NN is 1.303ns.

5. Conclusion

In This paper it is demonstrated

that it is possible to construct a

stochastic Re-configurable Artificial

Neural Network based Look Up-

Table that maps efficiently to

FPGAs with minimal digital

circuitry. Each of the FPGA Neural

Network modules is verified to be

functionally correct through

numerous simulations. After the

correct functionality of each module

has been verified, the modules are

connected to each other and the

system is synthesized and

implemented successfully using

Xilinx Foundation 4.1i synthesis and

implementation tools. It is shown

that such a neuron of the proposed

network produces an emergent

activation function without any

 W

1
W

2
W

3
W

4
W

5
W

6

AN

D

0 1 0 0 0 1

OR 0 1 1 0 0 1

EX

OR

0 0 1 1 1 0

10

IJCCCE, VOL.9, NO.1, 2009 Design of a Stochastic Re-Configurable

 Artificial Neural Networks Using FPGA

additional hardware, of the predicted

mathematical form. In most

application of these neurons, it is

envisaged that a sigmoid activation

function would be the most useful,

as this corresponds most closely to

the standard neural network model.

It exploits all of the advantages

inherent to FPGAs: low cost,

availability, re-configurability, the

ability to support arbitrary network

architectures, lower development

costs, all while providing a level of

density that makes it feasible to

implement large ANNs with FPGAs.

References

[1] Jihan Zhu and Peter Sutton, "

FPGA Implementations of

Neural Networks-a Survey of a

Decade of Progress, " In

proceeding of 13
th

 International

Conference on Field

Programmable Logic and

Applications (FPL 2003),

Lisbon, Sep 2003.

[2] Max van Daalen, Peter Jeavons,

John Shawe-Taylor and Dave

Cohen, " A Device for

Generating Binary Sequences for

Stochastic Computing, "

Electronics Letters, Vol. 29, No.

1, pp. 80-81, Jan 1993.

[3] Max van Daalen, J. Zhao and

John Shawe-Taylor, " Real Time

Output Derivative for on Chip

Learning Using Digital

Stochastic Bit Stream Neurons, "

Electronics Letters, Vol. 30, No.

21, pp. 1775-1777 , 1994.

[4] Max van Daalen, Peter Jeavons

and John Shawe-Taylor, "A

Stochastic Neural Architecture

that Exploits Dynamically

Reconfigurable FPGAs, " In

Proceedings. IEEE workshop on

FPGAs for custom computing

machines, pp. 202-211, 1993.

[5] Michael Gachwind, Valentina

Salapura and oliver

Maischberger, " Space Efficient

Neural Net Implementation, "

Proc. Of the Second International

ACM/SIGDA workshop on

Field-Programmable Gate

Arrays. Berkeley, CA, ACM,

February 1994.

[6] Valentina Salapura, Michael

Gachwind and oliver

Maischberger, " A Fast

Implementation of a General

Purpose Neuron, " Lecture Notes

in Computer Science 849,

Springer Verlag, Berlin, 1994.

[7] J. G. Eldredge and B. L.

Hutchings, "Density

Enhancement of a Neural

Network Using FPGAs and Run-

Time Reconfiguration, "In

Proceedings. IEEE workshop on

FPGAs for custom computing

machines, pp. 180-188, 1994.

[8] James G. Eldredge and Brad L.

Hutchings, " RRANN: The Run-

Time Reconfiguration Artificial

Neural Network, " presented at

IEEE Custom Integrated Circuits

Conference, San Diego, CA, pp.

77-80, May 1-4, 1994.

[9] James G. Eldredge, " FPGA

Density Enhancement of a

Neural Network through Run-

Time Reconfiguration, " MS.c.

Thesis, Brigham Young

University, May 1994.

[10] J. D. Hadley and B. L.

Hutchings, " Designing a

Partially Reconfigured System,

" in Proceedings. IEEE

workshop on FPGAs for

custom computing machines,

1995.

11

IJCCCE, VOL.9, NO.1, 2009 Design of a Stochastic Re-Configurable

 Artificial Neural Networks Using FPGA

[11] Stephen L. Bade and Brad L.

Hutchings, " FPGA-Based

Stochastic Neural Networks-

Implementation, " in

Proceedings. IEEE workshop

on FPGAs for Custom

Computing machines, pp. 189-

198, 1994.

[12] Max van Daalen, Peter Jeavons,

T. Kosel and John Shawe-

Taylor, " Emergent Activation

Functions from a Stochastic

Bit-Stream Neuron, "

Electronics Letters, Vol. 30,

No. 4, pp. 331-333 , Feb 1994.

[13] Michael Gachwind, Valentina

Salapura and oliver

Maischberger, " A Generic

Block for Hopfield Neural

Networks with On-Chip

Learning, " IEEE International

Symposium on Circuits and

Systems, Atlanta, GA, May

1996.

[14] M. Rossmann, A. Buhimeier, G.

Manteuffe and K. Goser, "

Short- and Long-Term

Dynamics in a Stochastic Pulse

Stream Neuron Implemented in

FPGA, " In Artificial Neural

Networks: 6
th

 international

conference; proceedings

(ICANN 96), Germany, 1997.

[15] Jean-Luc Beuchat, Jacques-

Oliver Haenni and Eduardo

Sanchez, " Hardware

Reconfigurable Neural

Networks, " IPPS/SPDP

workshops, pp 91-98, 1998.

[16] Katherine Compton and Scott

Hauck, " An Introduction to

Reconfigurable Computing, "

IEEE Computer, April, 2000.

[17] Hector Fabio Restrepo, Ralph

Hoffmann, Andres Perez-

Uribe, Christof Teuscher and

Eduard Sanchez, " A

Networked FPGA-Based

Hardware Implementation of a

Neural Network Application, "

Logic System Laboratory,

Swiss Federal Institute of

Technology, Lausanne,

Switzerland, 2000.

[18] Kristian Robert Nichols, " A

Reconfigurable Computing

Architecture for Implementing

Artificial Neural Networks on

FPGA, " MS.c. Thesis,

University of Guelph, 2004.

[19]Dennis Duncan Earl, "

Development of an FPGA-

Based hardware evaluation

system for use with GA-

Designed Artificial Neural

Networks, " Ph.D. Thesis,

University of Tennessee,

Knoxville, May 2004.

[20] David Verstraeten, Benjamin

Schrauwen and Dirk

Stroobandt, " Reservoir

Computing with Stochastic Bit

stream Neurons, " Available at

http://citeseer.com,2005.

[21] Roman Kohut, Bernd Steinbach

and Dominik Frohlich, " FPGA

Implementation of Boolean

Neural Networks Using UML,

" Proceeding of the 5
th

International workshops on

Boolean Problems, BP 2006-

FPGA-BNN, 2006.

[22] Saumil G. Merchant, Gregory

D. Peterson and Seong G.

Kong, " Intrinsic Embedded

Hardware Evolution of Block-

Based Neural Networks, " In

ECE Dept, MS, Knoxville:

University of Tennessee, 2006.

http://apiacoa/

12

IJCCCE, VOL.9, NO.1, 2009 Design of a Stochastic Re-Configurable

 Artificial Neural Networks Using FPGA

 84

System-Clock-Out

System-ClockIn-

Reset-In

BSG-Output-Enable

RPG-Output-Enable

Network-Enable

Reset-out

System-Clock

Output-Enable
Reset Adrres-Bit-Stream-A0

Adrres-Bit-Stream-A1
Adrres-Bit-Stream-A2

Random-Pulse-Out

Input(11..0)

Carrier-Signal-In

System-Clock

Output-Enable

Reset

Bit-Stream-Out

Carrier-Signal-Out

System Controller

Random Pulse Generator

Bit-Stream Generator

Input(11..0)

Carrier-Signal-In

System-Clock

Output-Enable

Reset

Bit-Stream-Out

Carrier-Signal-Out

Bit-Stream Generator

Input(11..0)

Carrier-Signal-In

System-Clock

Output-Enable

Reset

Bit-Stream-Out

Carrier-Signal-Out

Bit-Stream Generator

.

.

Continue for Total

Number of Input

Neuron Architecture

Area

Bit-Stream Convertor

.

.

Continue for Total

Number of Onput

Bit-Stream-Input

System-Clock

IO-Clock

Output-Enable

Reset

Output(11..0)

Bit-Stream Convertor
Bit-Stream-Input

System-Clock

IO-Clock

Output-Enable
Reset

Output(11..0)

Bit-Stream Convertor

Bit-Stream-Input

System-Clock

IO-Clock

Output-Enable

Reset

Output(11..0)

Neuron

Input1

Input2

Input3

Address-Bit-Stream-A0

Address-Bit-Stream-A1

Address-Bit-Stream-A2

System-Clock

Output

Clk

Reset

I0

I1

I2

O0

O1

O2

Peripheral Circuitry

Fig-5 A Complet View of the Network

 85

aeb

agb

Dataa[7..0]

Datab[7..0]

Comparator_Bit8

aeb

agb

Dataa[7..0]

Datab[7..0]

Comparator_Bit8

aeb

agb

Dataa[7..0]

Datab[7..0]

Comparator_Bit8

Q[7..0]clk

Sclr

C_en

Counter_Bit8

Q

Q
SET

CLR

D

GND

Reset

Sys_clk_in

Reset_out

IO_Enable

BSG_Enable

RPG_Enable

Sys_clk_out

Vcc
GND

Vcc

GND

Vcc

These constants represent 100(RPG), 200(BSG) & 250(IO)

BUFGP

.

Fig-6 Schematic of System Controller Module

 86

Fig-6a the waveform output from system controller Module

 87

inputA[11..0]

Activate

Carrier in

clk

Carrier out

out1

clk
out1

inputA[11..0]

Activate

Carrier in

clk

Carrier out

out1

inputA[11..0]

Activate

Carrier in

clk

Carrier out

out1

inputA[11..0]

Activate

Carrier in

clk

Carrier out

out1

GND
Vcc

GND
Vcc

GND
Vcc

GND
Vcc

Random_Pulse_out

Address_Bit_Stream[3]

Address_Bit_Stream[2]

Address_Bit_Stream[1]

Address_Bit_Stream[0]

LFSR_32
clk

Vcc

Output_enable

These Constants Are Represented in Irrational Binary

(A0=0.666178,A1=0.799511,A2=0.947008,A3=0.994383)

Constant_A1(11)Constant_A2(11) Constant_A0(11)Constant_A3(11)

Constant_A1(0) Constant_A0(0)Constant_A2(0)Constant_A3(0)

Constant_A1[11..0]

Constant_A0[11..0]

Constant_A2[11..0]

Constant_A3[11..0]

Bs_generator12

Bs_generator12

Bs_generator12

Bs_generator12

Fig-7 Schematic of Random Pulse Generator Module

 88

Fig-7a the waveform output from RPG Module (bs-generator sub module)

 89

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

out1

clk
C_en

Sclr

Q[1..0]

clk

Q-out[1..0]

32 D-flip-flop

GNDInv

Fig-8 Schematic of LFSR_32 Sub-Module

 90

Activate

ModBit

PreStage

Carrier

Clk

out1

Modulator

InputA8

Activate

ModBit

PreStage

Carrier

Clk

out1

Modulator

InputA9

Activate

ModBit

PreStage

Carrier

Clk

out1

Modulator

InputA10

Activate

ModBit

PreStage

Carrier

Clk

out1

Modulator

InputA11

Activate

ModBit

PreStage

Carrier

Clk

out1

Modulator

InputA4

Activate

ModBit

PreStage

Carrier

Clk

out1

Modulator

InputA5

Activate

ModBit

PreStage

Carrier

Clk

out1

Modulator

InputA6

Activate

ModBit

PreStage

Carrier

Clk

out1

Modulator

InputA7

Activate

ModBit

PreStage

Carrier

Clk

out1

Modulator

InputA0

Activate

ModBit
PreStage

Carrier

Clk

out1

Modulator

InputA1

Activate

ModBit

PreStage

Carrier

Clk

out1

Modulator

InputA2

Activate

ModBit

PreStage

Carrier

Clk

out1

Modulator

InputA3

Q

Q
SET

CLR

D

clk

Out1

Carrier_Out

Carrier_In

Activate

InputA[11..0]

G
N

D

Fig-9 Schematic of Bit Stream-Generator Sub-Module

 91

Address[3..0]
Inclk

Weight[15..0]

q

Address[3..0]
Inclk

Weight[15..0]

q

Address[3..0]
Inclk

Weight[15..0]

q

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Output

Input_bsg_I0

Input_bsg_I1

Input_bsg_I2

Clk

Weight from I0_ne1

Weight from I1_ne1

Weight from I2_ne1

Address0[3..0]

Address1[3..0]

Address2[3..0]

LUT0

LUT0

LUT0

Fig-11 Schematic of Neuron Module (with 3 input)

 92

clr

clk

C_en

q[11..0]

clk

C_en

q[11..0]

Data[11..0]

clr
clk

C_en
q[11..0] aeb

Dataaa[11..0]

Datab[11..0]

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Constant1[11..0]
Vcc

Vcc

Reset

Sys-clk-in

Bit-Stream-in

Constant1[11..0] Represents 255

Output1[11..0]

Comparator_Bit12Counter-Bit12

Counter-Bit12
Dff-Bit12

enable

Fig-12 Schematic of Bit Stream-Converter Module

 93

Fig-13 the waveform of BNN for a set of Boolean Function

 94

Fig-14 the waveform out from Frequency Recognition NN

Table 4: Hardware Utilization of the Boolean NN, Frequency Recognition NN

 CLB(100) CLB

F.F(200)

4INPUT

LUT(200)

3INPUT

LUT(100)

16X1

RAM

I/O

BLOCKS(61)

GATES

COUNT

ADDITIONAL

GATES

BNN 100(100%) 147(73%) 175(88%) 11(11%) 1 30 2610 1488

F. Rec. 34(34%) 38(19%) 40(20%) 6(6%) 0 16 776 768

C
h

a
p

ter T
h

ree

	د.منال(6)
	د.منال حمادي-تابع

