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Abstract 

This paper uses the theory of stochastic arithmetic as a solution for the 

FPGA implementation of a complex feed forward, multi layered neural network. 

Compared with the traditional digital implementations, the stochastic approach 

simplifies the computation involved and saves digital resources. The architecture 

combines stochastic computation techniques with a novel Look Up-Table-based 

that fully exploits the Look Up-Table structure of many FPGAs. Basic operations 

of simple ANN are mapped into a modular design. The system control module, 

random pulse generating module ,  bit stream generating module , 

LFSR_32(Liner Feedback Shift Register) sub module, modulator sub module, 

neuron module and bit stream converter module , are described in hardware using 

a schematic editor of the Foundation 4.1i, which is a software tool from Xilinx. 

Thus the modules can be parameterized, providing easy scalability of the system 

to the different applications constraints and requirements. The feasibility of the 

proposed ANN is demonstrated by testing it using two case studies. The objective 

of the first test is the to decomposition of Boolean Function sets (AND, OR, 

EXOR) the simulation results show that the design is able to find the obtainable 

values for the functions, while, the objective of the second test is to find the 

frequency recognition for square wave with different frequencies, the simulation 

results show that the design is suitable for using in this field. 

 الخلاصة

(Field Programmable 

Gate Array)4.1i

Stochastic Computing

Schematic Editor

HDLs

يخى ححٕيم انعًهياث الأساسيت .Xilinx ْٕٔ أداة بشيجيّ حٕفشْا 4.1iانًبشيجت باسخخذاو انبشَايج الأساسي 

حيث يخى ٔصف انٕحذاث الأساسيت . انًكَٕت نٓزِ انشبكت انزكيت إنٗ حصًيى يكٌٕ يٍ ٔحذاث أساسيت

ٔحذة حٕنيذ انُبضاث  , System Control Moduleأنًكَّٕ نهشبكت انزكيت ٔانخي حشًم ٔحذة انسيطشة 

 Bit Streamٔحذة حٕنيذ سهسهت انبج  , Random Pulse Generation Moduleانعشٕائيت 

Generating Module  ,  ٌٔٔحذة انُيشNeuron Module ٔحذة ححٕيم انبج ٔ Bit Stream 

Converter Module بٕاسطت Schematic Editor ْٔزا يٕفش أيكاَيت بُاء حهك انٕحذاث ٔانخحكى بٓا 

 ٔبانخاني يٕفش سٕٓنت Hardware Parametersيٍ قبم انًصًى ٔعٕايم أخشٖ خاصت بانًكَٕاث أنصهبّ

ٔنهخأكذ يٍ حصًيى انشبكت انًقخشح حى اخخباسْا باسخخذاو .يٕائًت انخصًيى نًخطهباث انخطبيقاث انًخخهفت 

 ٔرنك يٍ خلال Boolean Gatesأنحانّ انخطبيقيت الأٔنٗ ْي حطبيق انذٔائش أنشقًيّ ,حانخيٍ حطبيقيخيٍ

أيا الاخخباس  , Boolean Neural Networkححٕيم انخصًيى إنٗ شبكّ ركيت نخطبيق انعًهياث أنشقًيّ 

ٔقذ أثبج انخطبيقاٌ َجاح  ,  Frequency Recognitionانثاَي فٕٓ حطبيق حًيز انخشدداث أنًخغيشِ 

 .انخصًيى 
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1. Introduction 

An artificial neural network 

(ANN) is a parallel and distributed 

network of simple non-linear 

processing units interconnected in a 

layered arrangement. Parallelism, 

modularity and dynamic adaptation 

are three computational 

characteristics typically associated 

with ANNs. FPGA-based 

reconfigurable computing 

architectures are well suited to 

implement ANNs as one can exploit 

concurrency and rapidly reconfigure 

to adapt the weights and topologies 

of an ANN. 

1.1Review 
All FPGA implementation of 

ANNs attempt to exploit the 

reconfigurability of FPGA hardware 

in one way or another. Identifying 

the purpose of reconfiguration sheds 

light on the motivation behind 

different implementation approaches 

[1]. 

1-[1992][10]Max van Daalen, Pete 

Jeavons, John Shawe-Taylor, and 

Dave Cohen proposed a novel 

technique for the generation of high 

speed stochastic bit streams in which 

the '1' density is proportional to a 

given value. Bit streams of this type 

are particularly useful in bit serial 

stochastic computing systems, such 

as digital stochastic neural networks. 

This proposed circuitry is highly 

suitable for VLSI fabrication. 

2-Then in [1994][3] they present the 

hardware design of an extremely 

compact and novel digital 

stochastic neuron, that has the 

ability to generate the derivative of 

its output with respect to an 

arbitrary input. These derivatives 

may be used to form the basis of 

an on chip gradient descent 

learning algorithm. Then they 

present an expandable digital 

architecture that provides an 

efficient real time implementation 

platform for large neural networks 

[1994] [4]. The architecture makes 

heavy use of the techniques of bit 

serial stochastic computing to 

carry out the large number of 

required parallel synaptic 

calculations. In this design all real 

valued quantities are encoded on to 

stochastic bit streams in which the 

'1' density is proportional to the 

given quantity. The actual digital 

circuitry is simple and highly 

regular thus allowing very efficient 

space usage of fine graind FPGAs. 

Another feature of the design is 

that the large number of weights 

required by a neural network are 

generated by circuitry tailored to 

each of their specific values, thus 

saving valuable cells. Whenever 

one of these values is required to 

change, the appropriate circuitry 

must be dynamically reconfigured. 

This may always be achieved in a 

fixed and minimum number of 

cells for a given bit stream 

resolution. 

3-[1994] [5] Michael Gschwind, 

Valentina Salapura, Oliver 

Maischberger show how FPGA 

can be used to efficiently 

implement neural nets. By 

implementing the training phase in 

software and the actual application 

in hardware, conflicting demands 

can be met: training benefits from 

a fast edit-debug cycle, and once 

the design has stabilized, a 

hardware implementation results in 
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higher performance. They present 

a bit-serial encoding scheme and 

computation model, which allows 

space-efficient computation of the 

sum of weighted inputs, thereby 

facilitating the implementation of 

complex neural networks. Then 

they present an expandable digital 

architecture which allows fast and 

space-efficient computation of the 

sum of weighted inputs, providing 

an efficient implementation base 

for large neural networks[1994][6]. 

4-[1994] [6, 8, 9,10] James G. 

Eldredge and Brad L.Hutchings 

proved that the Run-Time 

Reconfiguration is a way of more 

fully exploiting the flexibility of 

reconfigurable FPGAs. The 

RRANN uses run-time 

reconfiguration to increase the 

hardware density of FPGAs. This 

is done by dividing the 

backpropagation algorithm into 

three sequentially executed stages 

and configuring the FPGAa to 

execute only one stage at a time. 

The FPGAs are reconfigured as 

part of normal execution in order 

to change stages. Using 

reconfigurability in this way 

increases the number of hardware 

neurons a single FPGA can 

implement by 500%. 

5-[1994] [11] Stephen L. Bade and 

Brad L. Hutchings present an 

architecture that makes it feasible 

to implement large ANNs with 

FPGAs. The architecture combines 

stochastic computation techniques 

with a novel lookup-table-based 

architecture that fully exploits the 

lookup-table-structure of many 

FPGAs. 

6-[1995] [12] M. van Daalen, T. 

Kosel, P. Jeavons, and J. Shawe-

Taylor present the results of 

experimental work that 

demonstrates the generation of 

linear and sigmoid activation 

functions in a digital stochastic bit-

stream neuron.These activation 

function are generated by a 

stochastic process and require no 

additional hardware, allowing the 

design as an individual neuron to 

be extremely compact. 

7-[1996] [13] Michael Gschwind, 

Valentina Salapura, Oliver 

Maischberger present an 

extendable digital architecture for 

the implementation of a Hopfield 

NN using FPGAs. They exploit the 

reprogrammability of these devices 

to support on-chip learning. 

8-[1997] [14] M. Rossmann, A. 

Buhlmeier, and G. Manteuffe, K. 

Goser present the implementation 

of the Hebbian learning rule in a 

hardware-friendly architecture 

based on a stochastic pulse 

representation of the signals. They 

compare implementation costs and 

speed of this approach with those 

of a parallel and a bit-serial 

implementation. 

9-[1998] [15] Jean-Luc Beuchat, 

Jacques-Olivier Haenni and 

Eduardo Sanchez present the 

concept of reconfigurable systems 

using the example of a digital 

hardware implementation of NN, 

as well as RENCO, a platform 

very well-suited for the 

prototyping of such systems.  

10-[2000] [16] Kathernie Compton 

and Scott Hauck give an 

overview of the hardware 

architectures of reconfigurable 

computing machines, and the 

software that targets these 

machines, such as compilation 
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tools. And they consider the 

issues involved in run-time 

reconfigurable system, which re-

use the configurable hardware 

during program execution. 

11-[2000] [17] Hector Fabio 

Restrepo, Ralph Hoffmann and 

Andres Perez-Uribe describe a 

networked FPGA-based 

implementation of the FAST 

(Flexible Adaptable-Size 

Topology) architecture. They 

used a network of Labomat 3 

boards (a reconfigurable 

platform developed in this work 

laboratory). 

12-[2003] [18] Kristian Robert 

Nichols created in his Master 

thesis a new FPGA-based ANN 

architecture, called RTR-MANN 

to demonstrate the performance 

enhancements gained from using 

current-generation tools and 

methologies. RTR-MANN was 

shown to have an order of 

magnitude with more scalability 

and functional density compared 

to order-generation FPGA-based 

ANN architectures. 

13-[2004] [19] Dennis Duncan Earl, 

in his PhD. Thesis, genetic 

algorithms to evolve complex 

architecture ANN designs in 

FPGAs using reconfigurable 

hardware. His system presented 

as a powerful new tool for 

researchers working to develop 

both artificially intelligent 

systems and complex evolvable 

hardware. 

14-[2005] [20]David Verstracten, 

Benjamin Schrauwen and Dirk 

Stroobant used analogue neurons 

to build an RC-system(Reservoir 

Computing) on FPGA, using 

stochastic neurons that 

communicates using stochastic 

bit streams instead of fixed-point 

values. This drastically 

simplifies the hardware 

implementation of arithmetic 

operations such as addition, the 

nonlinearity and multiplication. 

15-[2006] [21] Roman Kohut, Bernd 

Steinbach and Domink Frohlich 

suggest a new approach for the 

modelling of Boolean NN on 

FPGAs using UML. In this work 

they decreased of the required 

number of configurable logic 

blocks(CLB) for the realization 

of Boolean neuron that is 

mapped directly to Look Up-

Table(LUT) and configurable 

logic block(CLB) of FPGAs.  

16-[2006] [22] Saumil G. Merchant, 

Gregory D. Peterson and Seong G. 

Kong designed an intrinsic 

embedded online evolution system 

using Block-based neural networks 

and implemented on Xilinx Virtex 

II Pro FPGAs. The designed 

network can dynamically adapt its 

structure and parameters to input 

data pattern variations without any 

FPGA reconfiguration overheads, 

overcoming a major bottleneck for 

online evolution systems.      

2.  Stochastic Arithmetic 

The hardware implementations 

of many Artificial Neural Networks 

applications are normally space 

consuming due to the huge size of 

digital multipliers, adders, etc. 

Stochastic arithmetic provides a way 

to carry out complex computations 

with very simple hardware and very 

flexible design of the system. The 

stochastic implementation is also 

compatible with modern VLSI 

design and manufacturing 

technology. The fundamental 
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principles of the stochastic 

arithmetic are summarized as 

follows [11]: 

 All inputs are transformed into 

the binary stochastic pulse streams. 

This is called randomization. In this 

step, the real number is coded into a 

sequence of binary bits where the 

information is contained in the 

probability of any given bit in the 

stream being logic '1'. 

 The stochastic arithmetic that 

consists of digital gate circuits takes 

place of the normal arithmetic. After 

the first step, the real number 

becomes the one bus random stream 

and so the math operations including 

multiplication, addition, division, 

integration and many others can be 

implemented with simple digital 

circuits. 

 The stochastic pulse streams are 

converted back to the normal 

numerical values. After these 

corresponding mathematical 

operations, the result is still the 

stochastic binary streams. This 

process is to extract the probability 

information from the streams and get 

the real number with the proper 

representation type. This step is 

called de randomization. 

 

2-1 Stochastic Multiplication (Bit-

Serial Multipliers) 

Multiplication is the basic 

arithmetic operation and typically 

presents the advantage of the 

stochastic arithmetic. Figure-1a 

shows the traditional digital logic 

unsigned 4 x 4 multiplier which 

composes tens of logic gates, 

however, the stochastic unsigned 

multiplier shown in Figure-1b 

greatly reduces the number of the 

logic elements used for the 

calculation. Figure-1c presents an 

example of unsigned stochastic 

multiplication. The stochastic 

unsigned multiplier uses an AND 

gate as the arithmetic operator. With 

the one-bit stream represented 

inputs, the unsigned multiplication is 

as simple as just one AND gate. It is 

obvious that ( Px AND Py ) = Px . Py 

= X . Y. The digital implementation 

of signed multiplication is derived 

based on the following equations [8]:  

X=2Px–1                                                                                                              

(2.1) 

Y=2Py–1                                                                                                              

(2.2) 

PXNOR= Px . Py + (1–Px ). (1– Py) = 2 . 

PxPy – Px – Py + 1                                  

(2.3) 

X.Y = (2Px – 1). (2Py – 1) = 4. PxPy 

– 2Px – 2Py + 1   = 2.( 2 . PxPy – Px – 

Py + 1) – 1 = 2PXNOR – 1                   

(2.4) 

(Eq.2.3) gives the signed 

representation of X, Y and X.Y 

while the output of a XNOR gate has 

the probability relation of (Eq.2.4) 

that derives the expression of the 

signed multiplication and so the 

signed multiplication could be 

performed using one XNOR gate. 

2.2 Stochastic Addition (The Bit-

Serial Adder) 

The stochastic unsigned 

addition presents in Figure-2. It is 

based on a two-port selector and the 

selection signal is decided by a 

stream of random bits which has the 

equal probability to be '1' and '0' . 

The two inputs are all transformed 

into stochastic representations. The 

selector randomly chooses the output 

from the two input streams. Since 

the possibility of both ports is the 

same, so the result contains the 

probability information from both 
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two input ports which gives the 

addition performance. From Figure-

2, if the input X has the probability 

of Px and the probability of Py, the 

output stream has the output 

probability of (Px+Py)/2   which is 

automatically normalized [11]. 

2.3 Stochastic Square. 

The stochastic square 

operation presents in Figure-3. It is 

composes of a D Flip-Flop and an 

AND gate. The AND gate performs 

the stochastic unsigned 

multiplication and the two inputs are 

the input X and its sequence after the 

D Flip-Flop. Based on the random 

theory, the output of the D Flip-Flop 

has the same probability as the input 

sequence. However, it is 

independent of its input sequence, 

which is an important condition for 

the stochastic unsigned 

multiplication [11]. 

2.4   Stochastic Signed Subtraction 

(Bit-Serial Subtracted) 

The stochastic signed 

subtraction presents in Figure-4. It is 

similar to the unsigned addition 

where a NOT gate is used to change 

the sign [11]. 

3.   Design Re-Configurable ANN 

Circuitry 

The design of re-configurable 

ANN circuit consists of the 

following five top-level modules: 

 System Controller 

Module 

 Random Pulse 

Generator Module 

 Bit-Stream 

Generator Module 

 Bit-Stream 

Converter Module 

 Neuron Module 

The overall layout and 

interconnection of the five top-level 

modules is shown in Figure-5. 

3.1 System Controller Module 

The System Controller Module 

is responsible for resetting and 

initializing all of the modules during 

power-up or reset and for controlling 

all timing signals. There is only one 

system controller module for any 

given design. The schematic of 

module is shown in Figure-6. 4 MHz 

(time period of clock signal = 

0.25µs) is the system clock that 

serves as the global clock for the 

circuit. Upon power up, the system 

clock feeds an 8-bit counter whose 

output feeds three comparators used 

for system initialization. After 100 

pulses of the system clock, one 

comparator sends an enable signal to 

the Random Pulse Generator 

module. After 200 pulses, one 

comparator sends an enable signal to 

the Bit-Stream Generator modules. 

After 250 pulses, one comparator 

sends an enable signal to the Bit-

Stream Converter modules. This last 

comparator's signal is routed back to 

the 8-bit counter's enable pin 

allowing the comparator signals to 

remain static ( until the reset pin to 

the module is triggered), the system-

controller operation was tested using 

simulation tools as shown in Figure-

6a .   

3.2 Random Pulse Generator 

Module 

   RPG module is responsible for 

generating a random 4-bit address 

value to be used by the Neuron 

modules. This level of randomness is 

more than suitable for ANN designs. 

An overview of Random Pulse 

Generator module is shown in 

Figure-7. The clock input triggers an 
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LFSR_32 sub module and four 

bs_generator12 sub modules 

(because most multifunction data 

acquisition boards are of a 12 digital 

I/O pins).The LFSR_32 sub module 

is a 32-bit Maximal Length Linear 

Feedback Shift Register ( LFSR ) 

that generates a pseudo-random 

stream of pulses . The LFSR_32 sub-

module (consisting mainly of D-flip-

flops) is shown in Figure.8: .the 

probability of receiving a high 

output from the LFSR_32 is 0.5 (i.e. 

for a given clock cycle, there is an 

equal chance of receiving a high 

output versus a low output).  In 

Figure-7, it is seen that the random 

output from LFSR is passed through 

to an output pin on the Random 

Pulse Generator module and it is 

also used internally to produce four 

unique random pulses via the 

bs_generator12 sub-module. The 

bs_generator12 sub module allows 

the 'firing' probability of the original 

LFSR output to be weighted. The 

details of the bs_generator12 sub 

module are shown in Figure-9. The 

waveform output from 

bs_generrator12 sub module ( which 

is presented in RPG module )  are 

shown in Figure-7a:.The 

bs_generator12 sub-module modifies 

the input firing probability using the 

stochastic arithmetic techniques .The 

circuitry at the heart of the sub-

module is the modulator,  shown in 

Figure-10.  

The four bs_generator12 sub-

modules, contained within the 

Random Pulse Generator module, 

allow the LFSR output to be 

modified such that it creates four 

outputs having a firing probability of 

0.666178 ( 0.101010101000 ), 

0.799511 ( 0.110011001010 ), 

0.947008 ( 0.11110010011 ) and 

0.994383 ( 0.111111101000 ).These  

outputs are assigned the labels 

Address-Bit-Stream[0], Address-Bit-

Stream[1],  Address-Bit-Stream[2] 

and Address-Bit-Stream[3] .The 

result is a randomly generated 4-bit 

Address value that can take on any 

value between 0 and 15.  

3.3 Bits-Stream Generator Module 

The Bit-Stream Generator 

module is responsible for taking 12-

bit input values and converting them 

into stochastic bit-streams. The 

number of Bit-Stream Generator 

modules required in an ANN design 

depends on the number of 

inputs .The circuitry for the Bit-

Stream Generator is very similar to 

the bs_generator12 sub-modules 

shown previously in Figure.9: .The 

only difference is that the input to 

the Bit-Stream Generator module is 

an external 12-bit pin on the FPGA 

chip, and these inputs are AND-ed 

with an ' Enable ' pin.  

3.4   Neuron Module 

The Neuron module is 

responsible for multiplying chosen 

inputs by static weight values, 

summing the results, and then 

producing a non-linear (pseudo-

sigmoid) output. These are the 

fundamental operations of the 

neuron model. Because these 

operations are performed through 

stochastic arithmetic techniques, the 

circuitry for the Neuron module is 

actually quite small. 3-input Neuron 

shown in Figure-11: consists of three 

Look Up-Tables (labelled LUT0), 

some AND and OR gates, and two 

D-Flip-Flop. Each Look Up-Table 

has a 4-bit Address line (which is fed 

by the Random Pulse Generator 

module discussed previously), a 16-
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bit weight value input, and a clock 

input. The 16-bit weight value fills 

the Look Up-Table with data to be 

accessed by the address lines 

resulting in a final output, q, which 

is a stochastic representation of a 16-

bit weight value.  Based on the 

weight value for the ANN design, 

these weight values are multiplied 

(stochastically) with the inputs 

(input as bit-streams from the Bit-

Stream Generator modules) using 

AND gates. The result of each 

multiplication is summed and 

thresholdned using OR gates. The 

output is a bit-stream of date 

representing the neuron's final 

output. This output can then be fed 

to other neurons based on the 

connectivity in the ANN design.  

3.5 Bits-Stream Converter Module 

The Bit-Stream Converter 

module is responsible for converting 

bit-stream signals into 12-bit output 

signals. To do this, it is necessary to 

define a fixed bit-stream pulse length 

over which to calculate the average 

probability of firing. The circuitry of 

the Bit-Stream Converter module is 

shown in Figure-12. For an ANN 

design with N number of primary 

outputs, N numbers of Bit-Stream 

Converter modules are required.  

4.  Experimental Result and 

Implementation 

4.1   Case Study 1 : AND- OR- 

EXOR  Decomposition of the 

BNN. 

The trained Boolean Neural 

Network represents an output signal 

y0, y1, …., y8 . Each of which is 

defined on three variables x1, x2 and 

x3 (Table 1 :). Let the transfer 

functions of hidden neurons be 

Boolean dependences, which are 

expressed as: 

 Hidden neuron 

Out 
[ z ]

 = f
 [ z ]

 ( Inpi  .  wi
[ z ]

 )                                                                           

(4.1) 

Out
[ z ]

   - output signal of the neuron 

with number z. 

 f
 [ z ]

      - transfer function of the 

neuron with number z. 

[z ]         -  index     z = 1,…., zN . 

zN          -  number of neurons on the 

hidden layer, 

 f 
[ i ]

  ≠  f
 [ j ]

  :  i ≠ j       i , j      [1, 

zN ] 

 Output neuron 

Out 
[ j ]

  =   
nz

if 1    ( Inpi    wi 

[ j ]
  )                                                                       

(4.2) 

 f         { AND, OR, EXOR } 

 [ j ]       -  number of neuron on the 

output layer of the BNN 

 
Table 1: The Input of the BNN 

 

 

 

 

 

 

 

 

 

 

 

 

The weight coefficients obtained by training 

the net in MATLAB program are shown in 

Table 2: and Table 3:  

Table 2: Weight Coefficients for 

Input, Hidden neurons 

  W1 W2 W

3 

W4 W5 W6 

AND 1 1 0 1 1 1 

 0 1 1 1 1 1 

 1 1 1 1 1 1 

OR 1 1 1 1 1 1 

 1 1 1 0 1 1 

 0 1 1 1 1 1 

EXOR 1 1 1 1 1 1 

 1 1 1 1 0 1 

 1 1 1 1 1 1 

X1 X2 X

3 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 
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Table 3: Weight coefficients for 

Hidden, Output neurons 

By training of BNN, the number 

of inputs for neurons was restricted 

to the number of inputs of the LUT 

of the FPGA .The structure of the 

BNN for a set of Boolean function 

(AND, OR, EXOR) in to common 

NN. The output waveform shown in 

Figure-13 

4.2   Case Study 2: Frequency 

Recognition 

The proposed network is tested 

with another experiment which is a 

frequency recognition problem for a 

square waveform of varying 

frequency (ranging from 1MHz, 

0.5MHz, 0.25MHz, 0.1MHz, and 

0.125MHz). Figure-14: shows the 

output waveform from the 

Frequency Recognition NN with 

three inputs and three Hidden 

Neurons and one output neuron with 

weight equal to [1 0 1 ] .  

4.3 Reports 
The reports can be summarized 

as shown in Table 4: as follows: 

1- The hardware cost for the Neural 

network design is shown in 

Table 4:. It is clear that the 

hardware utilization for the 

proposed BNN is 100% of FPGA 

platform but for Frequency 

Recognition NN is 34%. 

2- All modules which belong to the 

neural network design are fitted 

on the same FPGA platform 

Spartan-xl. The hardware 

utilization for BNN was 100% of 

the platform capacity. i.e. a 

larger capacity version is needed 

for this applications on the 

proposed Neural Network design 

such as Virtex to be fitted on the 

same FPGA platform ( Virtex 

xcv400 hase a Number of 

Slices=4800, IOB=404, Block 

RAM=20). 

The software (Xilinx Foundation 

v4.1i) which was used, was not 

produced  

3- No error was declared in all the 

reports with the analysis 

components belonging to Virtex 

but from the results  of the 

reports it is noted that the 

proposed BNN design needs a  

larger number of units from 

Spartan-xl ) .. 

4- The worst case connection delay 

for the BNN network is 

10.950ns, for Frequency 

Recognition NN is 1.303ns. 

5.   Conclusion 

In This paper it is demonstrated 

that it is possible to construct a 

stochastic Re-configurable Artificial 

Neural Network based Look Up-

Table that maps efficiently to 

FPGAs with minimal digital 

circuitry. Each of the FPGA Neural 

Network modules is verified to be 

functionally correct through 

numerous simulations. After the 

correct functionality of each module 

has been verified, the modules are 

connected to each other and the 

system is synthesized and 

implemented successfully using 

Xilinx Foundation 4.1i synthesis and 

implementation tools.  It is shown 

that such a neuron of the proposed 

network produces an emergent 

activation function without any 
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additional hardware, of the predicted 

mathematical form. In most 

application of these neurons, it is 

envisaged that a sigmoid activation 

function would be the most useful, 

as this corresponds most closely to 

the standard neural network model.  

It exploits all of the advantages 

inherent to FPGAs: low cost, 

availability, re-configurability, the 

ability to support arbitrary network 

architectures, lower development 

costs, all while providing a level of 

density that makes it feasible to 

implement large ANNs with FPGAs.  
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Fig-5 A Complet View of the Network 
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Fig-6 Schematic of System Controller Module 
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Fig-6a the waveform output from system controller Module 
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Fig-7 Schematic of Random Pulse Generator Module 
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Fig-7a the waveform output from RPG Module (bs-generator sub module) 
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Fig-8 Schematic of LFSR_32 Sub-Module 
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Fig-9 Schematic of Bit Stream-Generator Sub-Module 



 91 

 
 

Address[3..0]
Inclk

Weight[15..0]

q

Address[3..0]
Inclk

Weight[15..0]

q

Address[3..0]
Inclk

Weight[15..0]

q

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Output

Input_bsg_I0

Input_bsg_I1

Input_bsg_I2

Clk

Weight from I0_ne1

Weight from I1_ne1

Weight from I2_ne1

Address0[3..0]

Address1[3..0]

Address2[3..0]

LUT0

LUT0

LUT0

 
 

Fig-11 Schematic of Neuron Module (with 3 input) 
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Fig-12 Schematic of Bit Stream-Converter Module 
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Fig-13 the waveform of BNN for a set of Boolean Function  
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Fig-14 the waveform out from Frequency Recognition NN 

 
 
 

Table 4: Hardware Utilization of the Boolean NN, Frequency Recognition NN 
 

 CLB(100) CLB 

F.F(200) 

4INPUT 

LUT(200) 

3INPUT 

LUT(100) 

16X1 

RAM 

I/O 

BLOCKS(61) 

GATES 

COUNT 

ADDITIONAL 

GATES 

BNN 100(100%) 147(73%) 175(88%) 11(11%) 1 30 2610 1488 

F. Rec. 34(34%) 38(19%) 40(20%) 6(6%) 0 16 776 768 
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