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Abstract

In this work had been determine the Townsend's energy factor Ky and the electron drift velocity in
terms of electron mean free path L in unit of pressure, the energy loss factor G and the applied electric
field to the gas pressure ratio at 300 °K in air. The obtain transport coefficients by solved numerically
transport equation solution and had be fed to the derived equations.

The obtained results had be graphically draw as a function for its variables, which appeared a good
agreement with published experimental data.
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Introduction

The motion of free electrons in air are computed by the method developed by
Townsend, such as, the drift velocity W of the center of mass of a group of electrons
through the gas, as a function of E/p; Townsend's energy factor K+ which refers the
ratio of the mean energy of agitation of an electron to the mean energy of thermal
agitation of a gas molecule; the mean free path L of an electron at unit of pressure
(Imm of Hg= 1 Torr) and finally Bailey's energy loss factor G, which is of importance
in ionosphere studies is obtained from the experimental dependence of the mean
proportion n of its energy lost by an electron in a collision with a gas molecule. In this
paper we study the theoretical formula are derived for Kt and W in terms of L, G and
E/P (Huxley-1949, Boris-2001).
Numerical procedure

The mean free path L at unit of pressure dose not vary rapidly with mean velocity

U, and then n gives by the following equations at E/P<2.5 (Crompton, 1953).

n=G@-1/K,) )
when supposed the Maxwell's law distribution and Druyvesteyn's law then:
K, =K; (Maxwell=M) (2
K, =1.14K; (Druyvesten=D) (3)
where,
K- ¢ D
KT, u

where, e is electron charge=1.602x10"° C, K is Boltzmann constant=1.3805x102%) K~
! Ty is the gas temperature in Kelvin, D/p is the diffusion coefficient to the mobility
ratio in eV. The Eq.(1) and the following Egs. at E/P < 2.5

7 =1.79x10W; / K, (Maxwell) (4)

7 =1.68x10"W2 /K, (Druyvesteyn) (5)
Substitute Eq.(5) into Eq.(1) yields:

1.68x10™W? /K, =G(1-1/K;) (6)

substitute Eq.(3) into Eq.(6) yields:
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1.68x10W?*  G(K, -1)

1.14K, K;
1.474x107W? _
_SKe =D (Druyvesteyn)
K, K;
(7)
substitute Eq.(4) into Eq.(1) yields:
1.79x10™W? /K, =G(1-1/K;) ®)
substitute Eq.(2) into Eq.(8) yields:
1.79x107W2 /Ky =G(Ky 1)/ Ky eeeevvenne oo (Maxwell)
(9)

but from the following equations we can find (Huxley,1949):
L= 7.33x10‘9W‘/E

— 10
E/P 10
L=7.05x10"° Wd? (12) substitute Eq.(3) into Eq.(10) yields:
L=7.33x10" WyL1aK,
E/P
L=7.33x10"" WDE V/ ET (Druyvesteyn) (12)
substitute Eq.(2) into Eq.(11) yields:
L=7.05x10° VKT vaxwell)  (13)
E/P
since
" =0.8515tan0 (Maxwell)
W, = O.94265tan9 (Druyvesteyn)
where,
0= tanl( € HJ
mv,
E 0.5
H=—(K,-1
v kD
From Egs.(7, 12) we can find:
G(K, —1)
W?2=—2T — 14
1.474x10™ a4
_ L(E/P)_g 1 5
7.83x107° K,
By square Eq.(15) and it's equal with Eq.(14) yield:
G(K, -1) L(E/P) T 1
w?= T = e, Druyvesteyn 16
1.474x107 [7.83x109 K, (Druyvesteyn) (16)
Eq.(16) represents w in term of L, G and E/P.

from Egs.(9, 13) and squaring Eq.(13) and equal them, yield:
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2
we = B =D { L(E/F’)g} Lo (Maxwell) (17)
1.79x10 7.05x10 K;

Eq.(17) represents W in term L, G and E/P; where expressed in unit \V/cm.
from Eq.(16) obtained:
1.474x10™L*(E/P)?
KT(KT _1): . 79(2 )
(7.83x10°f G

2
K, (K —1)=240><LE(E/P)2 (18)

ie.

2 T°
(E/P) (Druyvesteyn) (19)

K, = >

Eq.(18) represents Kr in term L, G and E/P.
from Eq.(16) also obtained:
_ LE/IP) 1
- 7.83x107% /K,
1.27x10°L(E/P) s (Druyvesteyn) (20)
{1+[1+960L2(E/P)2 /G]O'S}
2

Eq.(20) represents W in term L, G and E/P.
from Eq.(17) obtained:
_1.79x10™(L (E/P) )?

== (7.05x10°f G

W:

2
K, (K, ~1)= 360%(5/ S (Maxwell) (1)

2 1°
1+ [1+144o}

K, (K; -1 = GEMPY ] (Maxwell)

2
(22)

Eqg.(21) represents Ky in term L, G and E/P.
from Eq.(17) also obtained:
_ LE/MP) 1 (23)
7.05x107" /K,
142x10°L(E/P) i (Maxwell)

LZ(E/P)ZTZ v

W:

1+ {1+1440

2

(24)
Eq.(24) represents W in term L, G and E/P.
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From Eq.(1) when E/P<2.5 refers the n depends on K; with G=0.0013, for

Druyvesteyn's low. From the above at L=0.04, we substitute these values to the
Egs.(19-20) respectively obtained as a special case, which:

2 /2
K, =1+[1+1181'25(E/P) ]]/ ..................... (Druyvesteyn) E/P<2.5
(25)
_ 5x107(E/P) T (Druyvesteyn) E/P<2.5 (26)
2
{1+[1+1181.5(E/P)2]”2}
2

at, 1181.5(E/P)* >>1

K, =0.5+17.18E/P (Druyvesteyn) (27)

W =1.206x10"E/P  (Druyvesteyn) (28)

Egs.(25-28) were refer Kt and W in term E/P for especial case from Eq.(18) yields:
at: Ky>>1,

154
K. =—""L(E/P Druyvesteyn 29
=5 (E/P)  (Druyvesteyn) (29)
at: Kr=1,
2 2
K, =1+w (Druyvesteyn) (30)

Egs.(29-30) were represent K in term L, G and E/P. from Eq. (21) yields:

at K>>1,
K, :@L(E/P) (Maxwell) (31)
JG
at: Kr=1,
2 2
K, =1+ 300L E/P)"  (Maxwell)  (32)

Egs.(31-32) were represent Ky in term L, G and E/P.

Time — Dependent Electron Boltzmann Equation:

In this work could be used the final form taken by the time — dependent Boltzmann
equation for electrons, as used in this paper, to obtain the transport coefficients,
namely drift velocity, Vy, the ratio of the diffusion coefficient to the mobility, D/ u

and the momentum transfer collision frequency, v_. Finally insert this parameters to

our equations.

The standard procedure to study this problem starts with a Boltzmann equation
usually written in the form (Guerra -2001,2004-a1!_11):
6F+Vr-(vF)—Vv-(6EF]=(aF] (33)

ot m ot ),

since F(r,v,t) refers the electron velocity distribution function constrained to the
normalization condition Ide:ne(r,t), with dv and n, are velocity space and the

electron density respectively, v, and Vv, are the gradient operators, e and m

(m=9.109x102% gm) are the electron absolute charge and mass, and the right — hand
side of Eq.(33) refers a collision operator.
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Results and Discussion:

In this study had be investigate the Townsend's energy factor for air interm L, G &
E/P; this results appeared a good agreement with the reference (Huxley,1949).

Figs.(1-3) are showing the Townsend's energy factor K+ versus the mean free path at
unit of pressure, L, G and E/P. Fig(1l) appeared the decreasing of Ky with L
increasing, i. e. the electrons losses it's energy through the L, but figs.(2, 3) appeared
the Ky increasing with G and E/P.

Fig.(4) appears the electron drift velocity was decreasing with L because the
electrons could be its energy by the collisions through the mean free path L, but
figs.(5, 6) the electron drift velocity could be increase with G and E/P because the
electrons were gain the energy from the applied electric field.

Figs.(7-10) were represent the special case for E/P < 2.5 which is the Townsend's
energy factor Kt and drift velocity W, as a functions of E/P< 2.5 for the special case,
this figures were show the increasing of Ky and W with E/P; for figs.(9, 10) the
increasing was a ramp form for 1181.5(E/P)* >> 1.

Figs.(11-13) are referring the Townsend's energy factor as a function of: the mean
free path, L, the energy loss factor, G and the applied electric field to the gas pressure
ratio for Maxwell and Druyvesteyn distribution law for air, from fig.(11) at Kr>>1 it's
appeared decreasing the Townsend's energy factor with increasing of the mean free
path L, because the electrons losses it's energy by the collisions, but for figs.(12, 13)
at K>>1 the Townsend's energy factor could be increase with the energy loss factor
G.

Fig.(14) at Ky=1 was appear the decreasing Townsend's energy factor with mean
free path L, but figs.(15, 16) the Townsend's energy factor Ky, with G and E/P
because the electrons gains the energy from the applied electric field.
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Fig.(1): The Townsend's energy factor, Ky, as a function of the electron mean free path, L, at unit of
pressure for Eq.(22) and Druyvesteyn {Eq.(19)} distribution in Air.
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Fig.(2): The Townsend's energy factor, Ky, as a function of the energy loss factor, G, at unit of pressure
for Maxwell {EQ.(22)} and Druyvesteyn {Eq.(19)} distribution in Air.
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Fig.(3): The Townsend's energy factor, K+, as a function of the applied electric field to the gas pressure
ratio, E/P, for eq.(22) and Druyvesteyn {Eq.(19)} distribution in Air.
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Fig.(4): The drift velocity, W, as a function of the electron mean free path, L, for Maxwell {Eq.(24)}
and Druyvesteyn {Eq.(20)} distribution in Air.
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Fig.(5): The drift velocity, W, as a function of the energy loss factor, G, for eq.(24) and Druyvesteyn
{Eq.(20)} distribution in Air.
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Fig.(6): The drift velocity, W, as a function of the applied electric field to the gas pressure ratio, E/P,
for eq.(24) and Druyvesteyn {Eq.(20)} distribution in Air.

40

30 -
= 20
S i
(<5 4
N—r
M ]

10

e} r ' ' r

o
Q
U1
l_‘.
BT
i
¥
¥
U1

E/P (Vcm™ Torr™)
Fig.(7): The Townsend's energy factor, Kr, as a function of the applied electric field to the gas pressure
ratio, E/P, for Druyvesteyn {Eq.(25), E/P<2.5} distribution in Air.
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Fig.(8): The drift velocity, W, as a function of the applied electric field to the gas pressure ratio, E/P,
for Druyvesteyn {Eq.(26), E/P<2.5} distribution in Air.
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Fig.(9): The Townsend's energy factor, K+, as a function of the applied electric field to the gas pressure
ratio, E/P, for Druyvesteyn {Eq.(27), 1181.5(E/P)*>>1} distribution in Air.
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Fig.(10): The drift velocity, W, as a function of the applied electric field to the gas pressure ratio, E/P,
for Druyvesteyn {Eq.(28), 1181.5(E/P)*>>1} distribution in Air.
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Fig.(11): The Townsend's energy factor, Ky, as a function of the electron mean free path, L, for
Eq.(31) and Druyvesteyn {Eq.(29)} distribution in Air.
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Fig.(12): The Townsend's energy factor, (K>>1), as a function of the energy loss factor, G, for
eq.(31) and Druyvesteyn {Eq.(29)} distribution in Air.
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Fig.(13): The Townsend's energy factor, (K+>>1), as a function of the applied electric
field to the gas pressure ratio, E/P, for eq.(31) and Druyvesteyn {Eq.(29),}
distribution in Air.
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Fig.(14): The Townsend's energy factor, (Ky=1), as a function of the electron mean
free path, L, for eq.(32) and Druyvesteyn {Eq.(30)} distribution in Air.
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Fig.(15): The Townsend's energy factor, (Ky=1), as a function of the energy loss
factor, G, for Eq.(32) and Druyvesteyn {Eq.(30)} distribution in Air.
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Fig.(16): The Townsend's energy factor, (K+=1), as a function of the applied electric
field to the gas pressure ratio, E/P, for eq.(32) and Druyvesteyn {Eq.(30),}
distribution in Air.
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