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Numerical Analysis of Non-Prismatic Beam on Elastic
Foundation under Generalized Loadings
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Abstract:

The main aim of this paper is to investigate the linear elastic behavior of non-prismatic beam on
Winkler foundation. The finite differences method was used to solve the governing differential
equations for different configurations of non-prismatic cross-section and loading cases with different
end supports. The results from these different cases are plotted together and check the accuracy of the
solutions, which referred to the good efficiency of this analysis. The results indicated that present non-
prismatic beam decreasing in deflection for longitudinal direction (width of beam b) and transverse
direction (depth of beam h) about (80.67-81.81%)and(75.99-81.81% ) , respectively for different cases
of loading. The results indicated that the value of Bending Moment is increasing for different cases of
loading for non-prismatic beam compared with prismatic beam about (68.53-96.5%), while decreasing
in Shear force due to point load at mid span about (51.64%).
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Notation
w = w(X) is the deflection (m).
u = u(x) is the horizontal displacement in the neutral axis (m).

K,= modulus of sub grade reaction in z-direction multiplied by the width of the beam
(b),(KN/m®).

E = modulus of elasticity of the beam material,(kN/m?).

I= moment of inertia of the beam section (m*)

A=cross-sectional area of the beam(m?).

b= width of the beam,(m). h= depth of the beam,(m), Ax= small divided piece on x-axis.
g=q(x) is the intensity of the distributed loading on the beam ,(kN/m).

M, and p = the concentrated moment and load at free edge .
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1.Introduction

Non prismatic beams have been used in various structure including buildings and bridges since
the first decades of the previous century, with an increasing application as the structural engineering
techniques were improving. (Khan and Al-Gahthi 1995), presented an exact solution of continuous
solutions for non-prismatic beams of linear and parabolic profiles are derived and exact relations are
obtained in terms of the variables over the nodes( beam supports) . Much research has examined
different methods to retrieve the stiffness matrix for the non prismatic beam element. These methods
involve direct integration of the governing differential equations . (Just, 1977; Karabalis and Beskos,
1983; Biondi and Caddemi, 2007), modifyed stiffness methods to consider tapering (Portland
Cement Association (PCA), 1958; El-Mezaini et al., 1991; Balkaya, 2001), established the flexibility
matrix and inversing it (Eisenberger, ; Vu-Quoc and Léger, 1992; Frieman and Kosmatka, 1992;
Frieman and Kosmatka, 1993; Tena-Colunga, 1996), and apply transfer matrices (Luo et al., 2007;
Luo et al., 2006). All these methods may suffer the following deficiencies: 1. Some of these methods
will recover the stiffness matrix for some special simple cases of tapering such as linear or parabolic
depth variation along rectangular or I-shaped beams; while for other cases, they will be frustrated due
to complex representation of shape functions and stiffness matrices (Karabalis and Beskos, 1983;
Brown, 1984; Banerjee andWilliams, 1986). 2. Some of these methods, such as establishing the
flexibility matrix and inversing it, will only retrieve the stiffness matrix, and are unable to recover the
shape functions, which might be necessary for the analysis procedure based on stiffness formulation
(Eisenberger, 1985; Tena-Colunga, 1996). (Ali 2010) dealt with the linear elastic behavior of thin
beam with openings on Winkler foundation, with both normal and tangential frictional resistances. The
finite difference method was used to solve the governing differential equations for different
configurations of openings and loading cases including both transverse loads and external moments

This paper is an attempt to analysis non-prismatic beams with different configurations of

cross-section on Winkler type foundation by the method of finite differences.

2.Formulation
Due to the complexity of this problem, assumptions are made to obtain easier and acceptable
solutions. The classical theory of beams bending [Euler-Bernoulli theorylis based on certain
simplifying assumptions :
1. The plane transverse sections will remain plane after bending (no warping).
2. The normal lines to the middle plane will remain normal to the deflected middle plane (no shear
deflection).
3. Normal strain (€z)in the normal direction is zero.
4. The compression restraint is assumed to be proportional to the transverse displacement while the
frictional restraint is considered to be proportional with horizontal displacement (Winkler model).
According to the small deflection theory and linear stress-strain relationships, the governing
equations for thin beam on elastic foundation shown below [Hetney]:

4 2
dw Kw Kh{di nhdw qx

T + z X _—— > :Q (1'3)
dx El 2EI | dx 2 dx El
K h K 2

dw d u

o W =0 (1-
2EA dx Ea dX
b)
Where:

w = w(X) is the deflection (m)

u = u(x) is the horizontal displacement of the neutral axis (m)

K,= mtz)dulus of sub grade reaction in z-direction to be multiplied by the width of the beam (b)
,(KN/m°).

Ky= mtz)dulus of sub grade reaction in x-direction to be multiplied by the width of the beam (b)
,(KN/m?).

E = modulus of elasticity of the beam material,(kN/m?).

I= moment of inertia of the beam section (m*)

A=cross-sectional area of the beam(m?).

b= width of the beam,(m).

h= depth of the beam,(m).

g=q(x) is the intensity of the distributed loading on the beam ,(kN/m).
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2. Numerical Solution by Finite Differences Method

For the interior nodes, the central difference is always for node (i), while backward or forward
difference is used for edge nodes. The central difference for the first, second, and fourth derivatives
are:

(dyj - _ Yiat VYia

dx 2AX
)
Y)YV =2Vi+ye
o) (F
@)
LAY _Yia =AY T6Yi — 4yt Vi
dx* (ax)*
(4)
Where
y=is the function of w or u

Ax= small divided piece on x-axis
The basic equations (1 —a and b) in finite differences are applied at any node (i), as follows:

edge nodes Interior nodes edge nodes
i i i n-2 n-1 n
LU DO N O I
Fictitious
Fictitious AX AX

Fig.(1) FDM discretization of the elastic beam
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And in simple form, becomes:
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3. Modeling of Different Configurations of Applied Loadings

Different types of the applied loads can be treated and simulated as uniform load per unit length
(q) along the piece (Ax), as follows:
a. distributed load of any function q(x):

Here, calculate the area under the curve q(x) for distance (Ax/2) on each side of node (i) and then
divided by Ax, as follows
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>

Fig.(2)UDL on elastic beam and distributed of nodes

[ I Q(X)dxji _[;:j;% (x )dx

_ length=Ax _ 2
b AX AX
(7
b. concentrated loads
For any node (i) , uniformly distributed load transform to concentrated load acting on the nodes as
follows:

q —iq —hq —h etc
i AX, i1 AX, i1 Ay T

(®)

Fig.(2)Point Load on elastic beam and distributed of nodes

4. Boundary Conditions and Internal Forces

The boundary conditions are:

a. simply supported edge

No deflection, this gives w,=0 (9a)
No bending moment , this gives M,=0 and then w;= - w;

(9b)

b. fixed supported edge

No deflection, this gives w,=0

(10a)
_ o dw
No rotation , this gives d_ =0, and then w; =w., (10b)
X (0]

C. free edge with concentrated moment and load

2 —
M=M, :—El[d ‘;"] — Iw

dx® ), (Ax)
(11a)

—-W,, +3w, —3w, +W.

V=P, = —EI(dBWj = pr T T T T

dx3 J, (Ax)
(11b)

Where M, and p, are the concentrated moment and load at free edge .
On the other hand, the internal forces ((bending moment and shearing force)) can be determined
from strength of materials, as follows [Temoshenko] :
d?w
dx?

M(X) = —EI

(12a)
and
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d3w

Vi =Bl 13
(12b)
In finite difference, at node (i) the internal forces become:

Wi 0 —2Wi + W
Mj = -EI—=L (13a)

(ax)
and
V, — g1 1+3N‘_313V'+1+Wi+2 ......... forward
(Ax)
(13b)
Or:
V, :_EI_Wi—2+3Ni—l_3Ni Wia backward
(Ax)’
(13c)

5.Applications

In this section, a examples of non-prismatic beam are analyzed using two cases of boundary
conditions: simple supports and fixed supports. Different loading conditions are applied to both cases
and the results obtained using the proposed model are validated against those derived from classical
solution methods.

5.1 Non-Prismatic beam in depth

In this case , to check the accuracy of the method of finite differences in this field. In Figs.(3),
simply supported non-prismatic beam under uniformly distributed load, point load at mid span and two
points load on elastic foundation for two ended supported , in condition for all non-prismatic beams
are the same volume concrete . In this case studied three ratios of depth for beam section (h,=hy,
h,=1.5h; and h,=2h;) were considered as listed below.

b1= h1=.25m
L=5m, A,=.5m

E=25*10°%kN/m?’

P/2 P/2 K,=10°kN/m?

Fig.(3) Non-Prismatic Beam (1) a) UDL(20kN/m) b) Point load(P=100kN)  c) Two Points

The results of these cases are compared with those available from theory [Hantny 1974] and compared
with prismatic beam (h,=h,) [Ali 2010] as shown in Figs. (4,5 and 6).
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Fig(5) Non-prismatic beam(1) under point load at mid
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Fig(6) Non-prismatic beam(1) under Two Point Load at L/3 of

The results indicated that present non-prismatic beam decreasing about (76%) in deflection due
to UDL when h,=2h; , (80.9% )in deflection under point load at mid span when h,=2h; and (81.81%) in
deflection due to two point load (P/2)when h,=1.5h;. The maximum deflection happen in UDL when
hy=h, , it's obtain in figs.(7).
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Fig(7) Effect of Different types of load on the non-prismatic beam(1) deflection.

a. h2:1.5h1

b. h2:2h1

500



beam with h,=1.5h;

Figs.(8a,b and c¢) show the maximum bending moment and shear force occur in non-prismatic
under uniformly distributed load and the percent of increasing in bending
moment for non-prismatic beam comparing with prismatic beam about (83.53%) , while decreasing in
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Shear force due to point load at mid span about (51.64%).
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Fig.(8) Bending moment for non-prismatic beam (1) under different types of loading.
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a. UDL b. Pointload at mid span c¢. Two point load
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For different cases of end supports and their effective on deflection for non prismatic beam
which indicated in fig.(9), the result show different about (88.81%) decreasing in deflection due to
point load at mid span with simply supported beam.

0.25 —

0.20 —

Deflection(*10"-2m)
|

0.05 —

0.00 1.00 2.00 3.00 4.00 5.00
Span Length(m)

Fig.(9) Non-prismatic beam (1) under point load at mid span with different types of supported.

5.2 Non-Prismatic beam in width

This case study, includes three different value of width for beam (b,=b; , b,=1.5b; , b,=2b, and
depth is constant h=.25m ) in top view are shown in fig.(10). Simply supported non-prismatic beam(2)
under uniformly distributed load, point load at mid span and two points load on elastic foundation for
two ended supported , in condition for all non-prismatic beams are the same volume concrete .

[T

b1:h1:.25m

L=5m, A,=.5m

E=25*10°%kN/m?

K,=10°kN/m>

Fig.(10) Non-prismatic beam (2) under different types of loading.

a. Topviewof beam b.UDL c. Pointload at mid span d. Two point load
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The results of these cases are compared with those available from theory [Hantny 1974] and
compared with prismatic beam (h,=h; , b,=b;) [Ali 2010] as shown in Figs. (11,12and 13).
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Fig(11) Non-prismatic beam (2)under UDL
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Fig(12) Non-prismatic beam(2) under Point Load at Mid
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Fig(13) Non-prismatic beam(2) under Two Points Load

The results indicated that percent of non-prismatic beam decreasing about (23.2%) in deflection
due to two point load (P/2) when b,=2b; and (27.67%) in deflection due to two point load (P/2)when
b,=1.5b;. The maximum deflection happen in UDL when b,=1.5b, , it's obtain in figs.(14).

250 250
o2=1.501 b2=2h7%
i UOL=20(kNim) | = UDL=20&N/m
— Poinflead afarid spaa 106N ———  Poirt load at mid Sparn
Two point lead(Fi2) Two Point load P2
200 —

T T
& 150 & 10+
<Q =)
= b
L \; 4
g b S
5 3
(1] 1.00 —
g 100 5
a Q

.50 —| 050 —

0.00 T I | T I T I T 0.00 ' \ ' I f \ f I

000 1.00 200 3.00 4.00
000 1.00 2.00 3.00 400 500
Span Length(m
Span Length(m) k gthim)
(a) (b)

Fig(14) Effect of Different types of load on the non-prismatic beam(2) deflection.
b221.5b1 b. b2:2b1
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For different cases of end supports and their effective on deflection for non prismatic beam
which indicated in fig.(15), the result show different about (88.81%) decreasing in deflection due to
uniformly distributed beam with fixed ended support.
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Fig.(15) Non-prismatic beam (2) under uniformly distributed beam with different
types of supported.

Fig.(16a,b and c) ,show the results between non-prismatic beam (1) and(2) with h,=2h; and b,=2b,
under different types of loading. The results indicated the maximum deflection occur in prismatic beam
and the present of convergence in deflection about (98.4% and 96.89%) between h,=2h, and b,=2b,
under point load at mid span and two point load at L/3 , respectively.
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Fig.(16) Non-prismatic beam (2) and (1) with h,=2h; and b,=2b; under different types of loading.
a. UDL b. Pointload at mid span c¢. Two point load

The maximum bending moment in non-prismatic beam(1)with h,=1.5h; under uniformly
distributed load ,point load at mid span and two point load at L/3 acting, the percent of convergence is
about( 75.95,80.7 and 81.71%), respectively . These results plotted in fig.(17). While the percent of
convergence about (86.66%,21.4% and 94.44%) in shear force under uniformly distributed load, point
load at mid span and two point load at L/3 acting, respectively
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Fig.(17) Bending moment for non-prismatic beam (1) and beam (2) under different types of loading.
a. UDL b. Pointload at mid span c. Two point load

The effect of end support on the non-prismatic beam (1) and beam (2) with h,=2h, and b,=2b; under
different types of loading. Fig(18) indicated these effective.
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Fig.(18) Deflection for non-prismatic beam (1) and beam (2) under different types of loading with two types
of end support. a.UDL b. Pointload at mid span c¢. Two point load.
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5.4 Non-Prismatic beam in depth through the span(max. depth at mid span)

Consider the following problem of a single span non-prismatic beam(4) of length L=5m on
elastic foundation as shown in Fig.(19). The depth of the beam at the ends h;=.25m ,b;=.25m and
h,=1.5h; varies to h,=2h;. The two condition end supported and carrying three different types of loads.
E=25*10° kN/m? , K,=10* kN/m® ,q=20 kN/m, P=100 kN.

P P/2 P/2

(a) (b) (c)

Fig(19) Non-prismatic beam(4) on elastic foundation a) UDL=20kN/m b) Point Load at mid span
P=100KN, c) Two Point Load at L/3 P/2=50KN.
The results plotted in Figs.(20) for beam (4) , the difference between two ended conditions gives

(47.18,58.69 and 51.58%) in maximum deflection under uniformly distributed load , point load at mid
span and two point load at L/3, respectively.
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Fig.(20) Deflection for non-prismatic beam (4) with types of support
a. UDL b. Pointload at mid span c¢. Two point load.

Finally ,the effect of varying of non-prismatic beam cross-section under three cases of loading can be
explained in Fig.(21). From this results, it can be noticed that the maximum deflection occur in non-
prismatic beam (3) under UDL and point load at mid span with the large depth at the ends of the beam,
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with percent of decreasing about (87.98 and 35.29%), respectively. While , the two points load at
(L/3) of span is acting the maximum deflection occur in non-prismatic beam (4) with the large depth at
the mid span of the beam with percent about (74.42%).

h —Ji
030 —
g i
~N
3
=3
v
T o020 —
L
g
=
= i
Q
0.10 —
0.00
I I I ' I
0.00 100 2.00 3.00 400 5.00
Span Length(m) a
0.40 ( )
030 —|
-
£ 4
o
<
1=
T
T 020
£
g
&= i
&
Q
010 —|
0.00
\ I \ ' \
0.00 100 2.00 3.00 4.00 5.00
Span Length(m)
0.50 —A’i
0.40 — -
- J
00
=3
-
f
= J
2
.E 020 —
)
Q
010 —
no I \ \
0.00 1.00 2.00 3.00 4.00 5.00
Span Length(m)
(c)

Fig.(21) Deflection in non-prismatic beam (3) and non-prismatic beam (4) with types of support
a.UDL b. Pointload at mid span c¢. Two point load.
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From following Fig.(22), it can be plotted there is pronounced increasing of bending moment
about(34.75 and 50.19%) for non prismatic beam(4) compared with bending moment in beam(3) due
to uniformly distributed load and point load at mid span , respectively. While , the percent of
decreasing in bending moment in beam(4) about (13.15%) due to two point load acting at L/3.

On the other hand, the convergence of shear force about (69.86,15.74 and 20.90%) for beam (3)
and beam(4) under uniformly distributed load, point load at mid span and two point load at L/3,
respectively.
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Fig.(22) Bending Moment in non-prismatic beam (3) and non-prismatic beam (4)
a. UDL b. Pointload at mid span c¢. Two point load.
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5. Non —Prismatic Cantilever Beam

The non prismatic beam with three separate segments, shown in Fig. (23), is considered, and fixed
at the left end. This example is notable as it will illustrate the efficiency of the procedure to deal with
both kinds of discrete and smooth discontinuities simultaneously. The first half of the beam is tapered
smoothly, with the depth of the rectangular section varying linearly from (2h to h). At the midpoint of
the second half, section depth drops abruptly from (h to h/2). The sample beam with the length (L= 8
m) , depth (h= 0.4 m) , width ( b= 0.1 m) , and elastic modulus (E = 210 GPa ) , under two types of
load (concentrated load P=50 kN at the free end, and uniform distributed load g= 10 kN/m.
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Fig(23) Simple Non-prismatic Cantilever beam [Shooshtrai 2010]

From following Fig.(24), it can be noticed that little difference between the present numerical
analysis and the procedure to find the exact shape functions and stiffness matrices of non-prismatic
beam elements for the Euler Bernoulli and Timoshenko formulations. [Shooshtrai 2010] , the
percentage of convergence is equal to (91%) , on the other hand, from these result the effect of
modulus sub-grade frictional resistance at interface was found to be noticeable about (15%).
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Fig(24) Deflection on Non-prismatic cantilever beam .
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6.Conclusions

From the numerical analysis of many problems of non-prismatic beams on elastic foundation
with comparison of prismatic beam under effect of different configurations of loading and end
conditions, many conclusions can be drawn;

The results indicated that present non-prismatic beam decreasing about (80.67-81.81%)and(75.99-

81.81% )in deflection for longitudinal direction (width of beam b) and transverse direction (depth of

beam h) , respectively for different cases of loading.

The present numerical analysis and the procedure for another procedure , the percentage of

convergence is equal to (91%) , on the other hand, from these result the effect of modulus sub-grade

frictional resistance at interface was found to be noticeable about (15%).

1- The value of maximum bending moment is the same in h,=2h; and b,=2b, but the location of
these values is changed under uniformly distributed load and two point load at L/3 acting, but the
percent of convergence is about ( 75.95,80.7 and 81.71%) in bending moment under point load
acting.

2- The results shows that the percent of convergence about (86.66%,21.4% and 94.44%) in shear
force under uniformly distributed load, point load at mid span and two point load at L/3 acting,
respectively .

3- The maximum deflection occur in non-prismatic beam (3) under UDL and point load at mid span
with the large depth at the ends of the beam, with percent of decreasing about (87.98 and 35.29%),
respectively. While , the two points load at (L/3) of span is acting the maximum deflection occur
in non-prismatic beam (4) with the large depth at the mid span of the beam with percent about
(74.42%).

4- Increasing of bending moment about(34.75 and 50.19%) for non prismatic beam(4) compared with
bending moment in beam(3) due to uniformly distributed load and point load at mid span ,
respectively. While , the percent of decreasing in bending moment in beam(4) about (13.15%) due
to two point load acting at L/3.

5-  The convergence of shear force about (69.86,15.74 and 20.90%) for beam (3) and beam(4) under
uniformly distributed load, point load at mid span and two point load at L/3, respectively.
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