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Numerical Analysis of Non-Prismatic Beam on Elastic 

Foundation under  Generalized Loadings   
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Abstract: 
The main aim of this paper is to investigate the linear elastic behavior of non-prismatic beam on 

Winkler foundation. The finite differences  method was used to solve the governing differential 

equations for different configurations of non-prismatic cross-section and loading cases with different 

end supports. The results from these different cases are plotted together and check the accuracy of the 

solutions, which referred to the good efficiency of this analysis. The results indicated that present non-

prismatic beam decreasing in deflection  for longitudinal  direction (width of beam b) and transverse 

direction (depth of beam h) about (80.67-81.81%)and(75.99-81.81% ) , respectively for different cases 

of loading. The results  indicated that  the value of Bending Moment is increasing for different cases of 

loading for non-prismatic beam compared with  prismatic beam about (68.53-96.5%), while decreasing 

in Shear force due to point load at mid span about (51.64%). 

Key words:  Non-prismatic beam, Foundation, Winkler, Finite difference, Loading. 

 الخلاصة:
ت قميمة العسق وذات السقاطع الغيخ متساثمة والسدتشجة عمى الهجف الخئيدي لهحا البحث هه دراسة الترخف السخن لمعتبا إن

 بالفخو قاتالسحجدة. تم اشتقاق صيغ مهسعة  الفخو قات(. في حل السعادلات الحاكسة استخجمت طخيقة Winklerالأساس السخن لـ)
العخضية. تم رسم الشتائج لحالات  للأحسالوكحلك حالات مختمفة  من الأعتاب الغيخ متساثمة السقطعالسحجدة لسعالجة حالات مختمفة 

البحث  إليهاالشتائج التي تهصل  أهمكفاءة الطخيقة السدتخجمة . من  إلىالشتائج  أشارتمختمفة لغخض السقارنة ومعخفة دقة الحمهل وقج 
و  (%81.81-80.67) إلى. حيث يرل الاختلاف الأكبخفي مشطقة عدم الانحشاء  لتغييخ السقطعالدمبي الستفاقم  التأثيخهه 

وتذيخ الشتائج أيزا إلى زيادة في   .عمى التهالي في حالة التغييخ بعخض السقطع و بعسق السقطعفي الهطهل  ( 75.99-81.81%)
( لحالات مختمفة من التحسيل بيشسا أشارت الشتائج إلى نقران بقهى القص بشدبة (%96.5إلى(%68.53)العدوم بشدبة تتخاوح من 

 حسيل بسشترف العتب.في حالة الت (51.64%)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notation 

w = w(x) is the deflection (m). 

u = u(x) is the horizontal displacement in the neutral axis (m). 

Kz= modulus of sub grade reaction in z-direction multiplied by the width of the beam 

(b),(kN/m
3
). 

E = modulus of elasticity of the beam material,(kN/m
2
). 

I= moment of inertia of the beam section (m
4
) 

A=cross-sectional area of the beam(m
2
).  

b= width of the beam,(m). h= depth of the beam,(m), x= small divided piece on x-axis. 

q=q(x) is the  intensity of the distributed loading on the beam ,(kN/m). 

 and  
o  = the concentrated moment and load at  free edge . 

 

 

 

 



 

1.Introduction 
Non prismatic beams have been used in various structure including buildings and bridges since 

the first decades of the previous century, with an increasing application as the structural engineering 

techniques were improving. (Khan and Al-Gahthi 1995), presented an exact  solution of continuous  

solutions for non-prismatic beams of linear and parabolic profiles are derived and exact relations are 

obtained in terms of the variables over the nodes( beam supports) .  Much research has examined 

different methods to retrieve the stiffness   matrix for the non prismatic beam element. These methods 

involve direct integration of the governing differential equations . (Just, 1977; Karabalis and Beskos, 

1983; Biondi and Caddemi, 2007), modifyed stiffness methods to consider tapering (Portland 

Cement Association (PCA), 1958; El-Mezaini et al., 1991; Balkaya, 2001), established the flexibility 

matrix and inversing it (Eisenberger, ; Vu-Quoc and Léger, 1992; Frieman and Kosmatka, 1992; 

Frieman and Kosmatka, 1993; Tena-Colunga, 1996), and apply transfer matrices (Luo et al., 2007; 

Luo et al., 2006). All these methods may suffer the following deficiencies: 1. Some of these methods 

will recover the stiffness matrix for some special simple cases of tapering such as linear or parabolic 

depth variation along rectangular or I-shaped beams; while for other cases, they will be frustrated due 

to complex representation of shape functions and stiffness matrices (Karabalis and Beskos, 1983; 

Brown, 1984; Banerjee andWilliams, 1986). 2. Some of these methods, such as establishing the 

flexibility matrix and inversing it, will only retrieve the stiffness matrix, and are unable to recover the 

shape functions, which might be necessary for the analysis procedure based on stiffness formulation 

(Eisenberger, 1985; Tena-Colunga, 1996).  (Ali 2010) dealt with the linear elastic behavior of thin 

beam with openings on Winkler foundation, with both normal and tangential frictional resistances. The 

finite difference method was used to solve the governing differential equations for different 

configurations of openings and loading cases including both transverse loads and external moments 

This paper is an attempt to analysis non-prismatic beams with different configurations of 

cross-section  on Winkler type foundation by the method of finite differences.  

2.Formulation 
Due to the complexity of this problem, assumptions are made to obtain easier and acceptable 

solutions. The classical theory of beams bending [Euler-Bernoulli theory]is based on certain 

simplifying assumptions :   

1. The plane transverse sections will remain plane after bending (no warping). 

2. The normal lines to the middle plane will remain normal to the deflected middle plane (no shear 

deflection). 

3. Normal strain (Єz)in the normal direction is zero. 

4. The compression restraint is assumed to  be proportional to the transverse displacement while the 

frictional restraint is considered to be proportional with horizontal displacement (Winkler model). 

According to the small deflection theory and linear stress-strain relationships, the governing 

equations for thin beam on elastic foundation shown below [Hetney]: 
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Where:  

w = w(x) is the deflection (m) 

u = u(x) is the horizontal displacement of the neutral axis (m) 

Kz= modulus of sub grade reaction in z-direction  to be multiplied by the width of the beam (b) 

,(kN/m
2
). 

Kx= modulus of sub grade reaction in x-direction  to be multiplied by the width of the beam (b) 

,(kN/m
2
). 

E = modulus of elasticity of the beam material,(kN/m
2
). 

I= moment of inertia of the beam section (m
4
) 

A=cross-sectional area of the beam(m
2
).  

b= width of the beam,(m). 

h= depth of the beam,(m). 

q=q(x) is the  intensity of the distributed loading on the beam ,(kN/m). 
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2. Numerical Solution by Finite Differences Method 
For the interior nodes, the central difference is always for node (i), while backward or forward 

difference is used for edge nodes. The central difference for the first, second, and fourth derivatives 

are: 
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Where  

y= is the function of w or u 

x= small divided piece on x-axis 

The basic equations (1 –a and b) in finite differences are applied at any node (i), as follows: 
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And in simple form, becomes: 
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3. Modeling of Different Configurations of Applied Loadings 
Different types of the applied loads can be treated and simulated as uniform load per unit length 

(q) along the piece (Δx), as follows: 

a. distributed load of any function q(x): 

Here, calculate the area under the curve q(x) for distance (Δx/2) on each side of node (i) and then 

divided by Δx, as follows 

 

 

 

 

 

 

 

Fig.(1) FDM discretization of  the  elastic beam 
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b. concentrated loads  

For any node (i) , uniformly distributed load transform to concentrated load acting on the nodes as 

follows: 
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4. Boundary Conditions and Internal Forces 
The boundary conditions are: 

a. simply supported edge  

No deflection, this gives wo=0                    (9a) 

No bending moment , this gives Mo=0 and then w1= - w-1                             

(9b) 

b. fixed supported edge  

No deflection, this gives wo=0                                                                       

(10a)  

No rotation , this gives 0








odx

dw
, and then w1 =w-1                                      (10b) 

C. free edge with concentrated moment and load  
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Where 
 and  

o  are the concentrated moment and load at  free edge . 

On the other hand, the internal forces ((bending moment and shearing force)) can be determined 

from strength of materials, as follows [Temoshenko] : 
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Fig.(2)UDL on elastic beam and distributed of nodes 

Fig.(2)Point  Load on elastic beam and distributed of nodes 
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In finite difference, at node (i) the internal forces become: 
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5.Applications 
In this section, a examples of non-prismatic beam are analyzed using two cases of boundary 

conditions: simple supports and fixed supports. Different loading conditions are applied to both cases 

and the results obtained using the proposed model are validated against those derived from classical 

solution methods. 

5.1 Non-Prismatic beam in depth 
In this case , to check the accuracy of the method of finite differences in this field. In Figs.(3), 

simply supported non-prismatic beam under uniformly distributed load, point load at mid span and two 

points  load on elastic foundation for two ended supported  , in condition for all non-prismatic beams 

are the same volume concrete . In this case studied three ratios of depth for beam section (h2=h1, 

h2=1.5h1 and h2=2h1) were considered as listed below. 

 
 

 

 

 

The results of these cases are compared with those available from theory [Hantny 1974] and compared 

with prismatic beam (h2=h1) [Ali 2010] as shown in Figs. (4,5 and 6). 

 
Fig.(3) Non-Prismatic Beam (1) a) UDL(20kN/m)  b) Point load(P=100kN)    c) Two Points 

Load(P/2  

b1= h1=.25m 

L=5m, Δx=.5m 

E=25*106kN/m2 

Kz=104kN/m3 

 

 



 

 
 

 

 
  

Fig(4) Non-prismatic beam(1) under 

UDL 

Fig(5) Non-prismatic beam(1) under point load at mid 

span 
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The results indicated that present non-prismatic beam decreasing about (76%) in deflection due 

to UDL when h2=2h1 , (80.9% )in deflection under point load at mid span when h2=2h1 and (81.81%) in 

deflection due to two point load (P/2)when h2=1.5h1. The maximum deflection happen in UDL when  

h2=h1 , it's obtain in figs.(7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) 

Fig(7)  Effect of  Different  types of load  on the non-prismatic beam(1)  deflection. 

a. h2=1.5h1     b.  h2=2h1 

(a) 

Fig(6) Non-prismatic beam(1) under  Two Point Load at L/3 of 

span 

  



 

Figs.(8a,b and c) show  the maximum bending moment and shear force occur in non-prismatic 

beam with h2=1.5h1   under  uniformly distributed load  and the percent of  increasing in bending 

moment for non-prismatic beam comparing with  prismatic beam about (83.53%) , while decreasing in 

Shear force due to point load at mid span about (51.64%). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 

(a) (b ) 

  

 

(c) 

Fig.(8) Bending moment for non-prismatic beam (1) under different types of loading. 

a. UDL    b.   Point load at mid span    c. Two point load  
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For different cases of end supports and their effective on deflection for non prismatic beam 

which indicated in fig.(9), the result show different about (88.81%) decreasing in deflection due to  

point load at mid span  with simply supported beam. 

 

 
 

 

 

 

5.2 Non-Prismatic beam in width 
This case study, includes three different value of width for  beam (b2=b1 , b2=1.5b1 , b2=2b1 and 

depth is constant h=.25m ) in top view are shown in fig.(10). Simply supported non-prismatic beam(2) 

under uniformly distributed load, point load at mid span and two points  load on elastic foundation for 

two ended supported  , in condition for all non-prismatic beams are the same volume concrete .  

 

 
 

 

 

Fig.(9) Non-prismatic beam (1) under point load at mid span with different types of supported. 

 

b1=h1=.25m 

L=5m, Δx=.5m 

E=25*106kN/m2 

Kz=104kN/m3 

 

Fig.(10) Non-prismatic beam (2) under different types of loading. 

a. Top view of beam    b. UDL    c.   Point load at mid span    d. Two point load  

 



 

 

 

The results of these cases are compared with those available from theory [Hantny 1974] and 

compared with prismatic beam (h2=h1 , b2=b1) [Ali 2010] as shown in Figs. (11,12and 13). 

 

 
 

 

 

 

              
 

 

 

Fig(11) Non-prismatic beam (2)under UDL 

 

Fig(12) Non-prismatic beam(2) under Point Load at Mid 
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The results indicated that percent of non-prismatic beam decreasing about (23.2%) in deflection 

due to two point load (P/2) when b2=2b1 and (27.67%) in deflection due to two point load (P/2)when 

b2=1.5b1. The maximum deflection happen in UDL when  b2=1.5b1 , it's obtain in figs.(14). 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

   

 

 

 

 

Fig(13) Non-prismatic beam(2) under Two Points Load 

 

 

  

Fig(14)  Effect of  Different  types of load  on the non-prismatic beam(2)  deflection. 

a.  b2=1.5b1     b.  b2=2b1 

 

 

(a ) (b ) 



 

For different cases of end supports and their effective on deflection for non prismatic beam 

which indicated in fig.(15), the result show different about (88.81%) decreasing in deflection due to  

uniformly distributed beam with fixed ended support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Fig.(16a,b and c) ,show the results between non-prismatic beam (1) and(2) with h2=2h1 and b2=2b1 

under different types of loading. The results indicated the maximum deflection occur in prismatic beam 

and the present of convergence in deflection about  (98.4% and 96.89%)  between h2=2h1 and b2=2b1 

under point load at mid span and two point load at L/3 , respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a ) (b ) 

 

Fig.(15) Non-prismatic beam (2) under uniformly distributed beam with different           

types of supported. 
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      The  maximum bending moment in non-prismatic beam(1)with h2=1.5h1 under uniformly 

distributed load ,point load at mid span and two point load at L/3 acting, the percent of convergence is 

about( 75.95,80.7 and 81.71%), respectively . These results plotted in fig.(17). While the percent of 

convergence about (86.66%,21.4% and 94.44%) in shear force under uniformly distributed load, point 

load at mid span and two point load at L/3 acting, respectively  

 

 

(c ) 

Fig.(16) Non-prismatic beam (2) and (1) with h2=2h1 and b2=2b1 under different types of loading. 

                a. UDL    b.   Point load at mid span    c. Two point load  

 

 

(a ) 



 

 
 

 

 

 
 

 

 

     

 

 

 

   The effect of end support on the non-prismatic beam (1) and beam (2) with h2=2h1 and b2=2b1 under 

different types of loading. Fig(18) indicated these effective. 

(c ) 

Fig.(17) Bending moment for non-prismatic beam (1) and beam (2) under different types of loading. 

a. UDL    b.   Point load at mid span    c. Two point load  

 

(b) 
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 ( c) 

Fig.(18) Deflection for non-prismatic beam (1) and beam (2) under different types of loading with   two types 

of end support.      a. UDL    b.   Point load at mid span    c. Two point load. 

 

(a ) 

(b ) 



 

5.4 Non-Prismatic beam in depth through the span(max. depth at mid span) 
Consider the following problem of a single span non-prismatic beam(4) of length L=5m  on 

elastic foundation as shown in Fig.(19). The depth of the beam at the ends h1=.25m ,b1=.25m and 

h2=1.5h1 varies to  h2=2h1. The two condition end supported and carrying three different types of loads. 

E=25*10
6
 kN/m

2
 , Kz=10

4
 kN/m

3
 ,q=20 kN/m, P=100 kN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         The results plotted in Figs.(20)  for beam (4) , the difference between two ended conditions gives 

(47.18,58.69 and 51.58%) in maximum  deflection under uniformly distributed load , point load at mid 

span and two point load at L/3, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

(a ) 
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h2 

h1 

(b ) 

L 

h2 

 

h1 

P 

(c ) 

L 

h2 

 

h1 

P/2 P/2 

Fig(19) Non-prismatic  beam(4) on elastic foundation a) UDL=20kN/m  b) Point Load at mid span    

P=100KN, c) Two Point Load at L/3  P/2=50KN.  
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Finally ,the effect of varying of non-prismatic beam cross-section under three cases of loading can be 

explained in Fig.(21). From this results, it can be noticed that the maximum deflection occur in non-

prismatic beam (3) under UDL and  point load at mid span with the large depth at the ends of the beam, 

(c ) 
Fig.(20) Deflection for non-prismatic beam (4) with types of support 

a. UDL    b.   Point load at mid span    c. Two point load. 

 

(a) 

(b) 



 

with percent of decreasing about (87.98 and 35.29%), respectively. While , the two  points  load at 

(L/3) of span is acting the maximum deflection occur in non-prismatic beam (4) with the large depth at 

the mid span of the beam with percent  about (74.42%). 
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Fig.(21) Deflection in  non-prismatic beam (3)  and non-prismatic beam (4)  with types of support 

a. UDL    b.   Point load at mid span    c. Two point load. 
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    From following Fig.(22), it can be plotted there is pronounced increasing of bending moment 

about(34.75 and 50.19%) for non prismatic beam(4) compared with  bending moment in beam(3) due 

to uniformly distributed load and point load at mid span , respectively. While , the percent of 

decreasing in bending moment in beam(4)  about (13.15%) due to two point load acting at L/3. 

          On the other hand, the convergence of shear force about  (69.86,15.74 and 20.90%) for beam (3) 

and beam(4) under uniformly distributed load, point load at mid span and two point load at L/3, 

respectively.   

 
 

 

 
  

 
 

(c ) 

Fig.(22) Bending Moment in  non-prismatic beam (3)  and non-prismatic beam (4) 

a. UDL    b.   Point load at mid span    c. Two point load. 
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( b) 



 

5. Non –Prismatic Cantilever Beam 
        The non prismatic beam with three separate segments, shown in Fig. (23), is considered, and fixed 

at the left end. This example is notable as it will illustrate the efficiency of the procedure to deal with 

both kinds of discrete and smooth discontinuities simultaneously. The first half of the beam is tapered 

smoothly, with the depth of the rectangular section varying linearly from (2h to h). At the midpoint of 

the second half, section depth drops abruptly from (h to h/2). The sample beam with the length (L= 8 

m) , depth (h= 0.4 m)  , width ( b= 0.1 m) , and elastic modulus (E = 210 GPa ) , under two types of 

load (concentrated load  P= 50 kN at the free end, and uniform distributed load q= 10 kN/m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From following Fig.(24), it can be noticed that little difference between the present numerical 

analysis and the procedure to find the exact shape functions and stiffness matrices of non-prismatic 

beam elements for the Euler Bernoulli and Timoshenko formulations. [Shooshtrai 2010]  , the 

percentage of convergence is equal to (91%) , on the other hand,  from these result  the effect of 

modulus sub-grade frictional resistance at interface was found to be noticeable about (15%). 
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Fig(23) Simple Non-prismatic  Cantilever beam [Shooshtrai 2010] 

Fig(24) Deflection on Non-prismatic  cantilever beam . 
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6.Conclusions 
From the numerical analysis of many problems of non-prismatic beams on elastic foundation 

with comparison of prismatic beam under effect of different configurations of loading and  end 

conditions, many conclusions can be drawn:  

The results indicated that present non-prismatic beam decreasing about (80.67-81.81%)and(75.99-

81.81% )in deflection  for longitudinal  direction (width of beam b) and transverse direction (depth of 

beam h) , respectively for different cases of loading. 

The present numerical analysis and the procedure for another procedure  , the percentage of 

convergence is equal to (91%) , on the other hand,  from these result  the effect of modulus sub-grade 

frictional resistance at interface was found to be noticeable about (15%). 

1- The  value of maximum bending moment is the same  in h2=2h1 and b2=2b1 but the location of 

these values is changed under uniformly distributed load and two point load at L/3 acting, but the 

percent of convergence is about ( 75.95,80.7 and 81.71%) in bending moment under point load 

acting.  

2- The results  shows  that the percent of convergence about (86.66%,21.4% and 94.44%) in shear 

force under uniformly distributed load, point load at mid span and two point load at L/3 acting, 

respectively . 

3- The maximum deflection occur in non-prismatic beam (3) under UDL and  point load at mid span 

with the large depth at the ends of the beam, with percent of decreasing about (87.98 and 35.29%), 

respectively. While , the two  points  load at (L/3) of span is acting the maximum deflection occur 

in non-prismatic beam (4) with the large depth at the mid span of the beam with percent about 

(74.42%). 

4- Increasing of bending moment about(34.75 and 50.19%) for non prismatic beam(4) compared with  

bending moment in beam(3) due to uniformly distributed load and point load at mid span , 

respectively. While , the percent of decreasing in bending moment in beam(4)  about (13.15%) due 

to two point load acting at L/3. 

5- The convergence of shear force about  (69.86,15.74 and 20.90%) for beam (3) and beam(4) under 

uniformly distributed load, point load at mid span and two point load at L/3, respectively.   
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