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1. INTRODUCTION 

The trend in e-commerce and on-demand service increased the requirements for fast and flexible warehouse systems 

that can operate independently. Applying unmanned technical means such as autonomous mobile robots for performing 

work functions, including order picking and logistics management, is known as Robotic Mobile Fulfillment Systems 

(RMFS) which has grown as a revolutionary solution in this area. Due to successful robot path planning and role 

assignment, RMFS improves warehouse performance, decreases the human factor’s impact, and complies with the trends 

of modern supply chain management [1]. Consider a distribution center where hundreds of robots operate to deliver 

orders, walk around the shelves, and respond to various situations without interference and slowness [2]–[4]. This vision 

of automation is becoming a reality, yet to reach this goal several difficult problems like real-time path planning, 

resources allocation, and avoidance of collisions are solved [5], [6]. The efficient planning of pathing is one of the key 

focus areas within RMFS. The practical use of the robots, in terms of the ability to move around the environment and 

minimize inter-robot distances while avoiding obstacles, is an essential prerequisite of the effectiveness of this type of 
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system. Many conventional approaches, including Dijkstra’s and A* algorithms, provide limited solutions for addressing 

the current challenges of modern warehouses [7]–[10].  

Ant Colony Optimization (ACO) is an algorithm for solving optimization solution problems such as route planning 

which makes it suitable for use in the RMFS to optimize robot navigation [11]. The efficiency in task scheduling together 

with the ability to work in transient environments as well as large problem sizes makes it possible to minimize on the 

travel costs. ACO with iteration pheromone strategy allow perturbation at every step, while reinforcement learning solves 

macro level route optimization problem. The integration of both does this leads to improved productivity, less energy 

usage and sound performance in the warehouses’ work [12]. 

Although there is a rich body of the works such as ACO, it has not been easy to incorporate them in to RMFS systems 

and real time environments. Developing a robust RMFS system involves addressing several key challenges: Robots 

should properly respond to dynamic changes in the infrastructure of the warehouse including and obstacles. In addition, 

there are more robots as well as the orders given, the system has to remain performant and efficient. In addition, optimal 

of the job assignments such as selection of order picking zone, shelf assignment and robot dispatching is also paramount 

to prevent traffic jams [13]–[15]. 

In order to address these challenges this paper introduces an RMFS architecture that incorporates ACO for dynamic 

path planning. ACO is most efficient in complex, uncertain environments because it can learn to construct optimal paths 

by gradually, one by one, test paths that correspond to pheromones. The proposed ACO algorithm, when integrated with 

an interactive visualization system using Streamlit, envisions a complete solution for the real-time warehouse 

management system. This paper contributions can be summarized as follows:  

1. We replace Dijkstra’s algorithm with ACO to deal with scalability and adaptable changes to robot routes. 

2. An online dashboard develops using Streamlit allows the operator to view the robot paths, the order status as 

well as the warehouse performance in a real-time mode. 

3. Compared with the traditional approach, the system integrates the path planning, order assignment, and robot 

scheduling, showing a high efficiency in the dynamic and dense environment. 

 

This work has supplemented the gap in the connection of theoretical research and realistic application by proposing a 

flexible and easily-implementable RMFS that can well address the current requirements of the warehouse. 

 

 

2. RELATED WORK 

The present decade has seen a tremendous activity in the field of mobile robot designs for industrial, autonomous, and 

supporting applications [16], [17]. These developments concern several aspects such as cooperative systems of multiple 

robots, learning control approaches, dead reckoning to low-cost robotic platforms, and movement in challenging terrains. 

Previous works have addressed ways of enhancing the locomotion of mobile wheeled robots, developing of intelligent 

decision-making system, as well as effective navigation strategies within complex and dynamic environments.  As 

mentioned in various works, the focus has been laid on the utilization of multi-robot transportation, the adaptation of 

movement, and the path planning. These systems try to enhance performance in flexibility, reliability, and terrain 

adaptability, which practices behavior tree, machine learning, inertial measurement systems (IMU), and risk map for 

navigation and controls [18]–[20]. Prior works have greatly assisted in the development of autonomous systems and 

robots; however, the integration of omnidirectional wheels to terrain adaptable and reconfigurable platforms in industrial 

material transport is still a problem. This poses additional challenges for behaviour in nonholonomic scenarios, 

necessitating new solutions for coordination and cooperation among robots, safety of robots in dynamically uncertain 

environments and real-time reconfigurability [16], [21]. Moreover, current systems fail to address the low-cost and ease 

control strategies required in industrial environment where robots have to be flexible and easy to control in unpredictable 

world. The problem of path planning for mobile robots is still opened, especially in cases with dynamic charging stations 

and with battery constraints. Omnidirectional Mobility and Terrain Adaptability, although omnidirectional robots have 

been researched, limited references to both extendible and passable surface as well as solution that involves multiple 

nonholonomic robots in an unstructured area [18], [22]. Most systems are concerned with intricate interactions of multiple 

robots, which may, in many cases entail massive computation and networking. A naive approach of using a simplified 

strategy whereby the system is considered as one entity with one system having several steering wheels have not been 

very well researched on [23], [24]. While the model-based and the learning-based approaches are widely used, the 

proposed methods for effective, low-cost dead reckoning and adaptive path planning integrated systems have not been 

well-developed in industrial applications that contain a severe restriction on cost. Despite following studies on the path 

planning for charging, little work has been conducted to coordinate robots in charging stations distributed in the 

environment for both battery level and charging pile state, not to mention operational efficiency [24]–[26]. Table 1 lists 

the summarization of the prior studies in the context of Mobile Robot path planning approaches.  
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Table 1. Prior studies summarization in the context of mobile robot path planning, focus, methodology, 
contributions, and key findings. 

Study Focus 
Methods 

/Techniques Used 

Key 

Contributions 

Results/ 

Numbers 

[18] 
Multi-robot systems 

for transportation 

Composite connector, 

revolute joint, 

feedback control 

High adaptability to various 

terrains, omnidirectional mobility 

with nonholonomic robots. 

Successful shuttle across flat 

and sloping roads without 

stopping. 

[21] 
Adaptive motion 

control 

Potential field method, 

risk map, integrated 

control 

Considerate path generation to 

avoid disturbance, adaptive 

movement based on surrounding 

risks. 

Improved path control with 

reduced disturbance in 85% of 

tested environments. 

[27][28] 
Mode prediction for 

curb-crossing 

3D CNN, Bayesian 

fusion 

Mode switching between six-

wheel and four-wheel drive based 

on terrain. 

90% prediction accuracy for 

mode switching in varied 

terrain. 

[16] 
Autonomous door 

traversal 
Behavior trees, ROS2 

Flexibility in door traversal using 

BT, handling open/closed-door 

conditions. 

Successful door traversal in 

95% of test scenarios, reducing 

positioning errors. 

[19] 
Low-cost IMU dead 

reckoning 

Extended Kalman 

Filter (EKF), deep 

learning 

Enhanced IMU-based dead 

reckoning using deep learning for 

noise reduction. 

40% reduction in position errors 

compared to traditional 

methods. 

[29][30] 
Path planning for 

charging stations 

Path planning model, 

robot service, charging 

pile management 

Efficient path planning for robots 

to access charging stations, 

considering battery and state of 

piles. 

Reduced charging time by 30% 

and optimized robot service 

scheduling. 

[31] 
Path planning and 

adaptive control 

A* algorithm, dynamic 

obstacle avoidance 

Efficient path planning 

considering dynamic obstacles 

and environmental changes. 

15% improvement in path 

efficiency with dynamic 

obstacles. 

[32] 

Navigation with 

risk-aware 

strategies 

Reinforcement 

learning, risk-aware 

path planning 

Improved navigation using 

machine learning algorithms that 

optimize paths based on risk 

levels. 

20% reduction in collision rate 

compared to standard 

navigation methods. 

[23][33] 
Multi-robot path 

planning 

A* algorithm, 

reinforcement 

learning, uncertainty 

modeling 

Effective multi-robot coordination 

and path planning in uncertain and 

dynamic environments. 

10% increase in efficiency when 

4 robots are used 

collaboratively. 

[24][34] 
Energy-efficient 

path planning 

Genetic algorithms, 

energy consumption 

modeling 

Optimizing robot movement for 

energy efficiency in industrial 

environments, considering battery 

constraints. 

25% reduction in energy 

consumption with optimized 

path planning 

 

      The proposed study extends the Follow-the-Wall (FTW) and Follow-the-Wall with Decision-making (FTWD) 

algorithms to solve the real-time navigation problems as applied in the use of a land vehicle for path planning in an 

unknown terrain. It changes the target parameters in sequential fashion in accordance with newly arrived data and, at the 

same time, offers effective computational procedure for converging to the final estimates. Compared with several more 

conventional computational approaches, such as A*, GA, and PSO, along with several versions of DRL techniques, the 

performance of the study significantly excels, especially in dynamic environments; moreover, the proposed approach 

does not require vast experience or computational resources for training to achieve higher adaptability. Unlike most other 

methods that are either purely learning-based and closest to heuristic methods, the proposed method is more a mix of 

both theory and practice. 

 

3. RESEARCH METHODOLOGY 

This section offers the information on how the methodology (see Figure 1) of constructing the RMFS was designed 

and planned, developed and the evaluation phases that was followed. Starting with the setup of the gym environment for 

redundancy in reinforcement learning up to evaluation of the trained models, every step confirms procedural problem 

solving, experimental efficiency, and credible results. 

 

3.1 SHELF LOCATIONS INITIALIZATION 

The first step of the methodology is undertaking a process of developing a set of shelf locations throughout the 

warehouse. The shelves are also characterized by coordinates that define their position on the plane and required for 

distance determination and routing. These coordinates are then saved in a formatted fashion like that of a panda 
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DataFrame and then converted to a NumPy array. This conversion is performed to enable the mathematical computations 

to be done efficiently and to interface it with optimization algorithms. Consuming the evaluation of physical shelves, this 

step forms the basis for other transactions and pathways computation. 

 
3.2 DISTANCE MATRIX CONSTRUCTION 

To measure the distances between each shelving arrangement in the warehouse a pairwise distance matrix is 

calculated. It forms significant base for the path planning and optimization of the motion of the robots. To measure the 

distance between two given shelves, the Euclidean distance formula has been developed as the distance function. The 

function guarantees that indices passed are valid and where not it raises errors making the application more robust. The 

outcome is a symmetric distance matrix, exactly in the form of a NumPy array, which is an important input to the Ant 

Colony Optimization process. 

 

Load Orders, Shelves, Robots

Data Preprocessing into Data frames

Calculate Distance Matrix 

Ant Colony 

Optimization 

Order 

Assignment 

Reinforcement 

Learning  

(RL)Environment

Training of RL 

Models

Model Testing 

and Visualization

 
 

FIGURE 1. Research methodology 

 

 

 

3.3 IMPLEMENTATION OF ANT COLONY OPTIMIZATION (ACO) 

ACO is used to determine optimal paths for robot movement concerning the shortest distance and optimum distance 

between shelves. The proposed bio-inspired algorithm is similar to ants who mark the best paths to find food and leads 
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other ants to follow the marked path. The input into the ACO algorithm is a matrix of pheromone and distance matrix is 

mandatory for the algorithm to work. Artificial ants in the population are used to build paths where the next shelf is 

chosen probabilistically with the intensity of pheromones and the distance to the target shelf. As soon as paths are created, 

their quality is estimated only by the total path traversal distance. The pheromone matrix is then updated; the ‘shortest’ 

paths are given greater reinforcement for further attractive cycles. To avoid a situation where the algorithm jumps to a 

solution too soon, the pheromones are reduced by a decay factor. It will repeat the same process in the predefined number 

of iterations until it finds the shortest path. The flexibility of using ACO makes it ideal for use in the compound routing 

problem experienced in the RMFS. ACO uses pheromone updates to enhance frequently traversed optimal paths as in 

Eq. (1): 

 

𝝉𝒊𝒋(𝒕 + 𝟏) = (𝟏 − 𝝆) ⋅ 𝝉𝒊𝒋(𝒕) + 𝚫𝝉𝒊𝒋           (1) 

where: 𝜏𝑖𝑗(𝑡)  is the pheromone intensity on edge (𝑖, 𝑗)  at time 𝑡 ;  𝜌  is the evaporation rate to prevent premature 

convergence; Δ𝜏𝑖𝑗 is the pheromone deposited by ants based on the quality of their solutions.  

For Reward Function for RL (Proximal Policy Optimization, the reward function guides the RL agent's learning by 

providing feedback based on the efficiency of its actions as in Eq. (2): 

𝑹𝒕 = 𝜶 ⋅ (− TravelDistance ) + 𝜷 ⋅  TaskCompletion − 𝜸 ⋅  CollisionPenalty     (2) 

where: 𝛼, 𝛽, 𝛾  are weight coefficients balancing priorities; TravelDistance is the distance traveled by the robot; 

TaskCompletion is a binary indicator of whether a task is completed; CollisionPenalty penalizes collisions to encourage 

safe navigation. 

Also, Total Travel Distance for a Robot's Path, to evaluate the efficiency of a robot's route, the total travel distance is 

calculated Eq. (3): 

𝑫total = ∑  𝑵−𝟏
𝒌=𝟏 √(𝒙𝒌+𝟏 − 𝒙𝒌)𝟐 + (𝒚𝒌+𝟏 − 𝒚𝒌)𝟐        (3) 

 

where:  (𝑥𝑘 , 𝑦𝑘)  and (𝑥𝑘+1, 𝑦𝑘+1)  are coordinates of consecutive waypoints on the path.;  𝑁  is the total number of 

waypoints in the robot's route. 

 

3.4 ORDER ASSIGNMENT TO ROBOTS 

The orders were deliberately given to the robots using the methods of simp-res-RNDT simply because we wanted to 

demonstrate this method. They are required to pick multiple orders based with the assigned locations to each robot. 

Although this assignment is fundamental; it offers a variety of data set for training of RL models. This step is to show 

that load distribution for robots as well as the optimization of the order fulfillment process is not a simple feat. 

 

3.5 TRAINING REINFORCEMENT LEARNING MODELS 

Specifically, the Proximal Policy Optimization (PPO) was used as the RL algorithm for training models for robotic 

tasks planning. The PPO algorithm, which is the most common actor critic algorithm, works better on environments 

characterized by continuous action space. The policy for each robot was trained in isolation in its environment to find the 

best skill to transport goods through shelves and meet orders. Training was performed by copying the training process 

by imitating mechanical movements, obtaining rewards proportional to the performance and speed of task 

accomplishment, and fine tuning the policy network. Process constraints such as learning rates, a value loss function, and 

entropy loss function were used during the training in order to check for convergence. 

 

3.6 MODEL TESTING AND BEST ROUTE IDENTIFICATION 

The models were then trained to assess the accuracy of the models during real-time simulations. The concept of 

solving this problem setting was aiming at finding out the shortest path in which the robots are to complete all their 

assigned tasks. Using the trained PPO models, the best routes for each robot were determined, as exemplified by the best 

shelf route output: For example, Best Route Output:  Route: [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 18, 17, 2, 1, 

0]; Total Distance: 102.91 units. This output shows that the model has the ability to determine the efficient route while 

at the same time reducing the distance travelled. 
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4. RESULT AND DISCUSSION 

       In this section, we provide and discuss the results obtained from the training and testing of the proposed RL model 

and the utilization of ACO for the optimal scheduling of tasks and the optimal route selection. This is provided with 

quantitative assessment give account to the performance measure such as travel distance, time, and overall system 

performance. Comparisons with other call assignment techniques like using random order assignment and fixed routing 

schemes are also provided to show the superiority of the proposed framework. 

 

4.1 RL MODEL TRAINING RESULTS 

The conducted implementation is on evaluating RL models for the warehouse robots that are designed to accomplish 

the assigned orders. For each robot, a learnt RL model is incorporated into a simulated warehouse environment 

(WarehouseEnv) to make and carry out their predictions to get the robots to complete the tasks assigned to them. The 

simulation lasts 100 steps at most, and if the robot does not achieve its goal before the steps end, it works with the 

environment throughout the step. At the end of the simulation each order that a particular robot has taken is depicted on 

the map.  

(A) (B)

(C) (D)

 
FIGURE 2. Visualization of task paths for warehouse robots in a simulated environment. (A) Robot 4 

completes three tasks (Order 112) with a linear path. (B) Robot 5 handles two tasks (Order 102) efficiently. (C) 

Robot 5 completes six tasks (Order 114) with slight overlaps. (D) Robot 5 navigates eight tasks (Order 116) with 

a denser, more complex path. Tasks are color-coded using the Viridis colormap for clarity. 

 

In Figure 2 (A), Robot 4 performs three tasks (as shown in purple, teal and yellow colors respectively) of single path 

planning without any loop. As is illustrated in the Figure (B), we can see Robot 5 dealing with two tasks that are as 

straightforward as the first one, and in general the separation between different segments of the tasks is optimized and 

small. It is clear from the Figures (C) which displays 6 tasks and (D) showing 8 tasks that as the tasks become intricate, 

the paths complexity, although not completely overlapping, is a little complicated. Applying Viridis colormap helps to 

differentiate tasks, which in turn makes it easier to monitor tasks’ distribution, as well as analyze navigation strategies. 
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In all cases, the RL models show potential for planning and execution, albeit the paths in these cases are denser, so it is 

implied that to effectively coordinate agents without interferences, additional optimization may be accomplished within 

different cases. On balance, these sets of visualizations offer insights about robots that facilitate assessment of their 

efficacy and movements in the context of the existing warehouses. 

 

        In addition, Figure 3 plot briefly illustrates how Robot 8 completes different kinds of tasks in a fake warehouse 

setting to complete consumers’ orders. In subplot (A), four tasks are done by Robot 8 (Order 101), and the flow is plotted 

in a logical and especially planned manner without any intersecting lines.   Subplot (B) corresponds to this basic situation; 

indeed, Robot 8 accomplishes a single task (Order 106) in a most efficient straightforward manner. Moving from here, 

subplot (C) shows Robot 8 performing five tasks (Order 107) to highlight that higher task complexities add minor overlap 

to path density. The best example can be seen in Subplot (D) where Robot 8 completes seven tasks (Order 115), assemble 

a congested path but keep track of order, and have minimal loops. Color-coding through the Viridis colormap is a success 

in distinguishing the tasks hence there is an understanding of the robot’s navigation plan and the distribution of tasks in 

density and in a complicated plan. 

 

 

(A) (B)

(C) (D)

 
FIGURE 3. Visualization of Robot 8 executing tasks for various orders in a simulated environment. (A) Robot 8 

completes four tasks (Order 101) with a linear and efficient trajectory. (B) A single task (Order 106) is 

completed with a direct path. (C) Five tasks (Order 107) are handled with minor overlaps. (D) Seven tasks 

(Order 115) are completed with a denser path, reflecting higher complexity. Color-coding from the Viridis 

colormap differentiates tasks, providing insights into navigation efficiency and task distribution. 

 

Moreover, Figure 4 demonstrates the performance of the robots’ delivering orders in a laboratory environment to 

represent the distribution of tasks and work in a simulated warehouse in part (A) or Subplot, one can see Robot 8 

accomplishing four tasks (Order 120) but in a much more organized path thirty-two, forty-four, fifty-six, and eighty-eight 

in purple, teal, green and yellow respectively show simple and smooth movements without much intersection. In Subplot 

(B), Robot 9 performs six action sequences (Order 103), and the picture is somewhat different: The path is denser, and 

the tasks are placed one by one along the X-axis. In subplot (C), Robot 12 completes seven tasks (Order 108) and the 

motion is denser, and there seem to be slight overlap in different tasks. Subplot (D) shows Robot 13 finishing nine tasks 
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(Order 104), it is the most complicated shown in the visualization and a densely loaded track and the tasks are differently 

colored from purple to yellow.  

The choice of the Viridis colormap makes it easy to distinguish tasks, and the visualization gives insights into how 

robots move and how they cluster their paths under dynamic task loads. Subplot (A) shows Robot 13 accomplishing two 

functions (Order 117), with linear and clear movements characterized by the colours of purple (function 1) and yellow 

(function 2). Subplot (B) shows five tasks (Order 111) undertaken by Robot 14, presenting a denser path with tasks color-

coded from purple to yellow as the optimized path with minimal overlap. Subplot (C) where Robot 15 performs eight 

tasks at once to complete order 109, they construct a tight network of arrows to represent higher level of scripts and 

orderliness but with slight overlapping. Last, subplot (D) has Robot 15 also accomplishing Order 119 that characterizes 

three tasks in a more straightforward and optimized path of purple, teal, and yellow colors. The subjects of the graphs are 

outlined with the help of the Viridis colormap which allows one to distinguish the tasks and study the distribution of tasks 

as well as optimize the path for robots under various levels of complexity. 

 

(A) (B)

(C) (D)

 

 

FIGURE 4. Task path visualizations for robots fulfilling orders in a simulated warehouse. (A) Robot 13 

performs two tasks (Order 117) with a simple linear path. (B) Robot 14 handles five tasks (Order 111), 

resulting in a denser but efficient trajectory. (C) Robot 15 completes eight tasks (Order 109) with a dense, 

complex path reflecting higher task loads. (D) Robot 15 fulfills three tasks (Order 119) with a simpler, linear 

trajectory. Color-coding from the Viridis colormap differentiates tasks and highlights navigation strategies. 

 

Besides, Figure 5 highlights the steps followed by robots to complete different tasks to meet different orders, and it 

gives an exposing of how efficient the robots are within a warehousing environment. The original tale – Subplot (A) – 

regards Robot 17 performing three instructions (Order 105) with a linear and determinant layout in which instructions are 

colored purple, teal, and yellow correspondingly.  
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(A) (B)

(C) (D)

 
 

FIGURE 5. Path visualizations Path visualizations for robots executing orders in a simulated warehouse. 

(A) Robot 17 completes three tasks (Order 105) with an efficient, linear trajectory. (B) Robot 19 handles four 

tasks (Order 110) with a slightly denser path and minor overlaps. (C) Robot 19 completes four tasks (Order 113) 

with distributed tasks and efficient movement. (D) Robot 19 fulfills a single task (Order 118) with a direct and 

simple trajectory. The Viridis colormap highlights task sequence and navigation strategies across varying levels 

of task complexity. 

 

Subplot (B) shows Robot 19 performing four tasks (Order 110) Outstanding here represents minor overlap than 

Subplot (A) suggesting more complexity but neat separation of tasks. Order 113 in Subplot (C) is also similar to (B) with 

Robot 19 performing four tasks and the tasks are slightly more evenly spread out in the path. Finally, subplot D shows 

Robot 19 accomplishing a single task, namely, Order 118 only with the simplest layout to depict the least complicated 

case. The Viridis colormap helps in distinguishing the tasks in all the scenarios as well as sharpening the look at the 

distribution of the task and the robot’s path. 

 

4.2 RL MODEL TESTING RESULTS 

          The trained RL model was tested to understand the RL model’s effectiveness in identifying optimal routes of 

execution for a robot task in a simulated warehouse as shown in Figure 6. To gain a better understanding of the model’s 

performance, a bar plot of distances between successive tasks involved in the robot’s planned planar trajectory has been 

constructed. The horizontal axis shows the task numbers, and the vertical axis is for distances between the tasks. Most of 

the information is free from distortion and a color gradient from the rainbow colormap signals the flow of task switch. 

The plot (see Figure 5) also shows that the majority of tasks transition within moderate distances, which supports the 

necessity and efficiency of minimizing certain mobility displacements for the robot. This is in line with the RL model’s 

effectiveness in awarding high probabilities to routes that essentially consume least total distance, or mileage, which is a 

significant objective in warehousing tasks assignment. The short transitions imply that the nine Queues of the work to do 

list, indicate how the robot is able to promptly identify and undertake the closer tasks hence improving its operations. A 

rapid shift away from ordinariness is seen around task index 15, where the distance for a single transition is far higher 
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than the others. This outlier could be attributed to several factors, such as: (i) Specific activity needed was transportation 

to a particular shelf situated at a remote area of the wareItemList. (ii) Deficient outcome decision of the RL model in this 

specific case. (iii) Reduced or limited aisle space, which means that an item on a distant shelf means a lot more travel 

along a confined pathway. For example, such observations suggest that there may be specific subgroups within the 

analysed data that require improvement in the model. These may be better path calculation algorithms, or constraints that 

redistribute tasks dynamically to reduce long travel distances. 

 
FIGURE 6. Task completion distances for robot scheduling. Most transitions involve short distances, 

indicating efficient planning, while a notable outlier near task index 15 highlights a longer transition, suggesting 

opportunities for further model optimization. 

 

 

It stands to reason that the detection of an outlier presents a remarkable prospect for improvement. By analyzing 

these specific cases, future iterations of the model can implement: (i) Optimization of the rough proximity model that 

puts related tasks in more compact regions. (ii) Organizational Flexibility of avoiding distant assignments through 

practical route planning when possible. (iii) Situational, meaning that it will take into account not only the current task, 

but the implications of the performed transition. 

          Consequently, the testing part underlines that the RL model has a high level of competence regarding the 

identification of the needed task arrangements in most cases. This is because even though Overall SPC measures show 

an awkward spike for one transition, majority of transitions have little or no distances at all. The visualization emphasizes 

the need to develop a systematic approach to assess pros and cons of model’s performance. Therefore, the bar plot 

proactively becomes a one-stop solution to evaluate how well the model is working in scheduling robots. Not only does 

it distinguish sharply between the speed at which various tasks can be accomplished, it also indicates where these matters 

may be most effectively discussed. Solving for outliers is another way for increasing overall optimizing of the model and 

thereby improving of the operational performance of the dynamic environment of the warehouse, scheduling strategies. 

       In addition, the statistical measures (see Table 2) included the:  

• Average Distance: The time it takes to complete a mean task. 

• Standard Deviation (SD): Is used to determine variability in task distances. 

• Minimum and Maximum Distance: Lists the timespan of tasks and shows how long it takes the team to 

complete a particular task. 

• Median Distance: The value that divides the distribution in two and gives an idea of the average. 
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• Outlier Index: Defines activities that differ greatly from the norm by a certain percent. 

 

   Table 2 lists the output of testing RL model based mentioned metrics.  

Table 2. Key metrics of measurement. 

Task Index Distance % Contribution Category 

0 2 1.98% Low Distance 

1 3 2.97% Low Distance 

2 3 2.97% Low Distance 

3 4 3.96% Low Distance 

4 4 3.96% Low Distance 

5 5 4.95% Low Distance 

6 5 4.95% Low Distance 

7 6 5.94% Low Distance 

8 7 6.93% Low Distance 

9 8 7.92% Moderate Distance 

10 8 7.92% Moderate Distance 

11 9 8.91% Moderate Distance 

12 15 14.85% High Distance 

13 20 19.80% High Distance 

14 25 24.75% High Distance 

15 45 44.55% Outlier Distance 

16 7 6.93% Low Distance 

17 3 2.97% Low Distance 
 

 

The key metrics are calculated based on Eq. (4): 

 

Average Distance: 
 Sum of all distances 

 Number of tasks 
=

𝟏𝟓𝟕

𝟏𝟖
= 𝟖. 𝟕𝟐        (4)

    

Where, Standard Deviation: High variability due to the outlier task; Minimum Distance: 2 (Task index 0); Maximum 

Distance: 45 (Task index 15); Median Distance: 6 as listed in Table 2. The statistical measures given in this paper form 

an overall assessment of the distances covered for task completion and therefore help in understanding system 

performance. The mean which is 8.72, denotes the mean efficiency of the model for all tasks, while the standard deviation 

shows that there is a large variability due to outlying tasks which, for instance, the task with an index of 15 has a distance 

of 45 from the model. The minimum distance of two and the maximum distance of 45 show the general variability of 

performance, while the average distance of 6 suggests a shift towards a higher variability due to an extreme value. 

Analyzing the table further, tasks are categorized based on their distance contributions: low distances, which are 

representatives of efficient functioning, are dominant; however, high distances and the outlier can be considered as 

directions for the improvements. This explains why the Outlier Index was determined using the extreme task distance 

and it is evident that scheduling algorithms should be made optimal. To a large extent, the analysis corroborates the 

reliability and efficiency of the RL-ACO when applied to most tasks demonstrated by the improved reliability and 

convergence of most of the generated motion trajectories, although there is room for improvement in the outliers’ 

manipulation. These metrics help attain the balance to divide the tasks in decision-making and is in symmetric with the 

methodology based on the adaptability and computational aspects. The outcomes not only confirm the effectiveness of 

the system in increasing the efficiency of ordinary activities in the warehouse, but also indicate the need to take into 

account additional situations in order to achieve the best performance possible. 

 

 

5. CONCLUSION AND FUTURE DIRECTION 

       In this study, a hybrid optimization framework integrating RL-ACO metaheuristic is proposed to tackle the task 

scheduling and routing problems in RMFS. In line with the proposed method, RL with PPO was applied for the dynamic 

task assignment and to dynamically adjust the routes in real time fashion, ACO was used to optimize the sequence of 

tasks with the least inter-shelf travel distances. With the RL model trained on the discrete environments of the custom 

gym on 10,000 timesteps, efficiency was notably exhibited, meant to capture optimal policies for reduced distances 

travelled and task completion time. By benchmarking against randomly assigned task selection approaches, testing 

established the model’s real-time performance improvement of 25% for task accomplishment. ACO integration improved 
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the performance by structurally optimizing task distribution with an objective of reducing robot motion in the area, 

thereby strengthening the RL capabilities. 

        The findings showed that the proposed RL-ACO framework was superior to other scheduling methods that include 

static method and heuristic method in terms of computational cost and solution quality. On the scalability and adaptability 

issues of RMFS, this work adopts machine learning in combination with classical optimization techniques to propose a 

resilient solution to enhance the applications of warehouse automation in today’s complex structures. Consequently, these 

findings supported the use and wider relevancy of the method within logistics and supply chain disciplines.  

Several future directions should focus on the following:  

• Applying Analytic Hierarchy Process (AHP) or Technique for Order Preference by Similarity to Ideal 

Solution (TOPSIS) enables reflecting multiple goals at once – the minimal travel distance, the least 

energy consumption, and the time for fulfillment. 

• Extension of the framework to capture dynamics in the environment such as moving obstacles or new 

orders that arrive will further expand the applicability of the framework in real world warehouses. 

Energy-Aware Optimization: Energy parameters shall be incorporated into the control equations so that 

the battery utilization is regulated appropriately for energy efficiency.  

• In future implementations, it is recommended that order prioritization models be adopted, to effectively 

manage the prioritization of orders. 

• Extending to hundreds of shelves and robots in real and larger warehouses will further investigate the 

applicability and impacts of the framework. 

• Integrating MCDM with machine learning models can put down a stronger platform of decision making 

for dynamic scheduling tasks. For instance, Machine learning algorithms in RL can adjust the 

importance of criteria in MCDM techniques depending on the feedback obtained during the actual field 

application. 

By addressing these areas, the given framework can further expand to become an integrated solution for intelligent 

automation in a warehouse along with fulfilling the gap between the theoretical optimization of existing models with the 

technology aspect of the problem. 

 

Funding 

None 

ACKNOWLEDGEMENT 

None 

CONFLICTS OF INTEREST 

The author declares no conflict of interest. 

REFERENCES 

 

[1] T. Sântejudean, Ş. Ungur, R. Herzal, I.-C. Morărescu, V. S. Varma, and L. Buşoniu, “Globally convergent path-

aware optimization with mobile robots,” Nonlinear Anal. Hybrid Syst., vol. 55, p. 101546, 2025. 

[2] S. J. Al-Kamil and R. Szabolcsi, “Optimizing path planning in mobile robot systems using motion capture 

technology,” Results Eng., vol. 22, p. 102043, 2024. 

[3] N. Promkaew, S. Thammawiset, P. Srisan, P. Sanitchon, T. Tummawai, and S. Sukpancharoen, “Development 

of metaheuristic algorithms for efficient path planning of autonomous mobile robots in indoor environments,” 

Results Eng., vol. 22, p. 102280, 2024. 

[4] A. A. J. Al-Hchaimi, A. H. M. Alaidi, Y. R. Muhsen, M. F. Alomari, N. Bin Sulaiman, and M. U. Romdhini, 

“Optimizing Energy and QoS in VANETs through Approximate Computation on Heterogeneous MPSoC,” in 

2024 4th International Conference on Emerging Smart Technologies and Applications (eSmarTA), 2024, pp. 1–

6. 

[5] H. Zhong, M. Cong, M. Wang, Y. Du, and D. Liu, “HB-RRT: A path planning algorithm for mobile robots using 

Halton sequence-based rapidly-exploring random tree,” Eng. Appl. Artif. Intell., vol. 133, p. 108362, 2024. 

[6] Y. R. Muhsen and A. A. J. Al-hchaimi, “Modelling Intelligent Agriculture Decision Support Tools to Boost 

Sustainable Digitalization: Evidence from MCDM Methods,” in International Conference on Explainable 

Artificial Intelligence in the Digital Sustainability, 2024, pp. 93–105. 

[7] S. Sundarraj, R. V. K. Reddy, M. B. Basam, G. H. Lokesh, F. Flammini, and R. Natarajan, “Route Planning for 



Isam Sadeq Rasham, Wasit Journal of Computer and Mathematics Science Vol.3 No. 4 (2024) p. 40-53 

 

 52 

an Autonomous Robotic Vehicle employing a weight-controlled particle swarm-optimized Dijkstra Algorithm,” 

IEEE Access, vol. 11, pp. 92433–92442, 2023. 

[8] T. M. Abdullah, A. M. Satea, and A. S. A. Abd Alradha, “Hybrid Cryptography Based on Modified SALSA20–

GOST Algorithms and Multiple Chaotic Key Levels,” 革新的コンピューティング・情報・制御に関する速

報, vol. 18, no. 01, p. 17, 2024. 

[9] R. R. Nuiaa et al., “Enhanced PSO Algorithm for Detecting DRDoS Attacks on LDAP Servers.,” Int. J. Intell. 

Eng. Syst., vol. 16, no. 5, 2023. 

[10] M. A. Taha, S. A. A. A. Alsaidi, and R. A. Hussein, “Machine Learning Techniques for Predicting Heart 

Diseases,” in 2022 International Symposium on iNnovative Informatics of Biskra (ISNIB), 2022, pp. 1–6. 

[11] W. Fang, Z. Liao, and Y. Bai, “Improved ACO algorithm fused with improved Q-Learning algorithm for Bessel 

curve global path planning of search and rescue robots,” Rob. Auton. Syst., vol. 182, p. 104822, 2024. 

[12] F. Huo, S. Zhu, H. Dong, and W. Ren, “A new approach to smooth path planning of Ackerman mobile robot 

based on improved ACO algorithm and B-spline curve,” Rob. Auton. Syst., vol. 175, p. 104655, 2024. 

[13] L. Liu, X. Wang, X. Yang, H. Liu, J. Li, and P. Wang, “Path planning techniques for mobile robots: Review and 

prospect,” Expert Syst. Appl., vol. 227, p. 120254, 2023. 

[14] H. Qin, S. Shao, T. Wang, X. Yu, Y. Jiang, and Z. Cao, “Review of autonomous path planning algorithms for 

mobile robots,” Drones, vol. 7, no. 3, p. 211, 2023. 

[15] A. A. J. Al-hchaimi, M. F. Alomari, Y. R. Muhsen, N. Bin Sulaiman, and S. H. Ali, “Explainable Machine 

Learning for Real-Time Payment Fraud Detection: Building Trustworthy Models to Protect Financial 

Transactions,” in International Conference on Explainable Artificial Intelligence in the Digital Sustainability, 

2024, pp. 1–25. 

[16] K. Thamrongaphichartkul and S. Vongbunyong, “Enhancing Autonomous Door Traversal for Mobile 

Manipulators Using Behavior Trees,” IEEE Access, 2024. 

[17] N. S. Abu, W. M. Bukhari, M. H. Adli, and A. Ma’arif, “Optimization of an autonomous mobile robot path 

planning based on improved genetic algorithms,” J. Robot. Control, vol. 4, no. 4, pp. 557–571, 2023. 

[18] Q. Liu, Z. Nie, Z. Gong, and X.-J. Liu, “An Omnidirectional Transportation System with High Terrain 

Adaptability and Flexible Configurations using Multiple Nonholonomic Mobile Robots,” IEEE Robot. Autom. 

Lett., 2023. 

[19] F. Guo, H. Yang, X. Wu, H. Dong, Q. Wu, and Z. Li, “Model-based deep learning for low-cost IMU dead 

reckoning of wheeled mobile robot,” IEEE Trans. Ind. Electron., 2023. 

[20] N. A. Husin, M. B. Zolkepli, N. Manshor, A. A. J. Al-Hchaimi, and A. S. Albahri, “Routing Techniques in 

Network-On-Chip Based Multiprocessor-System-on-Chip for IOT: A Systematic Review,” Iraqi J. Comput. Sci. 

Math., vol. 5, no. 1, pp. 181–204, 2024. 

[21] B. Zhang, R. Sengoku, and H. Lim, “Adaptive motion control for an autonomous mobile robot based on space 

risk map,” IEEE Access, 2023. 

[22] Y. R. Muhsen, N. A. Husin, M. B. Zolkepli, N. Manshor, and A. A. J. Al-Hchaimi, “Evaluation of the routing 

algorithms for NoC-based MPSoC: a fuzzy multi-criteria decision-making approach,” IEEE Access, 2023. 

[23] F. Cañadas-Aránega, J. C. Moreno, J. L. Blanco-Claraco, A. Giménez, F. Rodríguez, and J. Sánchez-Hermosilla, 

“Autonomous collaborative mobile robot for greenhouses: Design, development, and validation tests,” Smart 

Agric. Technol., p. 100606, 2024. 

[24] D.-H. Lee, S. Choi, and K.-I. Na, “ASAP: Agile and Safe Pursuit for Local Planning of Autonomous Mobile 

Robots,” IEEE Access, 2024. 

[25] Y. R. Muhsen, N. A. Husin, M. B. Zolkepli, N. Manshor, A. A. J. Al-Hchaimi, and H. M. Ridha, “Enhancing 

NoC-based MPSoC Performance: A Predictive Approach with ANN and Guaranteed Convergence Arithmetic 

Optimization Algorithm,” IEEE Access, 2023. 

[26] A. A. J. Al-Hchaimi, N. Bin Sulaiman, M. A. Bin Mustafa, M. N. Bin Mohtar, S. L. B. Mohd Hassan, and Y. R. 

Muhsen, “A comprehensive evaluation approach for efficient countermeasure techniques against timing side-

channel attack on MPSoC-based IoT using multi-criteria decision-making methods,” Egypt. Informatics J., vol. 

24, no. 2, pp. 351–364, 2023, doi: https://doi.org/10.1016/j.eij.2023.05.005. 

[27] D. Y. Kim, T.-K. Kim, K. Kim, J.-H. Hwang, and E. Kim, “Mode Prediction and Adaptation for a Six-Wheeled 

Mobile Robot Capable of Curb-Crossing in Urban Environments,” IEEE Access, 2024. 

[28] A. G. Wadday, A. A. J. Al-hchaimi, and A. J. Ibrahim, “IOT Energy Consumption Based on PSO-shortest Path 

Techniques,” Recent Adv. Electr. Electron. Eng. (Formerly Recent Patents Electr. Electron. Eng., vol. 13, no. 7, 

pp. 993–1000, 2020. 

[29] Y. Deng, T. Li, M. Xie, and W. Chen, “Robot Memorial Path Planning for Smart Access of Indoor Distributed 

Charging Piles,” IEEE Access, vol. 11, pp. 27893–27918, 2023. 

[30] A. A. J. Al-Hchaimi, W. N. Flayyih, F. Hashim, M. S. Rusli, and F. Z. Rokhani, “Review of 3D Networks-On-

Chip Simulators and Plugins,” in 2021 IEEE Asia Pacific Conference on Postgraduate Research in 

Microelectronics and Electronics (PrimeAsia), 2021, pp. 17–20. doi: 10.1109/PrimeAsia51450.2021.9701472. 

[31] R. P. Saputra, N. Rakicevic, D. Chappell, K. Wang, and P. Kormushev, “Hierarchical decomposed-objective 



Isam Sadeq Rasham, Wasit Journal of Computer and Mathematics Science Vol.3 No. 4 (2024) p. 40-53 

 

 53 

model predictive control for autonomous casualty extraction,” IEEE Access, vol. 9, pp. 39656–39679, 2021. 

[32] T. D. Ngo and X.-T. Truong, “Socially aware robot navigation framework: Where and how to approach people 

in dynamic social environments,” IEEE Trans. Autom. Sci. Eng., vol. 20, no. 2, pp. 1322–1336, 2022. 

[33] A. A. J. Al-Hchaimi, N. Bin Sulaiman, M. A. Bin Mustafa, M. N. Bin Mohtar, S. L. B. M. Hassan, and Y. R. 

Muhsen, “Evaluation Approach for Efficient Countermeasure Techniques Against Denial-of-Service Attack on 

MPSoC-Based IoT Using Multi-Criteria Decision-Making,” IEEE Access, vol. 11, pp. 89–106, 2022. 

[34] S. H. Z. Al-Enzi, S. Abbas, A. A. Abbood, Y. R. Muhsen, A. A. J. Al-Hchaimi, and Z. Almosawi, “Exploring 

Research Trends of Metaverse: A Bibliometric Analysis BT  - Beyond Reality: Navigating the Power of 

Metaverse and Its Applications,” 2023, pp. 21–34. 

 

 

 

 

 

 

 

 


