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1- Abstract 
There are many approaches for motion detection in a real-time video stream. All of them are 

based on comparing of the current video frame with one from the previous frames or with background. 

Another approach is to compare the current frame not with the previous one but with the first 

frame in the video sequence. So, if there were no objects in the initial frame, comparison of the current 

frame with the first one will give us the whole moving object independently of its motion speed. But, 

the approach has a big disadvantage - what will happen, if there was, for example, a person on the first 

frame, but then he is gone? Yes, we'll always have motion detected on the place, where the person was. 

Of course, we can renew the initial frame sometimes, but still it will not give us good results in the 

cases where we can not guarantee that the first frame will contain only static background. But, there 

can be an inverse situation. 

The most efficient algorithms are based on building the so called background of the scene and 

comparing each current frame with the background. There are many approaches to build the scene, but 

most of them are too complex. Our approach for building the background is to get the first frame of the 

video stream as the background frame. And then we'll always compare the current frame with the 

background one. Our approach is to "move" the background frame to the current frame on the specified 

amount (we used 1 level per frame). We move the background frame slightly in the direction of the 

current frame - we are changing colors of pixels in the background frame by one level per frame. To 

build the background we use the Morph filter, because the implementation of this filter is more 

efficient, so the filter produce better performance. The idea of the filter is to preserve specified 

percentage of the source filter and to add missing percentage from overlay image. 

 الخلاصة
ع مدتوجد هنالك عدة طرق لتحسس الحركة في تدفقات فيديو الوقت الحقيقي. تعتمد جميعها على مقارنة اطار الفيدديو الحدالي 

 اطار من الاطارت السابقة او مع خلفية الصورة.
ي لدد،ا  ا ا لددن تنددن هنالددك ا طريقددة اخددري  هددي بمقارنددة الاطددار الحددالي  لدديس مددع الاطددار السدداول وانمددا مددع الاطددار الاو  فددي السلسددة.

تب. كيانات في الاطار الاولي  فان مقارنة الاطار الحالي مع الاطار الاو  سوف تعطينا النائن المتحدر  باكملدب ب دل النعدر عدن سدرع
حالددة مدا ا سددوف ثحددث  مددا   ا ا كددان هنالدك طدد ا فدي الاطددار الاو   لنندب اختفددى  فدي هدد،ل ال –لندن هدد،ل الطريقدة لهددا مبدرلة ك يددرة 

سددوف ثرددون لدددينا تائمددا تحسددس بحركددة فددي  لددك المرددان الدد،ي كددان يتواجددد بددب البدد ا. ثمرننددا بددالط ع تحدددي  الاطددار الاوتدددائي بعددل 
المددرات  لنددن النتيبددة ت قددى  يددر جيدددة فددي الحددالات التددي لانسددتطيع سددمان ان الاطددار الاولددي سددوف ثحتددوي فقدد  علددى كيانددات ال لفيددة 

 جد هنالك حالة معاكسة.الااوتة. لنن  ثمرن ان تو 
ال  تعتمد ال وارزميات الاكار فعالية علدى وندام مدا ثسدمى ب لفيدة المبدهد ومقارندة كدا اطدار حدالي مدع هد،ل ال لفيدة. توجدد هند

. ار خلفيدةعدة طرق ل نام المبهد  لنن ا ل ها معقدة جدا. الطريقة المقترحدة ل ندام ال لفيدة هدي باخد، الاطدار الاو  مدن تددفل الفيدديو كاطد
مسددتوي  ومقارنددة الاطددار الحددالي مددع اطددار ال لفيددة  لنددن يددتن لتحريددكل اطددار ال لفيددة باتبددال الاطددار الحددالي بمقدددار معددين  قمنددا باسددت دا 

 لفيددة اي القيددا  وت ييددر الددوان برسدد ت اطددار ال –واحددد لنددا اطدداري. القيددا  وتحريددك اطددار ال لفيددة بصددورة قليلددة باتبددال الاطددار الحددالي 
ي هدد  لان تط يددل هدد،ا الفلتددر ثرددون  و اتام اك ددر. فنددرة الفلتددر Morph filterلنددا اطددار. ل نددام ال لفيددة قمنددا باسددت دا   بمسددتوي واحددد

 بالحفاظ على نس ة معينة من الفلتر المصدر واسافة النس ة المت قية من الصورة الفوقية.
 

2- Introduction 
In the last few years, visual surveillance has become one of the most active 

research areas in computer vision, especially due to the growing importance of visual 

surveillance for security purposes. Visual surveillance is a general framework that 

groups a number of different computer vision tasks aiming to detect, track, and 

classify objects of interest from image sequences, and on the next level to understand 

and describe these objects behavior. The ultimate goal in designing smart visual 
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surveillance systems is to replace the existing passive surveillance and to remove, or 

at least, minimize the need for a human observer to monitor and analyze the visual 

data. [Mohamed, 2006]. 

 

  The increasing availability of video sensors and high performance video 

processing hardware opens up exciting possibilities for tackling many video 

understanding problems [Alan, 2000]. It is important to develop robust real-time 

video understanding techniques which can process the large amounts of data 

attainable. In our paper we take the motion detection problem, we assumed an input 

video stream from a web cam or any other type of digital video cameras.  

3- The detection process  
 The detection process is accomplished by: 

 Background modeling, which resembled by a morph filter combines the 

background as an overlay image, and the current frame to decrease the difference with 

the background, which can be taken as updating the background [Hu, 2004].  

 Temporal variance, which is accomplished by a Connected Component 

Labeling Algorithm [Jung ,2001]. That takes connected labeled pixels, which 

assembles a region in the image, and combines them into object. 

The final step is to count those object and calculate a rectangle to surround their 

area and draw that rectangle in the screen. 

By conquest processing of the incoming video frames in real-time we end with a 

moving triangles around the detected objects motion. 

4- Motion Detection Algorithm 
4-1 Getting the initial background image 

As a first step we prepare the background to be the first frame we received, as 

that we now have no motion at all, we further process the background by applying a 

Grayscale filter and a Pixellate Filter. The pixellete filter here used to reduce the 

pixels count and emphasize the over all color distribution of the image; then we 

extract the image dimensions to use in further processing. So we now have the initial 

background image [Collins, 2000] (Fig. 1). 

 
4-2  Updating the background image 

Get initial background image. 

 

Convert the image to grayscale and 

apply Pixellate filter. 

 

Get the reduced grayscale image from 

the Pixellate filter. 

 

Fig 1. Setting the initial background image. 
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From the steps in (4-1) we get a frame and called it the current frame, we first 

apply the same filters as we did with the background image. That means we make the 

current frame as the same as the background image in structure and format. 

Update the background image by moving the pixels intensity towards the 

pixels intensity of the current frame by one level, to decrease diffirence with overlay 

image - source image is moved towards overlay image. The update equation is 

defined in the next way: 

 

Result = src + Min( Abs( ovr - src ), step ) * Sign( ovr - src )                        

[Mohamed, 2006]            

           

Where : 

Result is the updatd background image, which will be the background for the next frame. 

Src is the curent frame image. 

Over is the curent background image. 

Step defines the maximum amount of changes per pixel in the source image.  

 

The bigger is step size value the more resulting image will look like overlay 

image. For example, in the case if step size is equal to 255, the resulting image will be 

equal to overlay image regardless of source image's pixel values. In the case if step 

size is set to 1, the resulting image will very little differ from the source image. But, in 

the case if the filter is applied repeatedly to the resulting image again and again, it will 

become equal to overlay image in maximum 255 iterations. In our case we repeatedly 

applies the filter to the updated background overlayed on the curent frame, which in 

result will be counted as applying the filter for the first time. 

The value, of step per pixel, we take is 1, because if we increase the moving 

steps, we make the background image more similar to the current frame, with this 

small amount of movement we prevent the background image from becoming less 

sensitive to the changes of the upcoming frames, and also reduce the number of 

iterations that will be made on the background and the current frame, which yields 

more speed in processing the frames which is a crucial criteria in real-time processing. 

 

4-3 Blob extraction and counting 

Detection of connected components between pixels in binary images is a 

fundamental step in segmentation of an image objects and regions, or blob. Each blob 

is assigned a unique label to separate it from other blobs. All the pixels within a 

blob of spatially connected 1's are assigned the same label. It can be used to 

establish boundaries of objects, components of regions, and to count the 

number of blobs in an image [Gonzalez ,1992]. Its applications can be found in 

automatic inspection, optical character recognition, robotic vision, etc. [Ronson, 

1954]. 

The original algorithm was developed by Rosenfeld and Pfaltz [Rosenfeld, 

1966] in 1966. It performs two passes through the image. In the first pass, the image 

is processed from left to right and top to bottom to generate labels for each pixel and 

all of the equivalent labels are stored in a pair of arrays. In the second pass, 

each label is replaced by the label assigned to its equivalence class. Several 

papers [Lumia, 1983], [Lumia, 1983], [Manohar, 1989] pointed out the problems 

in the second pass for large images because the equivalence arrays can become 

unacceptably large [Lumia, 1983]. The way in which label equivalences are 

resolved can have a dramatic effect upon the running, time of this algorithm. 
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Modifications include one proposed by. Haralick that does not use air 

equivalence array [Jung, 2001] and a small equivalence table by Lumia, Shapiro, 

and Zinup [Lumia, 1983] that is reinitialized for each line. The latter paper makes 

comparison runs between these three algorithms. Another solution uses a bracket table 

[Yang, 1989] to associate equivalent groups. Its pushdown stack data structure that 

implemented in hardware. Our approach computes the connected components of 

binary image in real-time without any hardware support. Instead it applies the power 

and efficiency of the divide-and-conquer technique. 

4-3-1 The Basics 

A pixel p at coordinate (x, y) has four direct neighbors, N4(p) and four 

diagonal neighbors, ND(p). Eight-neighbors, N8(p)of pixel p consist of the union of  

N4(p) and ND(p)  [Mohamed, 2006]. 

To establish connectivity for pixels p and q can be considered : 

1- 4-connectivity-connected if q is in N4(p); 

2- 8-connectivity-connected if q is in N8(p); 

3- m-connectivity-connected if q is in N4(P), or if q is in ND(P) and N4(p) ∩ 

N4(q)=; 

 

4-3-2 A Connected Component Labeling Algorithm 

The labeling algorithm is described below based on 8-connectivity. 

Step 1: Initial labeling.  

Scan the image pixel by pixel from left to right and top to bottom. Let p 

denote the current pixel in the scanning process and 4-nbr denote four neighbor 

pixels in N, NW. NE and W direction of p. If p is 0, move on to the next scanning 

position If p is 1 and all values in 4-nbrs are 0, assign a new label to p. If only one 

value in 4-nbrs is not 0, assign its values to p. If two or more values in 4-nbrs are not 

0, assign one of the labels to p and mark labels in 4-nbrs as equivalent. 

Step 2:  Resolve equivalences (This is developed as fallows). 

The equivalent relations are expressed as a binary matrix. For example, if label 

1 is equivalent to 2, label 3 is equivalent to 4, label 4 is equivalent to 5, and label 1 is, 

equivalent to 6 then the manta: L is that shown in Figure 2.a. Equivalence relations 

satisfy reflexivity, symmetry and transitive [Gonzales, 1992]. To add reflexivity 

in matrix L. all main diagonals are set to 1. To obtain transitive closure the 

Floyd_Warshall (F-W) algorithm [Mohamed, 2006] is used. 

for j = 1 to n 

for i = 1 to n 

if L[i,j] = 1 then 

for k = 1 to n 

L[I,k] = L[1, k] OR L[j,.k]; 
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After applying reflexivity and the F-W algorithm, the matrix L is that shown in 

Fig. 2.b. This algorithm, can be performed in O(n3) OR operations. After calculating 

the transitive closure, each label value is recalculated to resolve equivalences. 

The image is scanned again and each label is replaced by the label assigned to 

its equivalence class. 

4-3-3 A Fast Connected Component Labeling Algorithm 

The main idea in this algorithm is to divide the image into NxM small regions 

(we use NxN here for simplicity). The large equivalence array is the main 

bottleneck in  the original algorithm, but NxN small equivalence arrays can be found 

in greatly reduced time. Figure 3 shows that an image divided into 3x3 small 

regions for labeling independently. Then we connect each region with its 

neighbor regions to generate the actual label within the entire image. We use NxN 

pointers Label_Llst[i] to point to arrays that maintain the global labels with respect to 

the entire image. Label_List[i] points to the array for Region[i] where each array 

element is the global label within the entire image and the index for each array 

element is the local label within Region[i]. Memory allocation for each array 

pointed to by Label_List[i] can be done dynamically according to the maximum local 

label in Region[i]. Figure 4 depicts these lists. The example of Figure 5 shows that 

local label 1, 2 and 6 are equivalent and their global label within the entire image 

is 8; local label 3, 4, and 5 are equivalent and their global label is 9. The Total–Index 

equals 7 at the end of Region[i-1], which is kept in the list at index 0. 

5- The Fast Labeling algorithm 
Our fast labeling algorithm (based on 8-connectivity) is described below. 

The other connectivity differs only in its neighboring checking. 

5-1 Fast Labeling algorithm 

Fig 2. Equivalence relations in terms of binary matrix.  

a) Matrix before applying the F-W algorithm. b) Matrix after applying reflexivity 

and the F-W algorithm. 
 

Fig 3. Division of original image into 3x3 regions. 
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Step 1- Divide the given image into NxN small regions and set Total_ Index = 0 

Step 2: For each region i = 1 to NxN 

1- apply Step 1of the original algorithm in Section 3-3-2; 

2- allocate memory for the array pointed to by Label_List[i] as maximum no. of labels 

for Region[i];  

3- use F-W algorithm in Section 3-3-2 to resolve the equivalences within Region[i]. 

4- for j=1 to size of an array for Region[i] do 

Label_List[i][j] = Total_Index + Ibl 

// lbl is a label to its equivalence class after equiv. resolution (see Figure 5). 

5- Total_index= Total_index + maximum{lbl} 

6-  if (i > 1) then call Merge( i ): 

//  to update labels in bordering area between regions. 

Step3:  For each region i = l toNxN do 

scan image in Region[i] from left to right, top to bottom and replace all local label 

value k with Label_List[i][k]; 

 

5-2 The Merge(i) Function ( resolve equivalences of pixels in bordering area 

between regions). 

Step 1: select first pixel p in Region[i]; 

If (label (p)>0) then 

for each pixel q in N8 (p) intersects other regions  

//see figure 6.a 

if (label(q) > 0) then 

call Resolve_Equivalence(p,q,i); 

Step 2: for each pixel p in the first column in Region[i]  

if (label (p) > 0) then 

for each pixel q in N8 (p) intersects Region [i-1] 

//see Figure 6.b 

if (label (q) > 0) then 

call Resolve_Equivalence(p,q,i); 

Step 3:  for each pixel p in the first row in Region[i]  

Fig 4. The Label_List structure. 

 

Total_index 
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if label(p) > 0 then 

for each pixel q in N8(p) intersects Region [i-N]  

//see Figure 6-c 

if (label (q) >  0) then 

call Resolve_Equivalence(p,q,i); 

 
 

 

5-3 The Resolve_Equivalence(p,q,i ) Function. 

Step1: Index1 = Label_List[region no. of q ][label(q)]; 

Index2 = Label_list[i][label(p)] ; 

if( Index1 not equal to Index2 ) then 

do Step 2. 

Step2: Small_Lb1 = min{indexl, index2}; 

Large_Lbl = max{indexl, index2}; 

for k = 1 to i do 

for j = l to size of any array for Region[k] 

if (Label_List[k][j] > Large_Lbl) then 

Label_List[k][j] = Label_List[k][j] -1; 

else if  (Label_List[k][j] = large_Lbl) then 

Label_List[k][j] = small_lb1; 

Total_Index = Total_Index-1; 

 

5-4 Final Steps 

As the previous steps completed, the result is a binary image with objects 

represents the moving objects in the current frame, so we now: 

For each object[i] in current frame 

rect[i].Maxx = max_x(object[i]) 

rect[i].Minx = min_x(object[i]) 

rect[i].Maxy = max_y(object[i]) 

rect[i].Miny = min_y(object[i]) 

draw_rect(rect[i]) 

The above processes will effect all detected objects in the frame and drawing 

rectangles over them, which result in drawing attention over any movement happing 

in the frame, as a result, for the whole input video stream, these rectangles will move 

with the object that they surround. 

Fig 5. The Label_List[i] example. 
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6- Conclusions 
In live video streams any process on the stream must be as fast, and accurate 

as possible. So we do here develop the accuracy in the moving background, to, 

always, update the background and make it move towards the movement of the frame 

pixels by morphing the frame with the background, which slightly change the 

background pixels from the current frame to prepare it to be the new background for 

the next frame. The fast Blob algorithm will detect the movement in a rapid fashion 

by eliminating the unnecessary loops over the image and converging the data 

structures involved in it, we eliminate hare these steps to increase the speed of 

detection and to be able to process as many as the input stream delivers frames from 

the scene we observe.  

In the simplest way, it takes the difference between two frames and highlight that 

difference, this method is poor in object recognition because the difference don’t 

emphasize the object shape as in Fig(7). The second best approach is based on edge 

detection, in spite of its good shape recognition, Fig(8), but it's lake in speed and takes 

a lot of hardware resources. So by a little enhancement in the previous algorithm by 

adding a pixellete filter we obtain a good representation of the object and a fast 

performance, due to the reduced number of pixels blocks to process as seen by fig(9). 

After all we eliminate the bounders and replace them by a surrounding rectangle 

applied to each detected object, because the idea is to detect and track motion not to 

recognize object shapes. 

Fig 6. Merge taken place in three ways at Region[i]. a) Merge at the first pixel in Region[i] 

b) Merge at pixels in the first column in Region[i] and the last column in Region[i-1] c) 

Merge at pixels in the first row in Region[i] and the last row in Region[i-N]. 
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 Fig(7)                                                                                                Fig(8) 

Fig(9)                                                                                           Fig(10) 
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