
Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(19): 2011

 386

Motion Detection in Real-Time Video Streams
Using Moved Frame Background

Amina A. Dawood Balasim A. Hussean

University of Babylon

1- Abstract
There are many approaches for motion detection in a real-time video stream. All of them are

based on comparing of the current video frame with one from the previous frames or with background.

Another approach is to compare the current frame not with the previous one but with the first

frame in the video sequence. So, if there were no objects in the initial frame, comparison of the current

frame with the first one will give us the whole moving object independently of its motion speed. But,

the approach has a big disadvantage - what will happen, if there was, for example, a person on the first

frame, but then he is gone? Yes, we'll always have motion detected on the place, where the person was.

Of course, we can renew the initial frame sometimes, but still it will not give us good results in the

cases where we can not guarantee that the first frame will contain only static background. But, there

can be an inverse situation.

The most efficient algorithms are based on building the so called background of the scene and

comparing each current frame with the background. There are many approaches to build the scene, but

most of them are too complex. Our approach for building the background is to get the first frame of the

video stream as the background frame. And then we'll always compare the current frame with the

background one. Our approach is to "move" the background frame to the current frame on the specified

amount (we used 1 level per frame). We move the background frame slightly in the direction of the

current frame - we are changing colors of pixels in the background frame by one level per frame. To

build the background we use the Morph filter, because the implementation of this filter is more

efficient, so the filter produce better performance. The idea of the filter is to preserve specified

percentage of the source filter and to add missing percentage from overlay image.

 الخلاصة
ع مدتوجد هنالك عدة طرق لتحسس الحركة في تدفقات فيديو الوقت الحقيقي. تعتمد جميعها على مقارنة اطار الفيدديو الحدالي

 اطار من الاطارت السابقة او مع خلفية الصورة.
ي لدد،ا ا ا لددن تنددن هنالددك ا طريقددة اخددري هددي بمقارنددة الاطددار الحددالي لدديس مددع الاطددار السدداول وانمددا مددع الاطددار الاو فددي السلسددة.

تب. كيانات في الاطار الاولي فان مقارنة الاطار الحالي مع الاطار الاو سوف تعطينا النائن المتحدر باكملدب ب دل النعدر عدن سدرع
حالددة مدا ا سددوف ثحددث مددا ا ا كددان هنالدك طدد ا فدي الاطددار الاو لنندب اختفددى فدي هدد،ل ال –لندن هدد،ل الطريقدة لهددا مبدرلة ك يددرة

سددوف ثرددون لدددينا تائمددا تحسددس بحركددة فددي لددك المرددان الدد،ي كددان يتواجددد بددب البدد ا. ثمرننددا بددالط ع تحدددي الاطددار الاوتدددائي بعددل
المددرات لنددن النتيبددة ت قددى يددر جيدددة فددي الحددالات التددي لانسددتطيع سددمان ان الاطددار الاولددي سددوف ثحتددوي فقدد علددى كيانددات ال لفيددة

 جد هنالك حالة معاكسة.الااوتة. لنن ثمرن ان تو
ال تعتمد ال وارزميات الاكار فعالية علدى وندام مدا ثسدمى ب لفيدة المبدهد ومقارندة كدا اطدار حدالي مدع هد،ل ال لفيدة. توجدد هند

. ار خلفيدةعدة طرق ل نام المبهد لنن ا ل ها معقدة جدا. الطريقة المقترحدة ل ندام ال لفيدة هدي باخد، الاطدار الاو مدن تددفل الفيدديو كاطد
مسددتوي ومقارنددة الاطددار الحددالي مددع اطددار ال لفيددة لنددن يددتن لتحريددكل اطددار ال لفيددة باتبددال الاطددار الحددالي بمقدددار معددين قمنددا باسددت دا

 لفيددة اي القيددا وت ييددر الددوان برسدد ت اطددار ال –واحددد لنددا اطدداري. القيددا وتحريددك اطددار ال لفيددة بصددورة قليلددة باتبددال الاطددار الحددالي
ي هدد لان تط يددل هدد،ا الفلتددر ثرددون و اتام اك ددر. فنددرة الفلتددر Morph filterلنددا اطددار. ل نددام ال لفيددة قمنددا باسددت دا بمسددتوي واحددد

 بالحفاظ على نس ة معينة من الفلتر المصدر واسافة النس ة المت قية من الصورة الفوقية.

2- Introduction
In the last few years, visual surveillance has become one of the most active

research areas in computer vision, especially due to the growing importance of visual

surveillance for security purposes. Visual surveillance is a general framework that

groups a number of different computer vision tasks aiming to detect, track, and

classify objects of interest from image sequences, and on the next level to understand

and describe these objects behavior. The ultimate goal in designing smart visual

 387

surveillance systems is to replace the existing passive surveillance and to remove, or

at least, minimize the need for a human observer to monitor and analyze the visual

data. [Mohamed, 2006].

 The increasing availability of video sensors and high performance video

processing hardware opens up exciting possibilities for tackling many video

understanding problems [Alan, 2000]. It is important to develop robust real-time

video understanding techniques which can process the large amounts of data

attainable. In our paper we take the motion detection problem, we assumed an input

video stream from a web cam or any other type of digital video cameras.

3- The detection process
 The detection process is accomplished by:

 Background modeling, which resembled by a morph filter combines the

background as an overlay image, and the current frame to decrease the difference with

the background, which can be taken as updating the background [Hu, 2004].

 Temporal variance, which is accomplished by a Connected Component

Labeling Algorithm [Jung ,2001]. That takes connected labeled pixels, which

assembles a region in the image, and combines them into object.

The final step is to count those object and calculate a rectangle to surround their

area and draw that rectangle in the screen.

By conquest processing of the incoming video frames in real-time we end with a

moving triangles around the detected objects motion.

4- Motion Detection Algorithm
4-1 Getting the initial background image

As a first step we prepare the background to be the first frame we received, as

that we now have no motion at all, we further process the background by applying a

Grayscale filter and a Pixellate Filter. The pixellete filter here used to reduce the

pixels count and emphasize the over all color distribution of the image; then we

extract the image dimensions to use in further processing. So we now have the initial

background image [Collins, 2000] (Fig. 1).

4-2 Updating the background image

Get initial background image.

Convert the image to grayscale and

apply Pixellate filter.

Get the reduced grayscale image from

the Pixellate filter.

Fig 1. Setting the initial background image.

Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(19): 2011

 388

From the steps in (4-1) we get a frame and called it the current frame, we first

apply the same filters as we did with the background image. That means we make the

current frame as the same as the background image in structure and format.

Update the background image by moving the pixels intensity towards the

pixels intensity of the current frame by one level, to decrease diffirence with overlay

image - source image is moved towards overlay image. The update equation is

defined in the next way:

Result = src + Min(Abs(ovr - src), step) * Sign(ovr - src)

[Mohamed, 2006]

Where :

Result is the updatd background image, which will be the background for the next frame.

Src is the curent frame image.

Over is the curent background image.

Step defines the maximum amount of changes per pixel in the source image.

The bigger is step size value the more resulting image will look like overlay

image. For example, in the case if step size is equal to 255, the resulting image will be

equal to overlay image regardless of source image's pixel values. In the case if step

size is set to 1, the resulting image will very little differ from the source image. But, in

the case if the filter is applied repeatedly to the resulting image again and again, it will

become equal to overlay image in maximum 255 iterations. In our case we repeatedly

applies the filter to the updated background overlayed on the curent frame, which in

result will be counted as applying the filter for the first time.

The value, of step per pixel, we take is 1, because if we increase the moving

steps, we make the background image more similar to the current frame, with this

small amount of movement we prevent the background image from becoming less

sensitive to the changes of the upcoming frames, and also reduce the number of

iterations that will be made on the background and the current frame, which yields

more speed in processing the frames which is a crucial criteria in real-time processing.

4-3 Blob extraction and counting

Detection of connected components between pixels in binary images is a

fundamental step in segmentation of an image objects and regions, or blob. Each blob

is assigned a unique label to separate it from other blobs. All the pixels within a

blob of spatially connected 1's are assigned the same label. It can be used to

establish boundaries of objects, components of regions, and to count the

number of blobs in an image [Gonzalez ,1992]. Its applications can be found in

automatic inspection, optical character recognition, robotic vision, etc. [Ronson,

1954].

The original algorithm was developed by Rosenfeld and Pfaltz [Rosenfeld,

1966] in 1966. It performs two passes through the image. In the first pass, the image

is processed from left to right and top to bottom to generate labels for each pixel and

all of the equivalent labels are stored in a pair of arrays. In the second pass,

each label is replaced by the label assigned to its equivalence class. Several

papers [Lumia, 1983], [Lumia, 1983], [Manohar, 1989] pointed out the problems

in the second pass for large images because the equivalence arrays can become

unacceptably large [Lumia, 1983]. The way in which label equivalences are

resolved can have a dramatic effect upon the running, time of this algorithm.

 389

Modifications include one proposed by. Haralick that does not use air

equivalence array [Jung, 2001] and a small equivalence table by Lumia, Shapiro,

and Zinup [Lumia, 1983] that is reinitialized for each line. The latter paper makes

comparison runs between these three algorithms. Another solution uses a bracket table

[Yang, 1989] to associate equivalent groups. Its pushdown stack data structure that

implemented in hardware. Our approach computes the connected components of

binary image in real-time without any hardware support. Instead it applies the power

and efficiency of the divide-and-conquer technique.

4-3-1 The Basics

A pixel p at coordinate (x, y) has four direct neighbors, N4(p) and four

diagonal neighbors, ND(p). Eight-neighbors, N8(p)of pixel p consist of the union of

N4(p) and ND(p) [Mohamed, 2006].

To establish connectivity for pixels p and q can be considered :

1- 4-connectivity-connected if q is in N4(p);

2- 8-connectivity-connected if q is in N8(p);

3- m-connectivity-connected if q is in N4(P), or if q is in ND(P) and N4(p) ∩

N4(q)=;

4-3-2 A Connected Component Labeling Algorithm

The labeling algorithm is described below based on 8-connectivity.

Step 1: Initial labeling.

Scan the image pixel by pixel from left to right and top to bottom. Let p

denote the current pixel in the scanning process and 4-nbr denote four neighbor

pixels in N, NW. NE and W direction of p. If p is 0, move on to the next scanning

position If p is 1 and all values in 4-nbrs are 0, assign a new label to p. If only one

value in 4-nbrs is not 0, assign its values to p. If two or more values in 4-nbrs are not

0, assign one of the labels to p and mark labels in 4-nbrs as equivalent.

Step 2: Resolve equivalences (This is developed as fallows).

The equivalent relations are expressed as a binary matrix. For example, if label

1 is equivalent to 2, label 3 is equivalent to 4, label 4 is equivalent to 5, and label 1 is,

equivalent to 6 then the manta: L is that shown in Figure 2.a. Equivalence relations

satisfy reflexivity, symmetry and transitive [Gonzales, 1992]. To add reflexivity

in matrix L. all main diagonals are set to 1. To obtain transitive closure the

Floyd_Warshall (F-W) algorithm [Mohamed, 2006] is used.

for j = 1 to n

for i = 1 to n

if L[i,j] = 1 then

for k = 1 to n

L[I,k] = L[1, k] OR L[j,.k];

Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(19): 2011

 390

After applying reflexivity and the F-W algorithm, the matrix L is that shown in

Fig. 2.b. This algorithm, can be performed in O(n3) OR operations. After calculating

the transitive closure, each label value is recalculated to resolve equivalences.

The image is scanned again and each label is replaced by the label assigned to

its equivalence class.

4-3-3 A Fast Connected Component Labeling Algorithm

The main idea in this algorithm is to divide the image into NxM small regions

(we use NxN here for simplicity). The large equivalence array is the main

bottleneck in the original algorithm, but NxN small equivalence arrays can be found

in greatly reduced time. Figure 3 shows that an image divided into 3x3 small

regions for labeling independently. Then we connect each region with its

neighbor regions to generate the actual label within the entire image. We use NxN

pointers Label_Llst[i] to point to arrays that maintain the global labels with respect to

the entire image. Label_List[i] points to the array for Region[i] where each array

element is the global label within the entire image and the index for each array

element is the local label within Region[i]. Memory allocation for each array

pointed to by Label_List[i] can be done dynamically according to the maximum local

label in Region[i]. Figure 4 depicts these lists. The example of Figure 5 shows that

local label 1, 2 and 6 are equivalent and their global label within the entire image

is 8; local label 3, 4, and 5 are equivalent and their global label is 9. The Total–Index

equals 7 at the end of Region[i-1], which is kept in the list at index 0.

5- The Fast Labeling algorithm
Our fast labeling algorithm (based on 8-connectivity) is described below.

The other connectivity differs only in its neighboring checking.

5-1 Fast Labeling algorithm

Fig 2. Equivalence relations in terms of binary matrix.

a) Matrix before applying the F-W algorithm. b) Matrix after applying reflexivity

and the F-W algorithm.

Fig 3. Division of original image into 3x3 regions.

 391

Step 1- Divide the given image into NxN small regions and set Total_ Index = 0

Step 2: For each region i = 1 to NxN

1- apply Step 1of the original algorithm in Section 3-3-2;

2- allocate memory for the array pointed to by Label_List[i] as maximum no. of labels

for Region[i];

3- use F-W algorithm in Section 3-3-2 to resolve the equivalences within Region[i].

4- for j=1 to size of an array for Region[i] do

Label_List[i][j] = Total_Index + Ibl

// lbl is a label to its equivalence class after equiv. resolution (see Figure 5).

5- Total_index= Total_index + maximum{lbl}

6- if (i > 1) then call Merge(i):

// to update labels in bordering area between regions.

Step3: For each region i = l toNxN do

scan image in Region[i] from left to right, top to bottom and replace all local label

value k with Label_List[i][k];

5-2 The Merge(i) Function (resolve equivalences of pixels in bordering area

between regions).

Step 1: select first pixel p in Region[i];

If (label (p)>0) then

for each pixel q in N8 (p) intersects other regions

//see figure 6.a

if (label(q) > 0) then

call Resolve_Equivalence(p,q,i);

Step 2: for each pixel p in the first column in Region[i]

if (label (p) > 0) then

for each pixel q in N8 (p) intersects Region [i-1]

//see Figure 6.b

if (label (q) > 0) then

call Resolve_Equivalence(p,q,i);

Step 3: for each pixel p in the first row in Region[i]

Fig 4. The Label_List structure.

Total_index

Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(19): 2011

 392

if label(p) > 0 then

for each pixel q in N8(p) intersects Region [i-N]

//see Figure 6-c

if (label (q) > 0) then

call Resolve_Equivalence(p,q,i);

5-3 The Resolve_Equivalence(p,q,i) Function.

Step1: Index1 = Label_List[region no. of q][label(q)];

Index2 = Label_list[i][label(p)] ;

if(Index1 not equal to Index2) then

do Step 2.

Step2: Small_Lb1 = min{indexl, index2};

Large_Lbl = max{indexl, index2};

for k = 1 to i do

for j = l to size of any array for Region[k]

if (Label_List[k][j] > Large_Lbl) then

Label_List[k][j] = Label_List[k][j] -1;

else if (Label_List[k][j] = large_Lbl) then

Label_List[k][j] = small_lb1;

Total_Index = Total_Index-1;

5-4 Final Steps

As the previous steps completed, the result is a binary image with objects

represents the moving objects in the current frame, so we now:

For each object[i] in current frame

rect[i].Maxx = max_x(object[i])

rect[i].Minx = min_x(object[i])

rect[i].Maxy = max_y(object[i])

rect[i].Miny = min_y(object[i])

draw_rect(rect[i])

The above processes will effect all detected objects in the frame and drawing

rectangles over them, which result in drawing attention over any movement happing

in the frame, as a result, for the whole input video stream, these rectangles will move

with the object that they surround.

Fig 5. The Label_List[i] example.

 393

6- Conclusions
In live video streams any process on the stream must be as fast, and accurate

as possible. So we do here develop the accuracy in the moving background, to,

always, update the background and make it move towards the movement of the frame

pixels by morphing the frame with the background, which slightly change the

background pixels from the current frame to prepare it to be the new background for

the next frame. The fast Blob algorithm will detect the movement in a rapid fashion

by eliminating the unnecessary loops over the image and converging the data

structures involved in it, we eliminate hare these steps to increase the speed of

detection and to be able to process as many as the input stream delivers frames from

the scene we observe.

In the simplest way, it takes the difference between two frames and highlight that

difference, this method is poor in object recognition because the difference don’t

emphasize the object shape as in Fig(7). The second best approach is based on edge

detection, in spite of its good shape recognition, Fig(8), but it's lake in speed and takes

a lot of hardware resources. So by a little enhancement in the previous algorithm by

adding a pixellete filter we obtain a good representation of the object and a fast

performance, due to the reduced number of pixels blocks to process as seen by fig(9).

After all we eliminate the bounders and replace them by a surrounding rectangle

applied to each detected object, because the idea is to detect and track motion not to

recognize object shapes.

Fig 6. Merge taken place in three ways at Region[i]. a) Merge at the first pixel in Region[i]

b) Merge at pixels in the first column in Region[i] and the last column in Region[i-1] c)

Merge at pixels in the first row in Region[i] and the last row in Region[i-N].

Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(19): 2011

 394

 Fig(7) Fig(8)

Fig(9) Fig(10)

 395

References
Alan, J. Lipton, 2000, Moving target classification and tracking from real-time video,

The Robotics Institute., Carnegie Melon University.

Collins R. T., 2000, A system for video surveillance and monitoring, Carnegie Mellon

Univ., Pittsburgh.

Hu W., 2004, A survey on visual surveillance of object motion and behaviors, IEEE

Trans. on systems, man, and cybernetics part C: Applications and Reviews,

Vol.34, NO.3, August.

Jung-Me Park, 2001, Fast Connected Component Labeling Algorithm Using A Divide

and Conquer Technique., Computer Science Dept. University of Alabama.

Lumia, R., Shapiro, L. ,1983, A New Connected Components Algorithm for Virtual

Memory Computers, Computer Vision, Graphics, and Image Processing. 22. 287-

300.

Lumia R., 1983, A New Three-dimensional connected components Algorithm,

Computer Vision, Graphics, and Image Processing, 23. 207-217.

Mohamed, F., 2006, Integrated Motion Detection and Tracking for Visual

Surveillance Center for Automation Research (CfAR) UoM.

Manohar, M., 1989, Ramapriyan, H.,K., Connected Component Labeling of Binary

Image on a Mesh connected Massively Parallel Processor, Vision, Computer

Graphics and Image processing, 45, 133149.

Ronson, 1954, Connected components in Binary images: The Detection Problem,

Research Stitches Press.

Rosenfeld, A., Pfaltz, J.,L., 1966, Sequential Operations in digital Processing, JACM.

13. 471-494.

Woods, R.,E., 1992; Gonzalez, R., C.; Addison Wesley, Digital Image Processing.

Yang, X., D., 1989, An Improved Algorithm for Labeling Connected Components in

a Binary Image, TR 89-981, March.

