Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(19): 2011

Motion Detection in Real-Time Video Streams
Using Moved Frame Background

Amina A. Dawood Balasim A. Hussean
University of Babylon
1- Abstract

There are many approaches for motion detection in a real-time video stream. All of them are
based on comparing of the current video frame with one from the previous frames or with background.

Another approach is to compare the current frame not with the previous one but with the first
frame in the video sequence. So, if there were no objects in the initial frame, comparison of the current
frame with the first one will give us the whole moving object independently of its motion speed. But,
the approach has a big disadvantage - what will happen, if there was, for example, a person on the first
frame, but then he is gone? Yes, we'll always have motion detected on the place, where the person was.
Of course, we can renew the initial frame sometimes, but still it will not give us good results in the
cases where we can not guarantee that the first frame will contain only static background. But, there
can be an inverse situation.

The most efficient algorithms are based on building the so called background of the scene and
comparing each current frame with the background. There are many approaches to build the scene, but
most of them are too complex. Our approach for building the background is to get the first frame of the
video stream as the background frame. And then we'll always compare the current frame with the
background one. Our approach is to "move" the background frame to the current frame on the specified
amount (we used 1 level per frame). We move the background frame slightly in the direction of the
current frame - we are changing colors of pixels in the background frame by one level per frame. To
build the background we use the Morph filter, because the implementation of this filter is more
efficient, so the filter produce better performance. The idea of the filter is to preserve specified
percentage of the source filter and to add missing percentage from overlay image.

DAl

e all sl lal Alae o lgrsen 2t L ksl gl soad GG 3 AS) Guead] 3ok sae llis 2ag
Sgeall Bl ta) ALl LYY (g k)
@ lllia (S5 Al 13 AT LAl 3 V) LYY pe Laily i) SURY) pe G ¢ JUall HUY) A5 5laey b c(yal Ak
ey e uaill ans aleSl @lyatiall ASH Ladaes Cages Jo¥1 HURY) ae Jlad) U d5jle ol ¢ Jo¥) UY) b clils
Alall sda 8¢) 4 (oY) HUY) 8 Gadd il (LS 13 Olie ciang Cigas 13ke — 5508 Aae Lgd Ayl sda o<1
s Y] U Gaaas gl LSy . gaddl) 43 aalgy OUS 620 L) Gllb 8 A5y (et Lails Ll (585 Cigas
3l UL e had (going g V) LY o Glaca gt 3 cVLA 6 B 5t R Aaiil) S oyl
Al Alls Al aag o) (a1 LA

Lllia angi Al 0dn e Mo Ul US A3lkeg gl Al ane Lo eliy o Allad SSY) i) sl i
Aoald LIS gl 385 o Jo¥) LY 330 o4 dualal) ol da el ddolll as 83 lgalel oS0 gl ol By sae
s Ay Lidd) e lakes Madl SURYY slaaly dpilad) HUal "l iy oS cdptlad) Ul ae Madl SUSY) 45l
3 Ul Sy sl iy Sl () — sl LY ol AL 55y Aoalal) ULl bty HLal) (L) JS0 sl
oo) 888 <) elal g3 s kel s s Y (Morph filter alasiul Lid Lalall ol . Ul JST aaly (s5ie
sl Bgeall (o ddiall ducdll dilaly jrad)l U e disee s Lo Lliall

2- Introduction

In the last few years, visual surveillance has become one of the most active
research areas in computer vision, especially due to the growing importance of visual
surveillance for security purposes. Visual surveillance is a general framework that
groups a number of different computer vision tasks aiming to detect, track, and
classify objects of interest from image sequences, and on the next level to understand
and describe these objects behavior. The ultimate goal in designing smart visual

386

2011 : (19) ahal / 2) x| / aigsily iyl aghl / Jiy ey dba

surveillance systems is to replace the existing passive surveillance and to remove, or
at least, minimize the need for a human observer to monitor and analyze the visual
data. [Mohamed, 2006].

The increasing availability of video sensors and high performance video
processing hardware opens up exciting possibilities for tackling many video
understanding problems [Alan, 2000]. It is important to develop robust real-time
video understanding techniques which can process the large amounts of data
attainable. In our paper we take the motion detection problem, we assumed an input
video stream from a web cam or any other type of digital video cameras.

3- The detection process
The detection process is accomplished by:

o Background modeling, which resembled by a morph filter combines the
background as an overlay image, and the current frame to decrease the difference with
the background, which can be taken as updating the background [Hu, 2004].
o Temporal variance, which is accomplished by a Connected Component
Labeling Algorithm [Jung ,2001]. That takes connected labeled pixels, which
assembles a region in the image, and combines them into object.

The final step is to count those object and calculate a rectangle to surround their
area and draw that rectangle in the screen.

By conquest processing of the incoming video frames in real-time we end with a
moving triangles around the detected objects motion.

4- Motion Detection Algorithm
4-1 Getting the initial background image

As a first step we prepare the background to be the first frame we received, as
that we now have no motion at all, we further process the background by applying a
Grayscale filter and a Pixellate Filter. The pixellete filter here used to reduce the
pixels count and emphasize the over all color distribution of the image; then we
extract the image dimensions to use in further processing. So we now have the initial
background image [Collins, 2000] (Fig. 1).

Get initial background image.

v
Convert the image to grayscale and
apply Pixellate filter.

v

Get the reduced grayscale image from
the Pixellate filter.

Fig 1. Setting the initial background image.

4-2 Updating the background image

387

Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(19): 2011

From the steps in (4-1) we get a frame and called it the current frame, we first
apply the same filters as we did with the background image. That means we make the
current frame as the same as the background image in structure and format.

Update the background image by moving the pixels intensity towards the
pixels intensity of the current frame by one level, to decrease diffirence with overlay
image - source image is moved towards overlay image. The update equation is
defined in the next way:

Result = src + Min(Abs(ovr - src), step) * Sign(ovr - src)
[Mohamed, 2006]

Where :

Result is the updatd background image, which will be the background for the next frame.
Src is the curent frame image.

Over s the curent background image.

Step defines the maximum amount of changes per pixel in the source image.

The bigger is step size value the more resulting image will look like overlay
image. For example, in the case if step size is equal to 255, the resulting image will be
equal to overlay image regardless of source image's pixel values. In the case if step
size is set to 1, the resulting image will very little differ from the source image. But, in
the case if the filter is applied repeatedly to the resulting image again and again, it will
become equal to overlay image in maximum 255 iterations. In our case we repeatedly
applies the filter to the updated background overlayed on the curent frame, which in
result will be counted as applying the filter for the first time.

The value, of step per pixel, we take is 1, because if we increase the moving
steps, we make the background image more similar to the current frame, with this
small amount of movement we prevent the background image from becoming less
sensitive to the changes of the upcoming frames, and also reduce the number of
iterations that will be made on the background and the current frame, which yields
more speed in processing the frames which is a crucial criteria in real-time processing.

4-3 Blob extraction and counting

Detection of connected components between pixels in binary images is a
fundamental step in segmentation of an image objects and regions, or blob. Each blob
is assigned a unique label to separate it from other blobs. All the pixels within a
blob of spatially connected 1's are assigned the same label. It can be used to
establish boundaries of objects, components of regions, and to count the
number of blobs in an image [Gonzalez ,1992]. Its applications can be found in
automatic inspection, optical character recognition, robotic vision, etc. [Ronson,
1954].

The original algorithm was developed by Rosenfeld and Pfaltz [Rosenfeld,
1966] in 1966. It performs two passes through the image. In the first pass, the image
is processed from left to right and top to bottom to generate labels for each pixel and
all of the equivalent labels are stored in a pair of arrays. In the second pass,
each label is replaced by the label assigned to its equivalence class. Several
papers [Lumia, 1983], [Lumia, 1983], [Manohar, 1989] pointed out the problems
in the second pass for large images because the equivalence arrays can become
unacceptably large [Lumia, 1983]. The way in which label equivalences are
resolved can have a dramatic effect upon the running, time of this algorithm.

388

2011 : (19) ahal / 2) x| / aigsily iyl aghl / Jiy ey dba

Modifications include one proposed by Haralick that does not use air
equivalence array [Jung, 2001] and a small equivalence table by Lumia, Shapiro,
and Zinup [Lumia, 1983] that is reinitialized for each line. The latter paper makes
comparison runs between these three algorithms. Another solution uses a bracket table
[Yang, 1989] to associate equivalent groups. Its pushdown stack data structure that
implemented in hardware. Our approach computes the connected components of
binary image in real-time without any hardware support. Instead it applies the power
and efficiency of the divide-and-conquer technique.

4-3-1 The Basics

A pixel p at coordinate (x, y) has four direct neighbors, Na(p) and four
diagonal neighbors, Np(p). Eight-neighbors, Ng(p)of pixel p consist of the union of
Ns(p) and Np(p) [Mohamed, 2006].

To establish connectivity for pixels p and g can be considered :

1- 4-connectivity-connected if g is in Na(p);

2- 8-connectivity-connected if g is in Ng(p);

3- m-connectivity-connected if q is in Na(P), or if g is in Np(P) and Na(p) N

Na(q)=¢;

4-3-2 A Connected Component Labeling Algorithm

The labeling algorithm is described below based on 8-connectivity.
Step 1: Initial labeling.

Scan the image pixel by pixel from left to right and top to bottom. Let p
denote the current pixel in the scanning process and 4-nbr denote four neighbor
pixels in N, NW. NE and W direction of p. If p is 0, move on to the next scanning
position If p is 1 and all values in 4-nbrs are 0, assign a new label to p. If only one
value in 4-nbrs is not 0, assign its values to p. If two or more values in 4-nbrs are not
0, assign one of the labels to p and mark labels in 4-nbrs as equivalent.

Step 2: Resolve equivalences (This is developed as fallows).

The equivalent relations are expressed as a binary matrix. For example, if label
1 isequivalent to 2, label 3 is equivalent to 4, label 4 is equivalent to 5, and label 1 is,
equivalent to 6 then the manta: L is that shown in Figure 2.a. Equivalence relations
satisfy reflexivity, symmetry and transitive [Gonzales, 1992]. To add reflexivity
in matrix L. all main diagonals are set to 1. To obtain transitive closure the
Floyd_Warshall (F-W) algorithm [Mohamed, 2006] is used.

forj=1ton

fori=1ton
if L[i,j] =1 then
fork=1ton

L[1,k] = L[1, k] OR L[j,.k];

389

Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(19): 2011

a) 1 2 3 4 5 6 b) 1 2 3 4 5 6
1 1 1 11 1 1 1
2] 1 211 1 1
3 1 3 1 1 1
4 1 1 4 1 1 1
5 1 5 1 1 1
6| 1 511 1 1

Fig 2. Equivalence relations in terms of binary matrix.
a) Matrix before applying the F-W algorithm. b) Matrix after applying reflexivity
and the F-W algorithm.

After applying reflexivity and the F-W algorithm, the matrix L is that shown in
Fig. 2.b. This algorithm, can be performed in O(n®) OR operations. After calculating
the transitive closure, each label value is recalculated to resolve equivalences.
The image is scanned again and each label is replaced by the label assigned to
its equivalence class.
4-3-3 A Fast Connected Component Labeling Algorithm

The main idea in this algorithm is to divide the image into NxM small regions
(we use NxN here for simplicity). The large equivalence array is the main
bottleneck in the original algorithm, but NxN small equivalence arrays can be found
in greatly reduced time. Figure 3 shows that an image divided into 3x3 small
regions for labeling independently. Then we connect each region with its
neighbor regions to generate the actual label within the entire image. We use NxN
pointers Label_LlIst[i] to point to arrays that maintain the global labels with respect to
the entire image. Label_List[i] points to the array for Region[i] where each array
element is the global label within the entire image and the index for each array
element is the local label within Region[i]. Memory allocation for each array
pointed to by Label_List[i] can be done dynamically according to the maximum local
label in Region[i]. Figure 4 depicts these lists. The example of Figure 5 shows that
local label 1, 2 and 6 are equivalent and their global label within the entire image
is 8; local label 3, 4, and 5 are equivalent and their global label is 9. The Total_Index
equals 7 at the end of Region[i-1], which is kept in the list at index O.
5- The Fast Labeling algorithm

Our fast labeling algorithm (based on 8-connectivity) is described below.
The other connectivity differs only in its neighboring checking.
5-1 Fast Labeling algorithm

Region[1] Region[2] Region[3]
Region[4] Region[5] Region[6]
Region[6] Region[7] Region[&]

Fig 3. Division of original image into 3x3 regions.

[

2011 : (19) ahal / 2) x| / aigsily iyl aghl / Jiy ey dba

Step 1- Divide the given image into NxN small regions and set Total _ Index =0

Step 2: For each region i = 1 to NxN

1- apply Step 1of the original algorithm in Section 3-3-2;

2- allocate memory for the array pointed to by Label List[i] as maximum no. of labels
for Region[i];

3- use F-W algorithm in Section 3-3-2 to resolve the equivalences within Region[i].

4- for j=1 to size of an array for Region[i] do

Label List[i][j] = Total_Index + Ibl

//'1bl is a label to its equivalence class after equiv. resolution (see Figure 5).

5- Total_index= Total index + maximum{lbl}

6- if (i > 1) then call Merge(i):

/I to update labels in bordering area between regions.

Step3: For each region i = | toNxN do

scan image in Region[i] from left to right, top to bottom and replace all local label

value k with Label_List[i][k];

Total_index
' < B Region[1]
7 - | | | [|..... %g'ﬂ"l[‘?]
1 2{(index : local label before equiv. resolution in Region] 1])
Pl lwolorlwolplosl - .. 22 | Regio[i]
(elemnet - gobd label inthe ertire image)
NN .
) SR Region] N'N]

Fig 4. The Label_List structure.

5-2 The Merge(i) Function (resolve equivalences of pixels in bordering area
between regions).
Step 1: select first pixel p in Region[i];
If (label (p)>0) then
for each pixel g in Ng (p) intersects other regions
/see figure 6.a
if (label(g) > 0) then
call Resolve_Equivalence(p,q,i);
Step 2: for each pixel p in the first column in Region[i]
if (label (p) > 0) then
for each pixel g in Ng (p) intersects Region [i-1]
//see Figure 6.b
if (label (g) > 0) then
call Resolve_Equivalence(p,q,i);
Step 3: for each pixel p in the first row in Region[i]

391

Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(19): 2011

if label(p) > 0 then
for each pixel g in Ng(p) intersects Region [i-N]
//see Figure 6-c
if (label (g) > 0) then
call Resolve_Equivalence(p,q,i);

local labels
6 before equiv.
resolution in

=]
—
[
o
I
L)

Label List[i]= 18[s] 9lolofs Region[1].
Total labels before 7{Label List[1][0]}+ 2{labelto its
Region[1] reached equiv. class after equiv. resolution

in Region[1]: local lable 1.2.6be
assigned 1. 3.4.5 be assigned 2}

Fig 5. The Label_List[i] example.

5-3 The Resolve_Equivalence(p,q,i) Function.
Stepl: Index1 = Label List[region no. of q][label(q)];
Index2 = Label_list[i][label(p)] ;
if(Index1 not equal to Index2) then
do Step 2.
Step2: Small_Lb1 = min{indexI, index2};
Large Lbl = max{indexl, index2};
fork=1toido
for j =1 to size of any array for Region[k]
if (Label_List[k][j] > Large_Lbl) then
Label_List[k][j] = Label_List[K][j] -1;
else if (Label_List[K][j] = large_Lbl) then
Label List[k][j] = small_Ib1;
Total_Index = Total_Index-1;

5-4 Final Steps

As the previous steps completed, the result is a binary image with objects
represents the moving objects in the current frame, so we now:
For each object[i] in current frame
rect[i].Maxx = max_x(object[i])
rect[i].Minx = min_x(object[i])
rect[i].Maxy = max_y(object[i])

rect[i].Miny = min_y(object[i])

draw_rect(rect[i])

The above processes will effect all detected objects in the frame and drawing
rectangles over them, which result in drawing attention over any movement happing
in the frame, as a result, for the whole input video stream, these rectangles will move
with the object that they surround.

392

2011 : (19) ahal / 2) x| / aigsily iyl aghl / Jiy ey dba

a) b) <)

Region[i-N-1] Region[i-N]

—Fr T — Samm

Region[i-N-1] Region[i-N] Region[i-N-1] Region[i-N]

Region[i]

Region[i-1 Region[i-1 Region[i] Region[i]

Region[i-1]

—p . N8(p)intersects other —p N8(p)intersecis Region [i-1] —p :N8(p)intersects Region [i-N]
regions.

Fig 6. Merge taken place in three ways at Region[i]. a) Merge at the first pixel in Region[i]
b) Merge at pixels in the first column in Region[i] and the last column in Region[i-1] c)
Merge at pixels in the first row in Region[i] and the last row in Region[i-N].

6- Conclusions

In live video streams any process on the stream must be as fast, and accurate
as possible. So we do here develop the accuracy in the moving background, to,
always, update the background and make it move towards the movement of the frame
pixels by morphing the frame with the background, which slightly change the
background pixels from the current frame to prepare it to be the new background for
the next frame. The fast Blob algorithm will detect the movement in a rapid fashion
by eliminating the unnecessary loops over the image and converging the data
structures involved in it, we eliminate hare these steps to increase the speed of
detection and to be able to process as many as the input stream delivers frames from
the scene we observe.
In the simplest way, it takes the difference between two frames and highlight that
difference, this method is poor in object recognition because the difference don’t
emphasize the object shape as in Fig(7). The second best approach is based on edge
detection, in spite of its good shape recognition, Fig(8), but it's lake in speed and takes
a lot of hardware resources. So by a little enhancement in the previous algorithm by
adding a pixellete filter we obtain a good representation of the object and a fast
performance, due to the reduced number of pixels blocks to process as seen by fig(9).
After all we eliminate the bounders and replace them by a surrounding rectangle
applied to each detected object, because the idea is to detect and track motion not to
recognize object shapes.

393

Journal of Babylon University/Pure and Applied Sciences/ No.(2)/ Vol.(19): 2011

Fig(7) Fig(8)

394

2011 : (19) ahal / 2) x| / aigsily iyl aghl / Jiy ey dba

References

Alan, J. Lipton, 2000, Moving target classification and tracking from real-time video,
The Robotics Institute., Carnegie Melon University.

Collins R. T., 2000, A system for video surveillance and monitoring, Carnegie Mellon
Univ., Pittsburgh.

Hu W., 2004, A survey on visual surveillance of object motion and behaviors, IEEE
Trans. on systems, man, and cybernetics part C: Applications and Reviews,
Vol.34, NO.3, August.

Jung-Me Park, 2001, Fast Connected Component Labeling Algorithm Using A Divide
and Conquer Technique., Computer Science Dept. University of Alabama.

Lumia, R., Shapiro, L. ,1983, A New Connected Components Algorithm for Virtual
Memory Computers, Computer Vision, Graphics, and Image Processing. 22. 287-
300.

Lumia R., 1983, A New Three-dimensional connected components Algorithm,
Computer Vision, Graphics, and Image Processing, 23. 207-217.

Mohamed, F., 2006, Integrated Motion Detection and Tracking for Visual
Surveillance Center for Automation Research (CfAR) UoM.

Manohar, M., 1989, Ramapriyan, H.,K., Connected Component Labeling of Binary
Image on a Mesh connected Massively Parallel Processor, Vision, Computer
Graphics and Image processing, 45, 133149.

Ronson, 1954, Connected components in Binary images: The Detection Problem,
Research Stitches Press.

Rosenfeld, A., Pfaltz, J.,L., 1966, Sequential Operations in digital Processing, JACM.
13. 471-494.

Woods, R.,E., 1992; Gonzalez, R., C.; Addison Wesley, Digital Image Processing.

Yang, X., D., 1989, An Improved Algorithm for Labeling Connected Components in
a Binary Image, TR 89-981, March.

395

