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Free Vibration Of Simply Supported Beam
Subjected To Axial Force
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Abstract

This paper presents a theoretical investigation of the free transverse vibrations of a uniform
beam that is simply supported at both ends subjected to a static axial force. The beam is considered to
have different shapes of cross section (Rectangle section, Box section, I-section and T-section) with the
same value of area for all and at different values of second moments of area. The problem is modeled
and solved analytically. based on the analytical solution. The effect of static axial force (tension or
compression) on the characteristics of vibration ( natural frequency and mode shape) are studied. It was
concluded that increasing the tensile axial force causes an increase in the natural frequency while
increasing the compressive force resulting in decreasing the natural frequency.

It is found that the beam of rectangular cross section have natural frequency lower than the
other types of cross sections for the same applied force, while the beam of T-section has the higher
value of natural frequency compared with other types. The beam of rectangle section losses its stability
by buckling with compression force less than the other types. The beams of the same shape of cross
section and the same value of the area have lower value of natural frequency at which have smaller
value of second moment of area.
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List Of Symbols
a Cross section area (m?).
C, Arbitrary Constant.
Modulus of elasticity (N/m?).
Thickness of Beam (m)
2" Moment of area (m*).
Length of beam (m).
Bending moment (N.m).
Mass of the beam per unit length (kg/m).
Shear force (N).
Number of modes.
Axial force (N).
Time (5).
Natural frequency of beam (rad/s).
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1. Introduction

A beam cross section can be rectangular, circular, or annular, or it can be a
rolled I-section or a built-up section. Beams are fabricated of steel, aluminum,
concrete, wood, and composite materials. They are used in buildings, bridges, aircraft,
machinery, and other types of structures.

Vlasov, 1961 developed the theory of constraint torsion of beam, the effect is
obvious in term of dynamic and stability phenomena when the global characteristics
of a structure are investigated such as frequency, mode shape, or critical load causing
a loss of stability. Jiriusek, 1981 used the finite element method to formulate a 4-
node isoparametric beam element including transverse shear and saint-venant torsion
theory to derive the frequency equation for free-free boundary conditions. Chang,
1993 presented the random vibration response analysis of a model which simulates a
robotic arm. The left end of beam is attached by both translational and rotational
springs, and the right end is free and carrying a heavy tip mass. Heppler, 1995
derived the equations of motion and boundary conditions for a free-free Timoshenko
beam with rigid bodies attached at the end points. Gurgoze, 1996 used the Lagrange
multipliers method to derive the frequency equation of a clamped-free Euler-Bernoulli
beam with tip mass where a spring-mass system is attached. Liu, 1996 derived the
non-dimensional governing equation and boundary conditions for the in-plane
vibration of a uniform, free-free beam subject to constant tension. This beam can be
used as an appropriate model for pipeline towing problem in ocean engineering.
Voros GM. 2004, used numerical method to derive linear stiffness matrix and mass
matrix to study the free vibration of beam where the displacement compatibility
transformation takes into account the torsion-flexural coupling in beam. Gabor, 2007
presented the development of the stiffener for plate is based on a general beam theory,
which includes the constraint torsional warping effect and the second order term of
finite rotations.

In this paper, frequency equation, mode shape are obtained in analytic form of
beam which have different shapes of cross section at the same value of area and
buckling force is studied by the present work and using Euler formula of buckling.

2. Theoretical Analysis

To derive the equation that governing the transverse vibration of a beam of
length L, with the following properties at section x; m(x) is the mass per unit length,
A(X) is the cross-section area, and I(x) is the second moment of area, assume small

deflections y(x,t) and rotations %, 4y - Consider the lateral vibration of a beam, loaded

axially , as shown in Fig.(1). Whenever a beam is compressed, there is concern about
its buckling. As the axial load is increased, a critical value of stress is reached with a
new (buckled) deformation configuration is possible. Since this configuration
generally undesirable, structural failure occur at this critical load. Design codes
generally assume a failure at some load less than the buckling load[Benaroya, 1998].
To formulate the problem, use the free body diagram of an arbitrary section of the
beam with all external force has been drawn as shown in Fig.(2), noting that there is
an additional moment term Sy due to the constant axial force S, where y is the
deflection at the section under consideration. This is shown in Fig (2).
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Fig.(1) : Transverse vibration of beam with axial force
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Fig.(2): Free body for the transverse vibration of beam with axial force
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2.1 Eginevalues — Natural frequencies.

The equation of motion in the vertical direction remains the same (since S acts
approximately perpendicular to y), the moment equation about the center of the cross-
section now must include the moment due to S, is:

2

M +Sy = El(x) Y D
dx?
where, | = 1(x), m = m(x)
dzy . 0 d2y
El(xy—= the bending moment, —(EI(x)—=) the shear force and
dx2 oX dx?2
2
a—(El(x) )the load. [ Singer, 1981]
ox° dx?

while the governing equation of motion for y(x,t) [Benaroya, 1998],

2 2
S El(x)ﬂ} m L )
e | x> at?
The above equation becomes
2 [ 2 2
8—2 El(x)a—;’—Sy} p(x,t):—m(x)a—zy. ()
ox~ | oX ot

Equation(3) can be solved by the method of separation of variables.

y(X)=Y(X)F(t). (4)
Substitute this equation into the governing equation (Eg. 3 ) gives:
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2 .
:_2 [E1Y" 00F - SY(F O+ pOu ) =-mOoY (0 F (5)
X
Setting p(x,t)=0
1 d2 [« B,
mr) dX_Z[EIY (X)_S\SX)]_HF,—_J © (6)

1 I
In the last equation, time-dependent variables and space-dependent variables have
been placed on opposite sides of the equal; sign. Since part | is only a function of X,

and part 1l is only a function of t, it must be that each is equal to the same constant,
say —o”. So that the solution in time is harmonic

F+w’F =0, (7
This equation is solved, the result is simple harmonic motion with frequency .
Now Y (x) is governed by

2
d—z[EIY" (x)—SY(x)]: —w’m(X)Y (X), (8)
dx
and
d* g d 2 ) 9
El dx—4[Y<x>]— dx_z[Y‘X)]“‘” m()Y (x), )
Define B*=w?m/El, and the eigenvalue equation becomes
Ym(x)—%Y"(x) + B4 (XY (x) =0 (10)

This is an eginvalue problem. Equation (7) required two initial conditions and
equation (10) requires four boundary conditions for complete solution.

The eigenvalue problem must be solved for a particular set of boundary
conditions, resulting in expressions for the eigenfunctions Y(x) and frequencies ®
which the structure can accommaodate in free vibration.

The effect of axial force S is significant. For a simply supported beam (setting
p(x,t)=0 for the eigenvalue problem). we find

2 . rzx _
Y (X)= ‘/HsmT, r=1,2,3,...., (11)

Differentiate equation (11) and substitute in to equation (10) to obtain
(mjz EI{ S [sz]
op =| — | J—|1+=|—=] |.
L m El \rz

Note that for a tensile axial force +S, the effect is an increase in the frequencies of
free vibration. Had a compressive force-S been applied, the frequencies would be

given by
o Bl ) w

2
For r =1, the term %(L) is the ratio of S to the Euler buckling load. If

T

(12)

SLYEln>—» 1, the lowest mode of vibration approaches a zero frequency and
transverse buckling occur for S =EI L2,
2.2 Eigenfunction — Modes shapes.
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The mode shapes are given by the equation as shown below:

Y (X)=C, sin BX : [Benaroya, 1998]
(14)
From define of B*=w®m/El equation (14) becomes
1
YA()=C; sin v (gj“x (15)

Substitute equation (12) into equation (15) and after simplification yields;
1

Y00=Gsin [f{j[ (2] (m“ . as

Where C, is an arbitrary constant. To specify C,;, a normalization is carried out
according to the rule

L
fmy? (x)dx =1, r=1,2,. [Benaroya, 1998 ] (17)
0

Substitute equation (16) into equation (17) gives;

1
cFmn (rg)( 1@(5)2}4 o)

After solution equation (18) obtain:

o2 (T

Substitute C; in equation (16) yield the modes to have the specific form for the tensile
force as below :

w21 ([T ) o [ 2 o

And for the compression force as

vao- 2 ([ ]| [ ]

3. Results and Discussion:

Table(1) shows the properties and dimensions of beam which have different
cross sections and table(2) shows shapes of different cross section and its mechanical
properties.

Table(3) shows the values of buckling force for different shape of cross
section of beam by using Euler equation (S =EI n%/L?) directly and the present work
(graphically where the natural frequency approach to minimum value at the buckling
force). It can be seen that the difference between the two methods is very small, and
the table show the maximum tensile force for beam after obtained the value of
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ultimate strength of structural steel from strength of material is 830 Mpa, therefore the
allowable stress is 415 Mpa , where maximum tensile force = (allowable stress*cross
section area of beam). Table (4) shows the effect of change second moment of area on
the range of buckling force for all shapes at the same area by using the present work.

Figures (3, 4) show the natural frequency of the first mode and second mode
of vibration respectively as a function of the tensile force for second moment of area
(11). It is shown that there is an increase in natural frequency with increasing the
tensile force. This is attributed to the increase of stiffens of the beam at the same mass
for all. It is seen that the beam of rectangular cross section has natural frequency
lower than the others type because of it has the smallest value for second moment of
area which cause decreased the stiffness of beam.

Figures (5, 6) show the natural frequency of the first mode and second
mode of vibration respectively as a function of the compressive force at second
moment of area (ly). It is shown that the natural frequency decreased with
increasing the compressive force. This is attributed to the decrease of stiffens of
the beam where all beams at the same mass. Also the beam of T—section bears
the range of compressive force higher than the others before occurred the
buckling because of it has the largest value of second moment of area causes
increasing its stiffness.

Figures (7, 8) show the natural frequency of the first mode of vibration as
a function of the tensile and compressive force respectively at moment of inertia
(I2) and at the same value of cross section area in (I;) means the same mass for
all beams. It is shown that the natural frequency increase with increasing the
second moment of area resultant to increased the stiffness of beam.

The main features of the mode shapes associated with the first two natural
frequencies as a function of length for beam at simply support ends are shown in
Fig.(9&10) for a tensile and a compressive force respectively under effect of
different value of axial force. It can be note that for tensile force the amplitude is
an decreased with increasing the force resultant to increased the natural
frequency of beam, while for compressive force the amplitude is an increased
with increasing the force resultant to decreased the natural frequency. The beam
of rectangle section losses stability when the force approaches to buckling force
can be seen that in the difference of amplitude when compare with the types at
the same force.

4. Conclusions:
The main conclusions of the present work can be summarized as:

1- Natural frequency of beam for rectangular cross sectional area is lower
than the others cross section at the same area for both tensile force and
compressive force.

2- Natural frequency of beam is an increased with increasing second moment of
area at the same area of cross section.

3- Beam with T-section bears high range of compressive force before
occurred buckling .

4- The stiffness of beam is an increased with increasing second moment of area
at the same area of cross section.
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Table (1) : Specifications of the tested models

Parameter Symbol Value Units
Length L 3 m
Thickness h 0.02 m
Modulus of elasticity E 200 Gpa
Density p 7800 kg / m?

Table(2) : shapes of cross section
Cross section shape area (a) Second
m? moment  of
area (I,)m*
0.08m
] 0.1m 4

Rect.-section 80*10° 6.667*10°

0.1m

Box section

80*10™ 12.27*10°
0.13m
h
|-section 0.14m 80*10™ 38.18*10°
h
0.16m
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h
T-section
0-24m 80*10™ 55.6%10°
h
Table(3) : Buckling Force
Shape of Maximum Buckling force by | Buckling force by | Difference
Cross tensile force Euler Equation Present work with respect
section MN MN MN to Euler
equation %
Rect. 3.32 1.4634 1.45 0.915 %
section
Box section 3.32 2.693 2.64999 1.59 %
I-section 3.32 8.3805 8.350014 0.363%
T-section 3.32 12.204 12.20003 0.0325%
Difference = (Euler Eq. — Present woke)/Euler Eq.*100%
Table(4) : Moment of Inertia with Buckling Force
Shape of
Cross Second moment | Buckling Force Second Buckling
section of area (m*) (MN) Present moment of Force (MN)
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Natural frequency: wr (rad/sec)

Iy work area (m*) Present work
MN I MN

Rect. 6.667*10° 1.45 8.066*10° 1.7499

section

Box section 12.27*10° 2.64999 13.867*10° 2.999

I-section 38.18*10° 8.350014 45.867*10° 10.05

T-section 55.6*10° 12.20003 60.03*10° 13.10003
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Fig. (3): Natural frequency as a function of
a tensile axial force for 1 mode at (1,)
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Fig. (4): Natural frequency of a function of
a tensile axial force for 2" mode at (1,)
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Fig. (5): Natural frequency as a function of
compressive axial force for 1 mode at (I,)
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Fig. (8): Natural frequency as a function of a

Fig. (7): Natural frequency as a function of a
compressive axial force for 1" mode at (1)

tensile axial force for 1% mode at (l)
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Fig.(9-c)
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Fig.(9;a-h):Mode shapes associated with the first two natural frequency
of beam for different cross section respect to tensile force
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Fig. (10;a-h): Mode shapes associated with the first two natural frequency of
beam for different cross section respect to compressive force
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