
Journal of Babylon University/Engineering Sciences/ No.(1)/ Vol.(20): 2012 

 301 

Free Vibration  Of Simply Supported  Beam 
Subjected To Axial Force 

 

  Nawal H. Al – Raheimy     

College of Engineering, Babylon University 
 

Abstract  
 This paper presents a theoretical investigation of the free transverse vibrations of a uniform 

beam that is simply supported at both ends subjected to a static axial force. The beam is considered to 

have different shapes of cross section (Rectangle section, Box section, I-section and T-section) with the 

same value of area for all and at different values of second  moments of area. The problem is modeled 

and solved analytically. based on the analytical solution. The effect of static axial force (tension or 

compression) on the characteristics of vibration ( natural frequency and mode shape) are studied. It was 

concluded that increasing the tensile axial force causes an increase in the natural frequency while 

increasing the compressive force resulting in decreasing  the natural frequency.  

It is found that the beam of rectangular cross section have natural frequency lower than the 

other types of cross sections for the same applied force, while the beam of T-section has the higher 

value of natural frequency compared with other types. The beam of rectangle section losses its stability 

by buckling with compression force less than the other types. The beams of the same shape of cross 

section and the same value of the area have lower value of  natural frequency at which have smaller 

value of second moment of area. 

Key words: Transverse vibration, buckling, natural frequency 

 الخلاصة
يتناول هذا اهاحث ارهسةانارهة للااارهحاذتالارا هاح الرهاحللتعلمارهحمنتومارهاحلنت لاارهه ا هاحنلوةاو ههاحلة امورهلاح وماعرهح ااهره 

,هاحل لاا هاح ااننل  ه,هاحل لاا ه  ااملهلم هةلااارهنااو نردهاحنتوماارهاحلنةلناارههكلتمااتهفةاامو هم تمةاارهحل لعلااوهاحعلماا ه احل لاا هاحللااتل 
(ههلحنةسهاحقولرهحللوحرهاحل ل هاحعلم ه وحنلثرهحكلهالأةامو هلحقاومهم تمةارهحمعالثهاح اوة هحمللاوحو دههT لهحلفهلاحل ل ه  مI حلفهه

احت م االهاحن االتهاتتلاانهتمااةهاحلللا اارهاحت م مواارهحنةاناارهكااري لهاح ااهرهاحل هةلااارهاحلو نر ةاانهفلهمااوا(هتمااةه  ااو  ها ذتاالارا هلاحلتل مااره
 هرهاح نهاحل هةلارههةلببهرلاوسرهاحتلسسهاحلبوع هحمنتومرههحكنهكري لهرلااوسره اهرهاحطاواهيناتخهاة ةاو ههه وحتلسسهاحلبوع هلةملهاحنلقدهرلاوسر

ه وحتلسسهاحلبوع د
لجاانه اهاحنتومااره ا هاحل لاا هاحعلماا هاحللااتل لهاح ااملهلحاانةسهاح ااهرهاحل هةلااارهاحللااملرهتمااةه قواارهاحل ااو  هكلتمااتهكاالسسهه

كلتماتهفتماةهمولاره T احعلمورهالأ ال هح اره اهاحنتوماره ا هاحل لا هاحعلما ه  املهحالف بوع ها لهملوهتموههحمنتومره ا هاحل و  ه
حمتالسسهاحلبوعا هتناانهم وةةتلاوهما هالأةااها هالأ ال دهاحنتوماره ا هاحل لاا ه  املهاحللاتل لهكة اانها نات لاةه لاببها ةثعااو هتنانه اهرهمااواه

 ه ا هاح املهاحهاحانهلتنانهةةاسهاحقولارهحللاوحرهاحل لا هكلتماتهفل ارهككهاها لهملوهتموهه وحنلثرهحلأةمو هالأ ال همانهاحل او  دهاحانتومو
هكلسسه بوع هل حتهتننها لهمولرهمنهتلثهاحللوحو هاح وة دهه

List Of Symbols 
a  Cross section area (m

2
). 

Cr        Arbitrary Constant.    

E Modulus of elasticity (N/m
2
). 

h Thickness of Beam (m) 

I 2
nd

 Moment of area (m
4
). 

L Length of beam (m). 

M         Bending moment (N.m). 

m Mass of the beam per unit length (kg/m). 

Q Shear force (N). 

r Number of modes. 

S Axial force (N). 

t Time (s). 

ω Natural frequency of beam (rad/s). 
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1. Introduction 
A beam cross section can be rectangular, circular, or annular, or it can be a 

rolled I-section or a built-up section. Beams are fabricated of steel, aluminum, 

concrete, wood, and composite materials. They are used in buildings, bridges, aircraft, 

machinery, and other types of structures.  

Vlasov, 1961 developed the theory of constraint torsion of beam, the effect is 

obvious in term of dynamic and stability phenomena when the global characteristics 

of a structure are investigated such as frequency, mode shape, or critical load causing 

a loss of stability. Jiriusek, 1981 used  the finite element method to formulate a 4-

node isoparametric beam element including transverse shear and saint-venant torsion 

theory to derive the frequency equation for free-free boundary conditions. Chang, 

1993 presented the random vibration response analysis of a model which simulates a 

robotic arm. The left end of beam is attached by both translational and rotational 

springs, and the right end is free and carrying a heavy tip mass. Heppler, 1995 

derived the equations of motion and boundary conditions for a free-free Timoshenko 

beam with rigid bodies attached at the end points. Gurgoze, 1996 used the Lagrange 

multipliers method to derive the frequency equation of a clamped-free Euler-Bernoulli 

beam with tip mass where a spring-mass system is attached. Liu, 1996 derived the 

non-dimensional governing equation and boundary conditions for the in-plane 

vibration of a uniform, free-free beam subject to constant tension. This beam can be 

used as an appropriate model for pipeline towing problem in ocean engineering. 

Voros GM. 2004, used numerical method to derive linear stiffness matrix and mass 

matrix to study the free vibration of beam where the displacement compatibility 

transformation takes into account the torsion-flexural coupling in beam. Gabor, 2007 

presented the development of the stiffener for plate is based on a general beam theory, 

which includes the constraint torsional warping effect and the second order term of 

finite rotations.  

In this paper, frequency equation, mode shape are obtained in analytic form of  

beam which have different shapes of cross section at the same value of area and 

buckling force is studied by the present work and using Euler formula of buckling.  

2. Theoretical Analysis 
 To derive the equation that governing the transverse vibration of a beam of 

length L, with the following properties at section x; m(x) is the mass per unit length, 

A(x) is the cross-section area, and I(x) is the second moment of area, assume small 

deflections y(x,t) and rotations 
x

y


 . Consider the lateral vibration of a beam, loaded 

axially , as shown in Fig.(1). Whenever a beam is compressed, there is concern about 

its buckling. As the axial load is increased, a critical value of stress is reached with a 

new (buckled) deformation configuration is possible. Since this configuration 

generally undesirable, structural failure occur at this critical load. Design codes 

generally assume a failure at some load less than the buckling load[Benaroya, 1998]. 

To formulate the problem, use the free body diagram of an arbitrary section of the 

beam with all external force has been drawn as shown in Fig.(2), noting that there is 

an additional moment term Sy due to the constant  axial force S, where y is the 

deflection at the section under consideration. This is shown in Fig (2).  

 

 

 

 



Journal of Babylon University/Engineering Sciences/ No.(1)/ Vol.(20): 2012 

 303 

                                  

                                                       P(x,t)                                         

                             y 

                           

 

 

    
                        S                      x                dx                     S 

                 
                                                           L 

 

                           Fig.(1) : Transverse vibration of beam with axial force    
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Fig.(2): Free body for the transverse vibration of beam with axial force 

 

2.1 Eginevalues – Natural frequencies. 

The equation of motion in the vertical direction remains the same (since S acts 

approximately perpendicular to y), the moment equation about the center of the cross- 

section now must  include the moment due to S, is:  

              

2

2

)(

dx

yd
xEISyM  ,                                                      (1) 

where, I = I(x), m = m(x) 

2

2

)(

dx

yd
xEI  the bending moment, ))((

2

2

dx

yd
xEI

x


 the shear force and 

))((
2

2

2

2

dx

yd
xEI

x


the load.  [ Singer, 1981] 

  
while the governing equation of motion for y(x,t) [Benaroya, 1998],   

2

2

2

2

2

2

)()(
t

y
xm

x

y
xEI

x 

























.                                        (2) 

The above equation becomes 

2

2

2

2

2

2

)(),()(
t

y
xmtxpSy

x

y
xEI

x 


























.                            (3) 

 Equation(3) can be solved by the method of separation of variables. 

                 

y(x,t)=Y(x)F(t).                                                                  (4) 

Substitute this equation into the governing equation (Eq. 3 ) gives: 
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                         
..

''

2

2

)()(),()()()()( FxYxmtxptFxSYtFxEIY
dx

d
                               (5) 

Setting p(x,t)=0      

                         
)()(

1

xYxm
  

F

F
xSYxEIY

dx

d
..

''

2

2

)()(     = -ω
2
 .                                       (6) 

                                            I                                II   

In the last equation, time-dependent variables and space-dependent variables have 

been placed on opposite sides of the equal; sign. Since part I is only a function of x, 

and part II is only a function of t, it must be that each is equal to the same constant, 

say –ω
2
. So that the solution in time is harmonic     

,02
..

 FF                                                                                 (7) 

This equation is solved, the result is simple harmonic motion with frequency ω. 

Now Y(x) is governed by 

  )()()()( 2''

2

2

xYxmxSYxEIY
dx

d
 ,                                            (8) 

and 

    )()()()( 2

2

2

4

4

xYxmxY
dx

d
SxY

dx

d
EI  ,                                    (9) 

Define β
4
=ω

2
m/EI, and the eigenvalue equation becomes 

  0)()()()( 4"""  xYxxY
EI

S
xY                                                     (10) 

This is an eginvalue problem. Equation (7) required two initial conditions and 

equation (10) requires four boundary conditions for complete solution. 

The eigenvalue problem must be solved for a particular set of boundary 

conditions, resulting in expressions for the eigenfunctions Y(x) and frequencies ω 

which the structure can accommodate in free vibration. 

The effect of axial force S is significant. For a simply supported beam (setting 

p(x,t)=0 for the eigenvalue problem). we find  

L

xr

mL
xYr


sin

2
)(  ,      r =1,2,3,….,                                            (11) 

Differentiate equation (11) and substitute in to equation (10) to obtain    

                          



































22

1





r

L

EI

S

m

EI

L

r
r .                                   

 (12) 

                           

Note that for a tensile axial force +S, the effect is an increase in the frequencies of 

free vibration. Had a compressive force-S been applied, the frequencies would be 

given by 




































22

1





r

L

EI

S

m

EI

L

r
r ,                                                       (13) 

 For  r =1, the term 
2












L

EI

S
is the ratio of S to the Euler buckling load. If 

SL
2
/EIπ

2
     1, the lowest mode of vibration approaches  a zero frequency and 

transverse buckling occur for S =EI π
2
/L

2
. 

2.2 Eigenfunction – Modes shapes.  
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 The mode shapes are given by the equation as shown below: 

  Yr(x)=Cr sin βx ,  [Benaroya, 1998]                                                    

(14)   

From define of  β
4
=ω

2 
m/EI  equation (14) becomes 

Yr(x)=Cr sin 
4

1










EI

m
 x                                                         (15)  

Substitute equation (12) into equation (15) and after simplification yields; 

Yr(x)=Crsin
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1

2

1




r

L
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S

L

r
x                             (16) 

Where Cr is an arbitrary constant. To specify Cr, a normalization is carried out 

according to the rule  

,1)(

0

2  dxxmY

L

r r=1, 2, .     [Benaroya, 1998  ]           (17)  

Substitute equation (16) into equation (17) gives;                
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After solution  equation (18) obtain: 

  Cr
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Substitute Cr in equation (16) yield the modes to have the specific form for the tensile 

force as below : 
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And for the compression force as  
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3. Results  and  Discussion: 
            Table(1) shows the properties and dimensions of beam which have different 

cross sections and table(2) shows shapes of different cross section and its mechanical 

properties. 

 Table(3) shows the values of buckling force for different shape of cross 

section of  beam by using Euler equation (S =EI π
2
/L

2
 ) directly and the present work 

(graphically where the natural frequency approach to minimum value at the buckling 

force). It can be seen that the difference between the two methods is very small, and 

the table show the maximum tensile force for beam after obtained the value of 
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ultimate strength of structural steel from strength of material is 830 Mpa, therefore the 

allowable stress is 415 Mpa , where maximum tensile force = (allowable stress*cross 

section area of beam). Table (4) shows the effect of change second moment of area on 

the range of buckling force for all shapes at the same area by using the present work. 

Figures (3 , 4) show the natural frequency of the first mode and second mode 

of vibration respectively as a function of the tensile force for second moment of area 

(I1). It is shown that there is an increase in natural frequency with increasing the 

tensile force. This is attributed to the increase of stiffens of the beam at the same mass 

for all. It is seen that the beam of rectangular cross section has natural frequency 

lower than the others type because of it has the smallest value for second moment of 

area which cause decreased the stiffness of beam. 

Figures (5 , 6) show the natural frequency of the first mode and second 

mode of vibration respectively as a function of the compressive force at second 

moment of area (I1). It is shown that the natural frequency decreased with 

increasing the compressive force. This is attributed to the decrease of stiffens of 

the beam where all beams at the same mass. Also the beam of T–section bears 

the range of compressive force higher than the others before occurred the 

buckling because of it has the largest value of second moment of area causes 

increasing its stiffness. 

 Figures (7 , 8) show the natural frequency of the first mode of vibration as 

a function of the tensile and compressive force respectively at moment of inertia 

(I2) and at the same value of cross section area in (I1) means the same mass for 

all beams. It is shown that the natural frequency increase with increasing the 

second moment of area resultant to increased the stiffness of beam.  

The main features of the mode shapes associated with the first two natural 

frequencies as a function of length for beam at simply support ends are shown in  

Fig.(9&10) for a tensile and a compressive force respectively under effect of 

different value of axial force. It can be note that for tensile force the amplitude is 

an decreased with increasing the force resultant to increased the natural 

frequency of beam, while for compressive force the amplitude is an increased 

with increasing the force resultant to decreased the natural frequency. The beam 

of rectangle section losses stability when the force approaches to buckling force 

can be seen that in the difference of amplitude when compare with the types at 

the same force.  

4. Conclusions: 
                     The main conclusions of the present work can be summarized as: 

1- Natural frequency of beam for rectangular cross sectional area is lower 

than the others cross section at the same area for both tensile force and 

compressive force. 

2- Natural frequency of beam is an increased with increasing second moment of 

area at the same area of cross section.  

3- Beam with T-section bears high range of compressive force before 

occurred buckling . 

4- The stiffness of beam is an increased with increasing second moment of area 

at the same area of cross section.                          
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                        Table  ( 1 ) :  Specifications  of  the  tested models 

 

 

       Parameter 

 

 

Symbol 

 

Value 

 

Units 

 

Length 

Thickness 

Modulus  of  elasticity 

Density  

 

L 

h 

E 

ρ 

 

 

3 

0.02 

200 

7800 

 

m 

m 

Gpa 

       kg / m
3 

 

                                             Table(2) : shapes of cross section 

                            

Cross section shape area (a) 

m
2 

Second 

moment of 

area (I1)m
4 

 

 

Rect.-section 

 

 

 

  

 

80*10
-4 

 

 

 

6.667*10
-6 

 

 Box section 

 

 

 

  

 

80*10
-4

 

 

 

12.27*10
-6 

 

 

I-section 

 

 

 

  

 

80*10
-4

 

 

 

38.18*10
-6 

 0.08m 

 h     

 h 

 0.1m 

   .08 
 0.12m 

 0.14m 

 0.13m 

 0.16m 

   .05 

 0.1m 
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T-section 

 

 

 

 

  

 

80*10
-4

 

 

 

55.6*10
-6 

 

 

 

 

 

 

 

 

 

Table(3) : Buckling  Force  

 

Shape of 

cross 

section 

 

Maximum 

tensile force 

MN 

Buckling force by 

Euler Equation 

MN 

Buckling force by 

Present work 

MN 

Difference 

with respect 

to Euler 

equation % 

Rect. 

section 

 

3.32 1.4634 1.45 0.915 % 

Box section 

 

3.32 2.693 2.64999 1.59 % 

I-section 

 

3.32 8.3805 8.350014 0.363% 

T-section 

 

3.32 12.204 12.20003 0.0325% 

 

Difference = (Euler Eq. – Present woke)/Euler Eq.*100% 

 

Table(4) : Moment of Inertia with Buckling  Force  

 

Shape of 

cross 

section 

 

Second moment 

of area (m
4
) 

 

Buckling Force 

(MN) Present 

 

Second 

moment of 

 

Buckling 

Force (MN) 

  h 

  h 

 0.24m 
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 I1 work 

MN 

area (m
4
) 

I2 

Present work 

MN 

Rect. 

section 

 

6.667*10
-6 

1.45 8.066*10
-6 

1.7499 

Box section 

 

12.27*10
-6

 2.64999 13.867*10
-6 

2.999 

I-section 

 

38.18*10
-6 

8.350014 45.867*10
-6 

10.05 

T-section 

 

55.6*10
-6 

12.20003 60.03*10
-6 
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 Fig. (3): Natural frequency as a function of 

a tensile axial force for 1
st
 mode  at (I1) 

Fig. (4): Natural frequency of a function of  

a tensile axial force for 2
nd

 mode  at (I1) 
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Fig. (5): Natural frequency as a function of  

compressive axial force for 1
st
 mode  at (I1) 

Fig. (6): Natural frequency of a function of a 

compressive axial force for 2
nd

  mode at (I1) 
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Fig. (7): Natural frequency as a function of a 

tensile axial force for 1
st
 mode at  (I2) 

Fig. (8): Natural frequency as a function of a 

compressive axial force for 1
st 

mode  at (I2) 
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Fig.(9-c)                                                                          Fig.(9-d) 
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Fig.(9;a-h):Mode shapes associated with the first two natural frequency 

of beam for different  cross section  respect to tensile force 
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